
Probabilistic Modelling and Reasoning

Reference Solution for Assignment 2014

Instructor: Prof. Amos Storkey

March 12, 2014

1. Inference in a Belief Network

(a) Joint distribution (8 marks)

P (D,C, S, J, I, V, T) = P (D)P (C|D)P (S)P (J |D)P (I|C)P (V |C, S, J)P (T |J) (1)

(b) Computation of P (S = stuck |V = static, T = cold) (8 marks)

Using the product rule, we have:

P (S = stuck |V = static, T = cold) =
P (S = stuck , V = static, T = cold)

P (V = static, T = cold)
(2)

We can use the sum rule to expand the denominator:

P (S = stuck |V = static, T = cold) =
P (S = stuck , V = static, T = cold)∑

S

P (S, V = static, T = cold)
(3)

Therefore to find P (S = stuck |V = static, T = cold) we need to evaluate the distribution in the denominator,
P (S, V = static, T = cold). Using the sum rule, we have:

P (S, V = static, T = cold) =
∑
D

∑
C

∑
J

∑
I

P (D,C, S, J, I, V = static, T = cold) (4)

Plugging (1) into (4), we get:

P (S, V = static, T = cold) =∑
D

∑
C

∑
J

∑
I

P (D)P (C|D)P (S)P (J |D)P (I|C)P (V = static|C, S, J)P (T = cold |J) (5)

1

Notice that the object defined by (5) is a table of values defined over S. To efficiently compute the elements
of this table, we re-arrange the terms and push the sums to the right:∑

D

∑
C

∑
J

∑
I

P (D)P (C|D)P (S)P (J |D)P (I|C)P (V = static|C, S, J)P (T = cold |J) (6)

=
∑
D

∑
C

∑
J

P (D)P (C|D)P (S)P (J |D)P (V = static|C, S, J)P (T = cold |J)

(∑
I

P (I|C)︸ ︷︷ ︸
=1

)
(7)

=
∑
D

∑
C

∑
J

P (D)P (C|D)P (S)P (J |D)P (V = static|C, S, J)P (T = cold |J) (8)

=
∑
D

∑
C

∑
J

P (S)P (D)P (J |D)P (T = cold |J)P (C|D)P (V = static|C, S, J) (9)

= P (S)
∑
D

P (D)
∑
J

P (J |D)P (T = cold |J)
∑
C

P (C|D)P (V = static|C, S, J) (10)

If we make use of the distributivity of multiplications over additions, then by nesting and caching the sums
we can reduce the number of operations required to evaluate the distribution defined by (10). Specifically,

using the notation mX(Y) =
∑
X

f(X,Y) define the intermediary ‘messages’ as follows:

P (S)
∑
D

P (D)
∑
J

P (J |D)P (T = cold |J)
∑
C

P (C|D)P (V = static|C, S, J)︸ ︷︷ ︸
def
=mC(D,S,J)

(11)

= P (S)
∑
D

P (D)
∑
J

P (J |D)P (T = cold |J)mC(D,S, J)︸ ︷︷ ︸
def
=mJ (D,S)

(12)

= P (S)
∑
D

P (D)mJ(D,S)︸ ︷︷ ︸
def
=mD(S)

(13)

= P (S)mD(S) (14)

To recap, we have:

P (S, V = static, T = cold) = P (S)mD(S) (15)

P (S = stuck |V = static, T = cold) =
P (S = stuck)mD(S = stuck)∑

S

P (S)mD(S)
(16)

2

Now we recursively compute the tables mC(D,S, J), mJ(D,S) and mD(S):

D S J mC(D,S,J) =
∑

C P(C|D)P(V = static|C,S,J)

high stuck true 0.5× 1 + 0.5× 1 = 1
high stuck false 0.5× 1 + 0.5× 0.9 = 0.95
high free true 0.5× 1 + 0.5× 1 = 1
high free false 0.5× 0 + 0.5× 0.8 = 0.4
low stuck true 0.7× 1 + 0.3× 1 = 1
low stuck false 0.7× 1 + 0.3× 0.9 = 0.97
low free true 0.7× 1 + 0.3× 1 = 1
low free false 0.7× 0 + 0.3× 0.8 = 0.24

