
Probabilistic Modelling and Reasoning
Assignment 2

Instructor: Prof. Chris Williams

Published: Fri November 4 2011, Revised Nov 18
Due: Fri December 2, 2011 by 4pm

Remember that plagiarism is a university offence. Please read the policy at
http://www.ed.ac.uk/schools-departments/academic-services/students/

postgraduate-taught/discipline/plagiarism .

Marking Breakdown

A Results/answer correct plus extra achievement at understanding or analysis of results.
Clear explanations, evidence of creative or deeper thought will contribute to a higher
grade.

B Results/answer correct or nearly correct and well explained.

C Results/answer in right direction but significant errors.

D Some evidence that the student has gained some understanding, but not answered the
questions properly.

E Serious error or slack work.

Mechanics

You should submit this assignment manually to the ITO office in Appleton Tower by the
deadline. Handwritten paper submissions are acceptable if the handwriting is neat and
legible.

The policy stated in the School of Informatics MSc Degree Guide is that normally you will
not be allowed to submit coursework late. For exceptions to this, e.g. in case of serious medi-
cal illness or serious personal problems, see http://www.inf.ed.ac.uk/student-services/
teaching-organisation/for-taught-students/coursework-and-projects/

late-coursework-submission .
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1 Principal Component Analysis [10%]

Download the assignment’s software tarball from the course webpage and unpack it using the
command tar -xvf a211.tar. The MATLAB file script.m first executes addtoolboxes.m
which loads the toolboxes that you’ll need to complete this assignment. These toolboxes
include Prof. Neil Lawrence’s motion capture toolbox1, Prof. Ian Nabney’s Netlab toolbox2

and a slightly modified version of Prof. Zoubin Ghahramani’s linear dynamical system
toolbox3.

The script then loads a Biovision hierarchical motion capture file (.bvh) from the data/

directory into 3 MATLAB variables: skeleton, sequence_X, and frame_length. skeleton
stores information about the actor’s body (e.g., lengths of limbs) and sequence_X is a matrix
of size 581× 69 that stores information about the actor’s movements in the motion capture
sequence. Each row contains one frame of the motion capture sequence, and the columns
represent the skeleton’s joint angles in the different frames. The sequence can be visualised
using the skelPlayData function:

skelPlayData(skeleton, sequence_X, frame_length);

We wish to represent the data in a lower-dimensional space in order to extract information
about the properties of the actor’s gait. We will first apply Principal Component Analysis
(PCA) as a dimensionality reduction technique.

1. Write a function that computes the principal components of the data:

[ mu, E, lambda, p ] = getEigenvectors(sequence)

The function receives as input the sequence data and returns the mean pose mu as
a column vector, and a matrix E whose columns are the eigenvectors corresponding
to the (descending) ordered eigenvalues lambda of the covariance matrix of sequence.
The additional output p is the cumulative percentage of the variance explained by each
of the eigenvalues in lambda. Hand in the MATLAB code of the function.

HINT: You will probably find the Matlab functions eig, sort and cumsum helpful.

2. Using the function from the previous question compute the eigenvalues and eigen-
vectors of the data. State the first two eigenvalues. Produce a plot that shows the
cumulative variance as a function of the number of components and determine how
many components are needed to explain at least 95% of the variance in the data.

3. We wish to have an intuition of the kind of variability explained by the principal
components of the data. For this, we can visualize µ + zei for various values of z,
where µ is the mean of the data and ei is the i-th principal component.

For each component ei, we can generate a new motion sequence sequence_Y, in which
each frame j of the sequence is set to equal µ + zjei. Create two sequences (each

1http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/mocap/
2http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
3http://mlg.eng.cam.ac.uk/zoubin/software.html
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of length 581 frames) for the first two principal components e1 and e2, by varying z
linearly between appropriate values of zmin and zmax.

Hand in the code that carries out this computation. Comment on the type of infor-
mation captured by each of the principal components. You may also wish to use some
well-chosen figures.

4. The projection of a frame xj onto the i-th eigenvector ei is given by eT
i (xj − µ).

Calculate the projection of each frame of the original sequence sequence_X onto the
first 2 principal components. Hand in the code that carries out this computation.
Plot the projections in 2D space using MATLAB’s line function. Comment on the
structure of the projections. What does this plot tell us about the original sequence?

2 Generative Topographic Mapping [20%]

The Generative Topographic Mapping (GTM) model of Bishop, Svensen and Williams (1997)
is described in the tech report NCRG 96 015 available from the course website under week 7.
However, you do not need to read and understand the whole paper to do the question below.
The basics were covered in the handout Factor Analysis and Beyond and in the lectures.
Note that the mapping from the latent space to the dataspace is implemented as a radial
basis function (RBF) network, so that the mapping from z to xi, the ith dimension of x, is
given as φi(z) =

∑
j wijψj(z), where the ψ functions are Gaussian radial basis functions in

the Netlab implementation. When fitting the model to data its fit is initalized to the PCA
solution.

