
Scalable Modelling in the PEPA Eclipse Plug-in

November 12, 2012

1 Introduction

PEPA has a long history of software tool support. As we saw in the lecture note, the
PEPA Eclipse Plug-in has been recently proposed as an implementation of the language
which supports the whole model development process with a rich graphical interface.
Lecture note 14 provided an overview of the main plug-in features such as static analysis
and numerical solution of the underlying continuous-time Markov chain (CTMC). This
lecture note is concerned with a recently added module which implements the some of
the scalable analysis techniques discussed in lecture note 15. These scalable analysis
techniques are based on the numerical vector form of state representation.

As a running example we consider the following PEPA model, which is very similar
to one presented in earlier notes:

Process1
def
= (use, r).P rocess2

Process2
def
= (think, s).P rocess1

CPU1
def
= (use, r).CPU2

CPU2
def
= (reset, t).CPU1

Process1[8] ��
{use}

CPU1[4]

The component Process interposes some thinking time between uses of a CPU, mod-
elled as a synchronisation over the action type use. The CPU performs some reset opera-
tion, e.g., a context switch after each use. The system equation considers eight processes
and four CPUs in total. In this model, a process may use any of the available CPUs. The
form of the model suitable for putting into the tool is shown in Figure 1,

Recall that the numerical vector form state representation is a vector of counting
variables, each representing the number of components which exhibit a specific local
behaviour. In the running example, the state vector may be denoted as follows:

x = (xProcess1 , xProcess2 , xCPU1 , xCPU2 ),

and hence the initial state is (8, 0, 4, 0). Generating functions, denoted by fα(x, l), are
used to give the rate at which an activity of type α is executed, and the change to a state

1



2 SCALABLE MODEL ANALYSIS

/* Rate declarations */

r = 1.0;

s = 4.5;

t = 5.5;

/* Sequential component Process */

Process1 = (use, r).Process2;

Process2 = (think, s).Process1;

/* Sequential component CPU */

CPU1 = (use, r).CPU2;

CPU2 = (reset, t).CPU1;

/* System equation */

Process1[8] <use> CPU1[4]

Figure 1: A sample PEPA model with two sequential processes.

Figure 2: Differential Analysis View for the model in Figure 1.

due to its execution through the vector l. For instance, the shared action use is captured
by the function

fuse
(
x, (−1, 1,−1, 1)

)
= min(r xProcess1 , r xCPU1 ),

which says that use decreases the population counts of Process1 and CPU1 and, cor-
respondingly, increases the population counts of Process2 and CPU2 at a rate which is
dependent upon the current state. Just as in the case of deriving the Markov process
underlying the syntactic state representation of the PEPA model, the derivation of the
generator functions is based on a formal structured operational semantics. For instance,
the following transition in the CTMC for the initial state may be then inferred:

(8, 0, 4, 0)
min(1.0×8.0,1.0×4.0)−−−−−−−−−−−−→ (8, 0, 4, 0) + (−1, 1,−1, 1) ≡ (7, 1, 3, 1).

Extracting generating functions from a PEPA model presents little computational chal-
lenge because it does not require the exploration of the whole state space of the CTMC.
In the plug-in, the Differential Analysis View updates the generating functions of the
currently active model whenever its contents are saved. Figure 2 shows a screen-shot with
the three generating functions of our running example.

2 Scalable Model Analysis

2.1 Stochastic simulation.

The generating functions contain all the necessary information for model analysis. As dis-
cussed in Lecture note 15 they allow a straightforward application of Gillespie’s stochastic

2



2.1 Stochastic simulation. 2 SCALABLE MODEL ANALYSIS

Figure 3: Stochastic simulation dialogue box.

simulation algorithm. Given a state x̂, the evaluation of each of the generating functions
fα(x̂, l) of the model gives the relative probabilities with which each action may be per-
formed. Drawing a random number from the resulting probability density function decides
which action is to be taken, and thus the corresponding target state x̂+ l. This procedure
may be repeated until conditions of termination of the simulation algorithm are met.