D S mJ(D,S) =
∑

J P(J|D)P(T = cold |J)mC(D,S,J)

high stuck 0.4× 0.1× 1 + 0.6× 0.9× 0.95 = 0.5530
high free 0.4× 0.1× 1 + 0.6× 0.9× 0.4 = 0.2560
low stuck 0.3× 0.1× 1 + 0.7× 0.9× 0.97 = 0.6411
low free 0.3× 0.1× 1 + 0.7× 0.9× 0.24 = 0.1812

S mD(S) =
∑

D P(D)mJ(D,S)

stuck 0.7× 0.5530 + 0.3× 0.6411 = 0.57943
free 0.7× 0.2560 + 0.3× 0.1812 = 0.23356

Finally, we compute P (S = stuck |V = static, T = cold) using (16):

P (S = stuck |V = static, T = cold) =
P (S = stuck)mD(S = stuck)∑

S P (S)mD(S)
(17)

=
0.5× 0.57943

0.5× 0.57943 + 0.5× 0.23356
= 0.71271 (18)

Comments

In general, the elimination order of variables is important. When summing out a variable, all factors that
contain that variable — either to the right or left of the condition bar — must be one of the summands.
The question asks the student to compute the probability efficiently. Students who chose to use auxiliary
functions such as mC(·, ·, ·) to “cache” partial results were rewarded.

(c) Conditional independence (8 marks)

To determine if S is conditionally dependent of any other node given V and T , we see if we can find any
X ∈ {D,C, J, I} which satisfies the following condition:

S ⊥⊥ X|{V, T} (19)

This condition holds only if all paths between between S and X are blocked. A path is said to be blocked
when any of the following conditions holds:

1. There is a node ω in the evidence set which is head-to-tail with respect to the path,

2. There is a node ω in the evidence set which is tail-to-tail with respect to the path,

3

3. There is a node that is head-to-head and neither the node, nor any of its descendants are in the evidence
set.

Here, the evidence set is {V = static, T = hot}. It can be shown that none of the conditions hold. We
consider all paths from S to all nodes X ∈ {D,C, J, I}:

1. The evidence nodes (V and T) are not head-to-tail for any such path.

2. The evidence nodes (V and T) are not tail-to-tail for any such path.

3. Every possible head-to-head node on such a path is in the evidence set, since the only head-to-head
node is V .

Therefore, no path between S and X is blocked for any X ∈ {D,C, J, I}. This means that S is conditionally
dependent on every other node given V and T , and that the observation of any other variable would lead to
extra information.

Comments

For a strict application of the rule to determine if a path is blocked, it is required to also state that the
descendants (if any) are not in the conditioning set. Many students reason that since a single node on a
path is unblocked, the entire path is unblocked too. However, a path is unblocked only if none of its nodes
are blocked. In other words, a path is unblocked only if every node on the path is unblocked.

(d) Markov Network (8 marks)

D

C S J

I V T

4

2. Mixtures of Multivariate Bernoullis

(a) EM (12 marks)

Figure 1: Graphical model of a mixture of Bernoullis

The graphical model of a mixture of Multivariate Bernoullis is shown in Figure 1 and the joint probability
of the visible variables is given by:

P (xi) =

M∑
m=1

P (Z = m)

D∏
j=1

P (xij |Z = m)

where xi is the ith data vector for i = 1, . . . n, D is the number of dimensions (variables), M the number of
components of the mixture and n the number of data-points. The parameters of the model are:

pmj = P (xj = 1|Z = m), m = 1, . . . ,M (20)

πm = P (Z = m), m = 1, . . . ,M (21)

which we aim to learn via EM algorithm, where
∑M

m=1 π
m = 1. We denote all the parameters as θ.

The expected complete data log-likelihood can be expressed as:

Q(θ|θold) =

n∑
i=1

M∑
k=1

P (Zi = k|xi, θold)[logP (xi|Z = k, θ) + log πk]. (22)

• Estimating πm: For this purpose we have to maximise Equation 22 wrt πm subject to the constraint∑M
k=1 π

k = 1. Using Lagrange multipliers we define the function:

n∑
i=1

M∑
k=1

P (Zi = k|xi, θold) log πk + λ(

M∑
k=1

πk − 1)

Differentiating this equation wrt a specific πm and equating the result to zero we have:∑n
i=1 P (Zi = m|xi, θold)

πm
+ λ = 0 (23)

Summing over all possible k = 1, . . . ,M we obtain:

n∑
i=1

M∑
k=1

P (Zi = k|xi, θold) = −λ
M∑
k=1

πk

5

but
∑M

k=1 P (Zi = k|xi, θold) = 1 and
∑M

k=1 π
k = 1, thus we find that:

−n = λ

Replacing this value back in Equation 23 we finally obtain:

π̂m =
1

n

n∑
i=1

P (Zi = m|xi, θold). (24)

• Estimating pm: Considering

P (xi|Z = k, θ) =

D∏
d=1

(pkd)x
i
d(1− pkd)1−xi

d

where pkd = P (xd = 1|Z = k), xid is the dth component of xi and D is the dimensionality of the data,
equation 22 leads to:

n∑
i=1

M∑
k=1

P (Zi = k|xi, θold) log

(
D∏

d=1

(pkd)x
i
d(1− pkd)1−xi

d

)

=
∑
i

∑
k

P (Zi = k|xi, θold)

(∑
d

xid log pkd + (1− xid) log(1− pkd)

)
. (25)

Differentiating wrt pmj and equating the results to zero we have:∑
i

P (Zi = m|xi, θold)

[
xij
pmj
−

1− xij
1− pmj

]
= 0 ⇒

∑
i

P (Zi = m|xi, θold)[xij − pmj] = 0

and finally, we obtain:

p̂mj =

∑
i P (Zi = m|xi, θold)xij∑
i P (Zi = m|xi, θold)

(26)

or in vector notation:

p̂m =

∑
i P (Zi = m|xi, θold)xi∑
i P (Zi = m|xi, θold)

.

In order to complete and EM iteration it is necessary to define P (Zi = m|xi, θold). We do this by
simply applying Bayes’ rule:

P (Zi = m|xi) =
P (xi|Z = m)P (Z = m)

P (xi)
=

P (Z = m)
∏

j P (xij |Z = m)∑M
k=1 P (Z = k)

∏
j P (xij |Z = k)

(27)

and ∏
j

P (xij |Z = m) =
∏
j

(pmj)x
i
j (1− pmj)1−xi

j .

The parameters πm and pm are initialised at random and equations 27, 24 and 26 are iterated until
convergence.

Comments: A derivation of the general form of the expected complete data log-likelihood for a mixture
model was not expected. However, some students did not explicitly state Q(θ|θold) and therefore the es-
timation of the parameters of the model was not clear. Additionally, students were expected to show the
expression for a multivariate Bernoulli distribution and those who did this and those who gave a derivation
of pmj were rewarded. A common mistake was to try to express the likelihood in terms of quantities like

(pm)x
m

; this kind of expression is best avoided— what is the meaning of raising a vector to the power of a
vector? (If it is defined as an elementwise product this works, but it needs to be properly defined.) A small
group of students have used a very different notation and did not specify what this notation meant. This
makes it very hard to follow nay argument. Other students did not show in detail the full derivation of the
parameters of the model based on the EM algorithm. Note that the final parameters were provided both
cases. Those that did show the full deviation were rewarded.

6

(b) Fitting Mixtures of Bernoullis to data (10 marks)

In order to evaluate the number of components of the mixture one can apply the EM algorithm with the
default values of the parameters, i.e. tol = 0.0001, max it = 400, P0 initialised at random and Pi0 initially
1/M. However, as the results vary depending upon the initialisation of P0, it is better to execute the algorithm
a certain number of times R. The likelihood of the data for M = 1, 2, .., 5 is shown in Figure 2 for R = 10. It
can be observed in this figure that the likelihood increases as we augment the number of components, which
seems not to fit with the true generative model. Nonetheless, one must be cautious with this interpretation
because it may be a sign of overfitting rather than an indication of that the best model occurs when M = 5.
Indeed, as we increase the number of components, it is necessary to estimate a greater number of parameters.
For example, for M = 3 we need to estimate 21 parameters while for M = 5 the number of estimations
needed are 35. It stands to reason that n = 200 data-points might be insufficient for estimating this number
of parameters without the risk of overfitting.

Figure 2: Likelihood of the data for different number of mixtures

An interesting fact to notice at this point is that when using the default parameters the algorithm terminates
due to code = 0, i.e. the tolerance has been reached for all of them.