1. We wish to fit a GTM model to the data in sequence_X. The function gtm1dinittrain.m

initializes a GTM model with a 1D latent space and performs EM training. It shows
the projection of the data, the locations of the centres of the Gaussians in the GTM
and spheres of equal variance onto the first two principal components of the data. This
is achieved by passing it the matrix E computed above.

Using this function, train a 1D GTM model of sequence_X with 50 latent sample points
and 7 RBF centres for 200 EM iterations. Comment on the structure of the GTM fit.
Why might this fit be inappropriate as a 1D latent variable model of sequence_X?
How do you think GTM should ideally fit to this dataset, perhaps obtained using a
different initialization?

2. Using the Netlab function gtmprob compute the log likelihood of the data under the
trained model. Report the result and hand in the code that carries out this computa-
tion.

3. The fit achieved by the GTM model is sensitive to the initial locations and variance of
the Gaussians, and also to num_rbf_centres and num_latent_points. Obtain some
different fits by varying these two parameters and compare the data log likelihoods to
those given by the fit of the GTM model above. You may also wish to include a couple
of plots to illustrate the fits obtained. Discuss the relationship you observe between
the quality of the fit and the log likelihood.
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4. The function gtm2dinittrain.m initializes a GTM model with a 2D latent space
and performs EM training. Using this function, train a 2D GTM model of data in
sequence_X with 50 latent sample points per dimension and 10 RBF centres per di-
mension for 50 EM iterations. Using the Netlab function gtmlmean compute the mean
responsibility for each frame in 2D latent-space. Plot the responsibilities in 2D space
using MATLAB’s line function. How does the GTM projection differ from the PCA
projection?

3 Factor Analysis [35%]

Factor Analysis (FA) models the data x ∈ RD using a set of latent variables z ∈ RM where
z ∼ N (0, IM) and x ∼ N (Wz +µ,Ψ). D is the dimensionality of the observed data (69 in
this case), M the number of latent states, and Ψ is a diagonal matrix.

Using the function fa by Dr. David Barber which is in the LDS toolbox, fit a FA model
with a 2D latent space to the data. Use a maximum number of 50 iterations.

1. Calculate the mean of the posterior projection of each frame of the original sequence
sequence_X into the FA model’s 2D latent space (see §12.2.4 in Bishop, 2006). Store
the projections in a 581× 2 matrix sequence_Z_FA. Hand in the code that carries out
this computation. Plot the projections in 2D space using MATLAB’s line function.
Comment on the structure of the projections. How do these projections compare to
those generated by PCA?

2. (This question has been deleted.)

3. Above we have explored PCA as a method to reduce the dimensionality of the data.
Why would it not make sense to first apply PCA to the data and then FA? Consider
the effect that PCA would have on the data and the kind of structure FA attempts do
discover.

4. FA models the data marginally as a Gaussian N (µ, C) where the covariance C =
WW T + Ψ. Thus, one way to obtain the likelihood of a datapoint x under the learned
FA model would be to compute the covariance matrix and to then just compute the
Gaussian likelihood. This gives

log p(x) = −1

2
(x− µ)TC−1(x− µ)− 1

2
log |C| − D

2
log(2π). (1)

Using the above equation write a Matlab function L = fallikelihood(X, W, Psi, mu)

that computes the log likelihood of a dataset under a FA model. The function takes
as input the D×N dimensional matrix with the dataset X, the D×M factor loadings
matrix W, a D × 1 dimensional vector Psi that contains the elements on the diagonal
of the noise variance Ψ and the D × 1 dimensional mean vector mu. Hand in the code
for your function.

HINT: fa.m contains code to calculate the log likelihood of a dataset under a FA model.
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5. When fitting a FA model we need to choose the number of latent factors M as a param-
eter. In order to choose M for the data at hand perform 7-fold cross validation. For
this purpose shuffle the frames randomly (you can use the Matlab function randperm

for this purpose). Split your dataset into 7 batches of size 83. Then fit FA models with
M = 1, 5, 10, 15, 20, 25. For each value of M repeat the fitting 7 times, using 6 of the
7 batches as training data and the seventh batch as test data (not used for training!).
For each model evaluate the log likelihood of the training data and of the test data
under the learned model. Plot your results in a suitable manner and comment. Also
explain why it makes sense to shuffle the frames before splitting the data into batches.
Give one alternative method to cross validation for performing model selection, and
explain briefly how it works.

