
PM background material

Introduction

This course teaches various aspects of computer-aided modelling for the performance
evaluation of computer systems and communication networks. The performance of a
system influences its design, procurement and subsequent use. Performance analysis may
be carried out at any stage of that life-cycle. In general, the problem is to achieve the
highest possible performance given the constraints on the system. Typical constraints
might be the number of users, the bandwidth or the cost. Modelling and simulation are
methods which are commonly used by performance analysts to represent constraints and
optimise performance.

Many of the ideas of the course will be presented by examples; as well as computer
systems and communication networks, other dynamic systems such as manufacturing and
transport systems will sometimes be considered. With all the examples it will be as
important to consider the underlying concepts as the details of the example itself.

Discrete event systems

A common feature of all the systems which we will consider is that they are discrete
event systems. What this means is that our view of the system (its state) is characterised
by variables that take distinct values and which change at distinct times or events in
the system. For example, we might be interested in the number of nodes in a wireless
network which are currently waiting to send a message (N say). This number will change
when one of two events occur: either a node, which was not previously waiting, generates
a message and is now waiting to send (N → N + 1), or a node, which was previously
waiting, successfully transmits its message (N → N − 1).

We will not consider continuous systems. These are systems in which the state variables
characterising the system are constantly changing. An example of such a model would
be the speed of a falling object or the drag experienced by a plane. Nevertheless we will
sometimes find it useful to approximate the behaviour of a discrete system by a continuous
one.

In all our modelling studies one of our major tasks will be to choose the parameters
which characterise the system under study.

Discrete time discrete event models only consider the system at predetermined moments
in time, which are typically evenly spaced, eg. at each clock “tick”. State changes are
observed only at these moments, which are not necessarily the moment at which the events
themselves occur. Such models are often used to approximate systems with continuously
changing states. Continuous time discrete event models, consider the system at the time
of each event. Hence the time parameter in such models is conceptually continuous. At
levels of abstraction above the hardware clock these models are generally appropriate for
computer and communication systems.
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Probability Theory

Although computer systems by their very nature are deterministic systems the models
we will be considering will be stochastic. Loosely speaking, a stochastic model is one
in which behaviour is random. We use such models because the world that computers
interact with is by no means deterministic, but instead full of random behaviour. Also,
the stochastic nature of the models will allow us to consider typical or average behaviour
rather than particular behaviour. We will rely heavily on basic probability theory when
constructing and solving our models.

Probability theory deals with the analysis of events which are unpredictable when
viewed individually, but which exhibit some regularity and predictability when viewed
in large numbers. We are familiar with such ideas applied to tossing a coin or rolling a
die. Here the unpredictability of an individual outcome is due to the non-deterministic
nature of the situation. When we are considering a computer system the unpredictability
of an individual outcome is likely to arise because of our inability to measure or specify
the exact conditions under which the event occurs. This distinction, however, is largely
philosophical; probability theory is equally applicable to both these situations.

There are three axioms of probability theory:

1. There is a sample space, Ω, which encompasses all possible observations or outcomes.

2. There is a collection of subsets of Ω, denoted E, and termed events1; these subsets
are usually identified as sample points which satisfy some condition.

3. There is a probability mapping, Pr, from E to IR. Pr must satisfy three simple
conditions:

(a) For any event A, A ∈ E, the mapping Pr is defined and satisfies 0 ≤ Pr(A) ≤ 1.

(b) Pr(Ω) = 1.

(c) If A and B are mutually exclusive, that is, they contain no sample points in
common, then Pr(A ∪B) = Pr(A) + Pr(B).

If we consider a mobile phone antenna using frequency division multiplexing the sample
space is the complete set of observations. Example events might be that more than three
frequencies are in use or that a particular user is making use of the facility. These events
corresponds to subsets of the sample points.

Various properties of probabilities can be derived from the axioms and simple set theory.
For example, the probability of the union of two events A and B which are not mutually
exclusive is Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). Similarly, the probability of the
complement of event A, denoted by ¬A, is Pr(¬A) = 1 − Pr(A). P (A,B) is the joint
probability that both A and B occur.

Conditional Probabilities

If we know that some event has occurred then this may affect the probability that other
events have occurred. The conditional probability of A occurring, given that B has oc-
curred, is

1Note that this is a different use of the term “event” from discrete event system.
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Pr(A | B) =
Pr(A ∩B)

Pr(B)

Example: In a communication network, there are two routes A and B, between a
particular pair of nodes which are chosen with equal probability. Message transmission
time along route A is 1 second and along route B is 3 seconds. However, the probability of
a transmission error is 0.2 on route A and 0.1 on route B. We wish to find the probability
of a message being transmitted correctly in 1 second.