The results of using tol = 10−6 and selecting the best of R = 10 runs are shown in Table 1. Although for
M = 4 and M = 5 there is an increase in the log-likelihood of the data the number of iterations required is
larger than for M = 3. It is also possible to compare the parameters of the models found by EM algorithm

M Log-likelihood iterations
1 -798.92 0
2 -788.45 153
3 -781.26 100
4 -777.39 176
5 -774.04 160

Table 1: Log-likelihood and number of iterations for different number of mixtures

with the actual parameters of the true model that generated the data. We might expect these parameters

7

Figure 3: Parameter vectors for EM solution ‘o’ and true model ‘*’ M = 3.

to be similar since after each EM iteration we are maximising the log-likelihood of the data. However, they
do not look quite similar even when decreasing the tolerance of the algorithm and augmenting the number
of iterations. Figure 3 shows the parameter vectors for the EM solution and the true model in the case of
M = 3, where each line describes a parameter vector and is labelled with the corresponding probability of
the component. The agreement between the parameters found by EM and the true generative parameters is
not good. Additionally, the priors found by the algorithm [0.47 0.25 0.28] do not accurately correspond to
those of the real model [0.4 0.2 0.4]. There are two possible reasons that can explain these differences. First,
the weakness of EM algorithm of getting trapped in a local maxima. Indeed, there is no guarantee that EM
can obtain the solution that in fact corresponds to the global maxima of the likelihood. However, the second
reason can be that the data sample available may be insufficient to accurately reflect the underlying mixture
model. As the log likelihood of the 200 datapoints is less under the true generative model (-790) than under
the learned model it seems that the second reason applies here.

Comments: Students were expected to run the algorithm several times for each value of M because different
answers may be obtained each time. It is not correct to compare the results based on a single execution
of the program for each M . A plot like Figure 2 is an easy and illustrative way of showing the results and
their variability. It is important to recognise the potential of overfitting and it should have been observed
through the analysis of the results that if we increase the number of components overfitting is taking place.
Some students used a chi-squared test to analyse the results, though in most cases did not justify this.

Finally, some students tried the nice idea of generating more data from the given mixture model using
mix bernoulli sample; this allowed them to verify that overfitting was taking place for higher values of M .

(c) Näıve Bayes vs. Mixtures of Bernoullis (10 marks)

• Estimating the parameters for Näıve Bayes: Based on the principle of maximum likelihood the
parameters can be estimated as follows:

θck = P (xk = 1|c) =
#(xk = 1)

Nc
(28)

P (class = c) =
Nc

N
(29)

8

where #(xk = 1) stands for the number of times attribute xk is equal to 1, Nc is the number of
data-points belonging to class c and N is the total number of data-points.

• Parameter vectors for each class: The probability of each class ham or spam is 0.5 given that they
are in the same proportion in the data. The following table shows the estimators P (xk = 1|c) for each
class.

θham 0.00 0.00 0.00 0.00 0.28 0.00 0.32 0.22 0.26 0.22
θspam 0.56 0.44 0.40 0.22 0.08 0.26 0.00 0.00 0.12 0.18

• Computing P (Zi = ham|xi): Let us denote class 1 as ham, θc1d = P (xd = 1|c1) and p1 = P (class =
ham). Similarly let class 2 be spam, θc2d = P (xd = 1|c2) and p2 = P (class = spam). Simple application
of Bayes’ rule produces:

P (c = 1|X) =
p1
∏D

d=1(θc1d)xd(1− θc1d)1−xd

p1
∏D

d=1(θc1d)xd(1− θc1d)1−xd + p2
∏D

d=1(θc2d)xd(1− θc2d)1−xd

The corresponding matlab code is given by:

for i=1:N

pham_X = prod((theta1.^X(i,:)) .* ((1-theta1) .^ (1-X(i,:))))*p1;

pspam_X = prod((theta2.^X(i,:)) .* ((1-theta2) .^(1-X(i,:))))*p2;

pham(i)=pham_X/(pham_X+pspam_X);

end

The posterior probabilities are shown in Figure 4.

Figure 4: Classification with Naive Bayes

9

If we did not have the labels we can fit a Mixture of Bernoullis to the data with M = 2 and expect
the data to be naturally grouped in two clusters. As before, several runs, say R = 10 should be used
and the parameters found by the one with maximum likelihood should be chosen. The calculation of
the posterior probabilities is the same as in the previous case. The matlab code is shown below.

for i=1:N

p1_X = prod((P(1,:).^X(i,:)) .* ((1-P(1,:)) .^(1-X(i,:))))*Pi(1,1);

p2_X = prod((P(2,:).^X(i,:)) .* ((1-P(2,:)) .^(1-X(i,:))))*Pi(2,1);

p_c(i)=p_1_X/(p_1_X+p_2_X);

end

Figure 5 shows the posterior probabilities for the Mixture of Bernoullis, where it is clear that these
probabilities correspond to P (Zi = spam|xi).