The PEPA Eclipse Plug-in implements transient and steady-state simulation algo-
rithms (see Figure 3). Transient simulation is based on the method of independent repli-
cations, (see Lecture note 13). The user is required to select which components of the
state vector are to be kept track of, the start and stop time of the simulation, the num-
ber of equally spaced time points of interest over the simulation interval, the maximum
number of replications allowed, and a desired confidence level.

Two stopping criteria may be used. The confidence-level criterion terminates the
simulation when the user-specified confidence interval is within a given percentage of the
statistical mean. If convergence is not reached within the maximum number of replications
allowed, the results are reported together with a warning. Alternatively, the simulation
may be simply stopped when the maximum number of replications is reached. In either
case, the tool presents the results in a graph with errors bars giving the confidence levels
obtained (see Figure 4).

Steady-state simulation is performed with the method of batch means. Using a similar
interface to that shown in Figure 3, the user is presented with a dialogue box to set up the
following parameters: length of the transient period, during which samples are discarded;
confidence level desired; maximum number of batches. The duration of each batch is set
to ten times the transient period.1 At the end of a batch, the algorithm checks whether
the tracked population counts have reached the desired confidence level. If the maximum
number of batches is reached, the algorithm returns with a warning of potentially bad
accuracy. The results are presented in a dialogue box which gives the average steady-state
value and the confidence level for each tracked population count (see Figure 5a)2.

1This parameter is currently not modifiable. Future releases will expose this setting to the user.
2The lag-1 correlation is also computed as an indicator of statistical independence between adjacent

batches, but details of this are beyond the scope of this course.

3



2.2 Differential Analysis. 2 SCALABLE MODEL ANALYSIS

Figure 4: Results of a transient stochastic simulation.

(a) Stochastic Simulation (b) ODE Analysis

Figure 5: Steady state results displayed in dialogue boxes.

2.2 Differential Analysis.

The vector x(t) of functions which is solution of the ordinary differential equation (ODE)
dx(t)
dt

=
∑

l

∑
α lfα

(
x(t), l

)
provides an approximating continuous trajectory of the pop-

ulation counts of the PEPA components as a function of time. The plug-in supports
the numerical integration of the initial value problem corresponding to the model equa-
tion of the PEPA description. In the running example, the initial state of the vector
x(t) =

(
xProcess1 (t), xProcess2 (t), xCPU1 (t), xCPU2 (t)

)
is x(0) = (8, 0, 4, 0). The plug-in

supports both transient and steady-state analysis. In either case, the user is required
to specify the integration interval and the absolute and relative tolerance errors for the
numerical solver, based on the odetojava library. For transient analysis, a mesh of time
points of interest must be specified using the triple start time, time step, stop time.
At those points the solution of the ODE will be computed and the results will be returned
in the form of a graph. For steady-state analysis, the user is also required to specify a
tolerance error for equilibrium detection. At each time point τ analysed during the nu-
merical integration, if the Euclidean norm of dx(t)

dt
|t=τ is below that threshold, the model is

said to have reached equilibrium, and the corresponding solution vector x(τ) is returned.

4



2.2 Differential Analysis. 2 SCALABLE MODEL ANALYSIS

The user interface for either form of differential analysis is structurally similar to that for
stochastic simulation—the top area of a dialogue box permits the set-up of the numerical
integration, whereas in the bottom area the user chooses the components to visualise. As
with steady-state stochastic simulation, the results are presented in a dialogue box (see
Figure 5b).

Throughput Calculation. The generating functions can be interpreted as giving the
throughput of an action type in each state xi of the Markov chain. For instance, if the
simulation model collects samples of min(r xProcess1 , r xCPU1 ) then the statistics of this
random variable will give the throughput of use. The graphical interface of Figure 3 is
partially re-used to specify the simulation settings. However, in the bottom area are listed
all the action types declared in the PEPA model. A fluid approximation of throughput,
which is also implemented, is given by the evaluation of the function fα

(
x(t), l

)
. Finally,

throughput and population-count measures can be combined in order to compute average
response times, using Little’s Law using the same approach as we have seen in earlier
lecture notes.

5