Let us denote the event of a successful message transmission by C. We wish to calculate
the probability that a transmission takes route A and is successful, i.e. Pr(A ∩ C). We
know the conditional probability that a transmission is successful, given that it took route
A, is Pr(C | A) = 0.8 and the probability that route A is taken is Pr(A) = 0.5. So it
follows that Pr(A ∩ C) = Pr(C | A)× Pr(A) = 0.8× 0.5 = 0.4.

If A and B are mutually exclusive Pr(A | B) = 0. If B is a precondition for A, then
Pr(A∩B) = Pr(A). Two events are independent if knowledge of the occurrence of one of
them tells us nothing about the probability of the other, i.e. Pr(A | B) = Pr(A). Thus,
when two events are independent, the probability of them both occurring is

Pr(A ∩B) = Pr(A)× Pr(B).

Random Variables and Probability Distributions

Often when we conduct an experiment or investigation we are interested in some number
associated with the experiment rather than the actual outcome. For example, if we
consider the mobile phone antenna again, we are likely to be interested in the number of
frequencies in use rather than the details of each connection. Thus we naturally construct
a mapping from the observations we make of the actual interactions, the sample space, to
the value we are interested in. Such a function, from the sample space to the real or natural
numbers is a continuous or discrete random variable, respectively. We are often interested
in calculating, for each possible value, with what probability the random variable takes
that value. Conversely, knowing these probabilities gives us a lot of information about
the sample space modelled by the random variable.

When the random variable takes discrete values such as the natural numbers we asso-
ciate probabilities with the random variable in an intuitive way. That is, the probability
that a random variable X has the value v is equal to the probability of the union of all
events that lead to X = v.

Suppose that random variable X has values {xi | i ∈ I} and that for all i ∈ I the
probability that X = xi is equal to pi. Then {pi | i ∈ I} is the probability distribution ofX.
This mapping from xi to pi is sometimes called the mass function. In the simple example
of rolling a fair die, the values of the random variable are clearly {1, 2, 3, 4, 5, 6} and the
probability distribution is {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}. This is a uniform distribution.

The expectation of X is defined to be

E[X] =
∑
i∈I

xi × pi.
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Informally, we can think of this as the average value that X will have. For rolling a fair
die this will be

(1× 1/6) + (2× 1/6) + (3× 1/6) + (4× 1/6) + (5× 1/6) + (6× 1/6) = 21/6 = 3.5

For some sample spaces, discrete values of random variables are not appropriate. For
example, if we are interested in the number of frequencies which are used each hour then
a discrete random variable is ideal. However, if we are interested in the duration of each
connection, the variable can take almost any non-negative value, so a continuous random
variable is appropriate.

For continuous random variables we can no longer assign a probability to each sample
point in a meaningful way. Instead we define the probability that the random variable
takes a value which is less than a given value. This is done by a distribution function2,
F . For a continuous random variable X the distribution function is defined as

F (x) = Pr(X ≤ x)

Probability distribution functions satisfy four conditions:

1. F (x1) ≤ F (x2) if x1 ≤ x2;

2. F (x) −→ 0 as x −→ −∞;

3. F (x) −→ 1 as x −→∞;

4. F (x) is continuous3.

The derivative of the distribution is known as the density function f(x),

f(x) =
dF (x)

dx
.

It is convenient to regard the infinitesimal quantity f(x)dx as the probability that the
value of X lies in the interval (x, x + dx). The expectation of the continuous random
variable X is defined as

E[X] =

∫ ∞
−∞

xf(x)dx.

The expectation of the sum of a number of random variables is the sum of their in-
dividual expectations. This is true even if the variables are dependent in some way. In
other words, for continuous random variables, X and Y , E[X + Y ] = E[X] + E[Y ].

The expectation only gives us an idea of the average value assumed by a random
variable, not how much individual values may differ from this average. The variance,
V ar(X), gives us an indication of the “spread” of values:

V ar(X) = E[(X − E[X])2] = E[X2]− E[X]2.