Figure 5: Classification with Mixture of Bernoullis

• Goodness of fit
As can be seen in the plots both methods correctly classify all the ham. However, some misclassifications
occur when deciding about spam. The following table summarises the log-likelihood and the error rate
for each method. It is not surprising that the error rate for the Mix-Bernoulli method is greater than
for Näıve Bayes as the learning for the former was completely unsupervised i.e. without knowledge of
the labels. In fact, it is doing quite well considering that none of the labels were used during training.
It is also not surprising that the Mix-Bernoulli method exhibits a better log-likelihood than Näıve
Bayes. This is because the EM algorithm is completely driven by what the data says regardless of the
labels each example has and tries to maximise the likelihood at each iteration.

Method Log-likelihood error rate
Näıve Bayes -400.25 11/100
Mix-Bernoulli -369.15 27/100

10

Comments: There were some misapplications of Bayes’ rule. When calculating the posterior probabilities
the prior over the class was neglected or the normalisation by dividing over P (xi) was not done. Those who
applied Bayes rule correctly where rewarded. A misapplication of Bayes rule is fairly problematic, and so
unfortunately did not attract many marks. Other students recognised that they were not normalising as
P (xi) is the same for both classes but the question asks to see plots of the actual posterior probabilities.
When comparing the methods, at least the error rate should have been mentioned. The calculation of the
log-likelihood (also important and a matter of discussion), was used only by a few number of people. Finally,
some students analysed the results further and found out that several data-points were having zero for all
the variables and that indeed they were misclassified by both algorithms.

3. Gaussians

P (x,y) =
1

Z(W)
exp

(
−1

2
xTx− 1

2
yTy − xTWy

)
(30)

where x is a real vector of dimension mx, y is a real vector of dimension my and mx = my.

3a: Let r = (xT ,yT)T . What is the inverse covariance matrix (called the precision)
of r?

Note that r is zero mean. How do we know? If we transform x → −x and y → −y we get the same form.
So the distribution is symmetric about zero and so must have zero mean.

So we are looking for a distribution of the form

1

Z
exp

(
−1

2
rT Σ−1r

)
because if we have that form we can just read off the precision matrix (inverse covariance).

Write this out with r = (xT ,yT)T :

1

Z
exp

(
−1

2

(
xT yT

)(Σ−1
xx Σ−1

xy

Σ−1
yx Σ−1

yy

)(
x
y

))
where we have split Σ−1 up into blocks.

Now we can expand the matrix bits out

1

Z
exp

(
−1

2

[
xT Σ−1

xxx + xT Σ−1
xy y + yT Σ−1

yx x + yT Σ−1
yy y

])

Now we can simply match terms in this to terms in the given form ensuring symmetry (each term is a linear
parameter of a different set of variables). So Σ−1

xx = I, Σ−1
yy = I, Σ−1

xy = W , Σ−1
yx = WT , giving

Σ−1 =

(
I W
WT I

)

11

3b: Write down an expression for Z(W) in terms of W . Note that for determi-
nants |.|, we have |A−1| = 1/|A|. You may wish to look up the “determinant of
block matrices”.

The determinant of a block matrix

det

(
A B
C D

)
= det(AD −BC)

if CD = DC.

Z(W) = (2π)d/2|Σ|1/2 =
(2π)d/2

|Σ−1|1/2
=

(2π)d/2

|I −WTW |1/2
=

(2π)d/2

|I −WWT |1/2

3c: Write out the forms for the distributions P (yi|yrest,x) and P (xi|xrest,y), where
the rest suffix denotes the set of all the other nodes apart from the i-th node.

P (yi|yrest, x) =
1

P (yrest, x)
P (yi, yrest, x)

where P (yrest, x) =
∑

yi
P (yi, yrest, x).

P (yi,yrest, x) =
1

Z
exp

(
−1

2

[
y2i + yT

restyrest + 2yiw
T
i x + 2yrestWrestx + xTx

])
(31)

=
1

Z
exp

(
−1

2
(yi −wT

i x)2 − f(x,yrest)

)
(32)

where we use wi to denote the ith column of W and Wrest to denote the remainder of the matrix. Note
the terms collected into f don’t depend on yi and so they (and Z) cancel when the normalisation P (yrest, x)
is computed. So

P (yi|yrest, x) ∝ exp

(
−1

2
(yi −wT

i x)2
)

(33)

What is the normalisation constant? Well it is just a Gaussian distribution so we know the constant...