6. Computation of the log likelihood as defined in equation 1 is extremely expensive when
D is large, since the covariance matrix is of size D ×D. We can use matrix identities
to reduce the cost. Let a nonsingular matrix H be written as H = A + BDE. Then
we have the identity H−1 = A−1 − A−1B(D−1 + EA−1B)−1EA−1. Applying this to
WIMW

T + Ψ we obtain

dTC−1d = dT Ψ−1d− dT Ψ−1W (IM +W T Ψ−1W )−1W T Ψ−1d, (2)

where d = (x−µ) and IM is the M ×M identity matrix. Note that Ψ is diagonal and
therefore its inverse and terms such as dT Ψ−1 can be computed efficiently.

To address the log |C| term in equation 1 we make use of the identity |A||D+EA−1B| =
|D||A+BD−1E| to give

log |WW T + Ψ| =
D∑

i=1

log Ψii + log |IM +W T Ψ−1W |. (3)

Inverting a D×D matrix takes O(D3) time, as does the computation of its determinant.
By using equations 2 and 3 determine the complexity of computing log p(x) in terms
of D and M .

4 Linear Dynamical System [35%]

1. We will now attempt to model the data using a linear Gaussian HMM, also known
as a linear dynamical system (LDS). A LDS models a sequence of observations x1...N
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through a sequence of latent states z1...N as follows (see §13.3 in Bishop, 2006):

zn = Azn−1 +wn (4)

xn = µ+ Czn + vn (5)

z1 = µ0 + u (6)

w ∼ N (0,Γ) (7)

v ∼ N (0,Σ) (8)

u ∼ N (0, V0). (9)

Below we will assume that Γ and Σ are diagonal matrices. µ is a global offset, and µ0

is the mean of the initial latent state distribution p(z1).

Explain why a LDS might be appropriate for the data at hand. How does a LDS
compare to FA?

2. Initialise the random number generator by calling rand(’seed’, 0); randn(’seed’, 0).
Fit a LDS with M = 2 dimensional latent state to the data using Prof. Ghahramani’s
function lds. Report the final likelihood of the data under the LDS model. Compare
C for the LDS and the W obtained for FA with M = 2 using the subspace function.
Comment on the results.

HINT: lds returns a structure net that contains the parameters of the learned model
and the log-likelihood. Note that lds uses different names for some of the parameters:
The state noise covariance Γ is Q, the observation noise covariance Σ is R (this D ×D
dimensional diagonal matrix is returned as a D × 1 dimensional vector), the initial
state mean µ0 is x0 and the initial state covariance V0 is P0.

3. For factor analysis we have used cross validation on the permuted data to select the
appropriate number of latent factors for the data at hand. Would this be a sensible
approach for determining the number of latent states of the LDS?

4. Use the provided function ldspost to infer the posterior distribution of the latent
states. Plot the posterior means in 2D space using MATLAB’s line function. How
does the LDS projection compare to the PCA and FA projections?

5. From the inferred latent state you can reconstruct the original movie. Hand in code
that generates the mean reconstruction (i.e. without adding observation noise). Store
the reconstruction in a 581 × 69 matrix sequence_Y_reconstructed. Compare the
reconstruction with the original movie, and comment on your results.

6. The LDS allows you to sample a new movie. Write code that samples a sequence of
581 frames. Store the sampled latent state in a 581× 2 matrix sequence_Z_sampled

and the sampled sequence in a 581 × 69 matrix sequence_Y_sampled. Sample the
latent state both with and without noise, and sample the frames themselves without
noise. Hand in the code, as well as a plot of the generated latent state sequences in
2D. Comment on the structure of the sampled latent state sequences and compare the
two. Play the generated sequences using skelPlayData. Comment on your results.

HINT: You may wish to use the Netlab function gsamp.
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7. Compare the log likelihoods obtained for the dataset under the FA, GTM and LDS
models. What does this tell us about the quality of the three as models for the data?

8. Consider a Hidden Markov model with a discrete state space, where each hidden state
has an associated Gaussian emission distribution. How do you think this HMM would
ideally fit to the data? Comment on both the Gaussian means and covariances, and
the state transition matrix.

5 Notes on MATLAB

• Remember, there are only a limited number of licences for MATLAB. After
you have finished using MATLAB, quit from the MATLAB session so that
others can work.

• Under the Resources heading on the PMR page there are a number of MATLAB
tutorials listed including my “Introduction to MATLAB”.

• You can find out more about most MATLAB functions by typing help followed by the
function name. Also, you can find the .m file corresponding to a given function using
the which command.

• close all closes all the figures. It helps if things get cluttered.

• Read about plots in the “Introduction to MATLAB” linked from the PMR homepage.
Recall that the current figure can be save as an encapsulated postscript file myplot.eps
using print -deps myplot.eps. I then find the unix command epstopdf helpful for
creating .pdf files for inclusion in documents.

7