2Some authors call this the cumulative distribution function.
3Strictly, F (x) only needs to be right continuous, but we will assume that F (x) is continuous for all

the continuous random variables which we will encounter in this course.
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Two important distributions

The most important continuous probability distribution for performance modelling pur-
poses is the (negative) exponential distribution which has the distribution function

F (x) = 1− e−µx x ≥ 0 and density function f(x) = µe−µx x ≥ 0

The expectation of an exponential random variable with parameter µ is 1/µ and its
variance is 1/µ2. This random variable is often used to denote the time which elapses
until some event occurs, such as the arrival of a task at a computer system, the arrival of
a bus at a bus-stop or the outbreak of war.

Example: Suppose that the time for which a computer system is up is an exponential
random variable with mean 20 days. What is the probability that the machine will stay
up for more than 40 days?

Let X denote the random variable representing the up-time of the machine. Then we
are interested in Pr(X > 40) = 1 − Pr(X ≤ 40) (i.e. the distribution function evaluated
when x = 40 and µ = 1/20):

Pr(X > 40) = 1− (1− e−40/20) = e−2 = 0.135 to 3 significant figures

The exponential distribution function is closely related to a discrete random variable,
the Poisson distribution. This random variable takes values in the set {0, 1, 2, . . .} and
has the mass function

pi = e−µ
µi

i!
i ≥ 0.

The expectation of a Poisson random variable with parameter µ is also µ. The Poisson
random variable arises frequently in computer and communication system modelling. It
is typically used as a counting variable, recording the number of events that occur in a
given period of time; for example, the number of sms messages transmitted from a mobile
phone in one hour or the number of database queries arriving at a server in one minute.
If we observe a Poisson process with parameter µ for some time period of length h then:

• the probability that one event occurs is µh+ o(h).4

• the probability that two or more events occur is o(h).

• the probability that no events occur is 1− µh+ o(h).

Thus if we observe a Poisson process for a infinitesimal time period dt the probability
that an event occurs is µdt. If the occurrence of events is governed by a Poisson distri-
bution then the inter-event times are governed by an exponential distribution with the
same parameter, and vice versa. Therefore, if we know that the delay until an event is
exponentially distributed then the probability that it will occur in the infinitesimal time
interval of length dt, is µdt.

4The notation o(h) denotes terms of small relative size; formally a function f is o(h) if lim
h→0

f(h)

h
= 0

In practice, what this means is that these are terms which we can ignore when h is small.
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The reason that the exponential distribution is used extensively in performance mod-
elling is because it has several attractive mathematical features. Here we will state those
properties without proof, but the proofs can be found in any textbook on stochastic
modelling, Markov processes or performance modelling.

• The exponential distribution is memoryless : if X is an exponentially distributed
random variable, then

Pr(X > t+ s|X > t) = Pr(X > s) t > 0, s > 0

If X represents the waiting time until an event, this implies that knowing that t
time units have already elapsed without the event occuring does not give us any
additional information about when the event will occur—the distribution of the
further waiting time is the same as if no waiting time had already passed.

• If X1 and X2 are two exponentially distributed random variables, with parameters
λ1 and λ2 respectively, and Y is defined to be their minimum, i.e. Y = min(X1, X2),
then Y is also exponentially distributed, with parameter λ1 +λ2. This is sometimes
called the superposition property.

• Let X be an exponentially distributed random variable, with parameter λ, repre-
senting time until an event. Suppose that the events are probabilistically divided
into two categories, with events belonging to stream A with probability pA and
belonging to stream B with probability pB = 1 − pA. Then stream A and stream
B are Poisson streams with parameters λ × pA and λ × pB respectively, and the
waiting times between events of category A and between events of category B are
exponentially distributed with parameters λ × pA and λ × pB respectively. This is
sometimes called the decomposition property.

Linear Algebra

We will use vectors (columns of numbers) to represent (discrete) probability distributions
over the discrete states of the systems we consider. Typically such a vector will be
denoted π(t) if it is the probability at a particular time t, or simply π when we consider
the equilibrium or steady state distribution. We use the notation e to denote the vector
in which all entries are 1, and ei the vector in which all entries are 0 except for the ith
which has value 1.

A matrix is a two-dimensional grid of numbers and we will use matrices to represent the
relationship between states. For example, in a matrix Q entry qi,j will capture the rate of
moving from state i to state j. We use the notation I to denote the identity matrix, i.e.
the matrix for which

Ii,j =

{
1 if i = j
0 otherwise

Given a matrix Q, QT is the transpose of Q(
QT
)
i,j

= Qj,i
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