P (yi|yrest, x) =
1

(2π)1/2
exp

(
−1

2
(yi −wT

i x)2
)

(34)

3d: Draw the Markov Network for this distribution. How does the Markov
Network relate to the precision matrix?

The terms ‘connected’ in the Energy Function (the terms in the exponential) turn up in the Markov network.
That is if any factor if a (nonadditive) function of two random variables then those are directly dependent
and connected in the Markov Network. For a Gaussian, the connected terms are equivalent to terms that
are non-zero in the precision matrix. The Markov Network is a bipartite structure with connections only
between hidden and visible neurons.

12

3e: Suppose the x data are observable. What is the form of the joint conditional
distribution P (y|x)?

From the Markov Network, conditioned on x each yi is independent. So the joint conditional is

P (y|x) =
∏
i

P (yi|x)

where each term is given by the result of 3c.

3f: You observe data D = {x1,x2,x3, . . . ,xN}. Explain how you could use the
EM algorithm to learn the parameters W. Give the form of the E-Step and the
M-Step updates.

The EM algorithm first computes the distribution over the latent space and then uses that distribution as
‘surrogate data’ for learning the parameters. The E step is given by the 3c.

The M Step then optimizes the expected log likelihood: it optimizes using the gradient

−1

2

N∑
n=1

∑
yn
j

P (ynj |xn)xni y
n
j +

N

2

∂

∂wij
log |I −WWT |

That is all that is necessary for a full answer to this question. But we can do the sums:

The derivative of (log detB(A)) wrt Aij is Tr(B−1 ∂B
∂Aij

. So the gradient is

−1

2

N∑
n=1

∑
yn
j

P (ynj |xn)xni y
n
j

+N(I −WWT)−1W

Note that this is not a closed form solution and so a gradient update is needed for the M step.

3g: Let v = Wy and assume that W is invertible. Draw the Markov Network for
the variables x,v in the case of four x nodes and four v nodes.

Rewrite in terms of v using y = W−1v

P (x,y) =
1

Z(W)
exp

(
−1

2
xTx− 1

2
vT (W−1)TW−1v − xTv

)
(35)

so now all the v terms are connected, but yi is only dependent on vi. The Markov network has links between
all the v nodes, but single links from each v node to the corresponding x node.

13

3h: Let the Singular Value Decomposition (SVD) of W be W = UΛV T , where
UUT = I, V V T = I and Λ is diagonal. Now let u = V Ty. What is the Markov
Network for u and x?

Rewrite again in terms of u.

P (x,y) =
1

Z(W)
exp

(
−1

2
xTx− 1

2
uTu− xTUΛu

)
(36)

3i: Compare this network with the network in question (d). Comment about
the uniqueness of the EM solution in (e). Explain your reasoning.

This has the same graphical form as the original graph (bipartite). It also has the same parameter structure,
but with a different parameter value W→ UΛ. This means there are no unique parameters and the model
is not identifiable. The parameters learnt by EM are just one set of parameters in an equivalence class.

3j: What is the marginal distribution over the x variables integrating out the y
variables?

As stated in the question, The covariance matrix for r takes the form:

cov(r) =

 [I −WWT]−1 −W (I −WTW)−1

−WT (I −WWT)−1 [I −WTW]−1


This can be derived using the partitioned inverse equations (sometimes called the block inverse equations).

So the marginal distribution over x is just a Gaussian with the relevant covariance read from the covariance
matrix: N(0, [I −WWT]−1)

3k: If we just want to learn a model for P (x), and don’t care about y, can you
suggest a better way of learning this marginal distribution?

I −WWT (and hence its invers) is a full rank symmetric matrix. So the distribution over the visibles is just
a general zero mean Gaussian. We could just learn this distribution directly. I.e. set the covariance matrix
to match the empirical covariance.

3l: If y were instead binary variables (yi ∈ {0, 1}), with x and y still following
the model described in equation (1), explain why the distribution over x would
be a mixture of Gaussians. How many mixture components would there be (in
general). What would each component have in common?

Given the state of the hidden units, the visible is a multivariate Gaussian N(µ, I). Different states of the
hidden units lead to differen µ. Hence summing over them results in a mixture. there are 2my states of the
hidden nodes, resulting 2my mixture components, all with unit covariance.

14

