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Single Queues

Single Queues: M/M/1
Consider a M /M /1 queue with infinite capacity:

A A A A
™
I 1 T T

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 6 Solving Queueing Models



Single Queues

Single Queues: M/M/1
Consider a M /M /1 queue with infinite capacity:

A A A A
™
I 1 T T

If we write the global balance equations for this system we can
soon recognise a regular pattern emerging.

ATy = pm
A+ p)mwr = Amo + pm2
A+ p)mp = Amp+ pms
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Single Queues

Single Queues: M/M/1

ATy = pmi
A+ p)m = Amo+ pm
A+ p)me = Amy+ pms
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Single Queues

Single Queues: M/M/1

Amp = pm
A+ p)m = Amo+ pm
A+ p)me = Amy+ pms

Using simple algebra we can rewrite these:

A
T = —T

()
m = —m = |(— | o
2 ju

= (3)
w3 = —mp = (— | o
o
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Single Queues

M/M/1: state probabilities

A
T = —T

A <A>2
m = —m = |~ | 70

1 1

- (3)
w3 = —m = |—| 7o

L L

Recalling that A/ = p, the traffic intensity, we can see that for an
arbitrary state x;: .
i = p'To
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Single Queues

M /M /1: normalisation condition

o0
By the normalisation condition we know that Zm =1.
i=0
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Single Queues

M /M /1: normalisation condition

o0
By the normalisation condition we know that Zm =1.
i=0
Substituting the expression for m; we get:

1

o0 o0 .
ZWi = WOZP' =m
i=0 i=0 P

if p<1
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Single Queues

M/M/1: steady state probabilities

From the normalisation condition we can deduce:

= 1—p

and it follows that the probability of being in an arbitrary state i is

wi= (1—p)p’ foralli>0.
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Single Queues

M/M/1: symbolic evaluation

This result means that we can deduce the steady state probability
of being in an arbitrary state of a M/M/1 queue as soon as we
know the arrival rate A and the service rate pu.
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Single Queues

M/M/1: symbolic evaluation

This result means that we can deduce the steady state probability
of being in an arbitrary state of a M/M/1 queue as soon as we
know the arrival rate A and the service rate pu.

We do not need to carry out a numerical solution of the global
balance equations.
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Single Queues

M/M/1: symbolic evaluation

This result means that we can deduce the steady state probability
of being in an arbitrary state of a M/M/1 queue as soon as we
know the arrival rate A and the service rate pu.

We do not need to carry out a numerical solution of the global
balance equations.

Moreover, from this steady state distribution we can derive
required performance measures directly in terms of p.
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Single Queues

M/M/1: Utilisation, U

The queue is being utilised whenever it is non-empty; in other
words the utilisation, U, is 1 — 7.

Utlisation

U=p
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Single Queues

M/M/1: Mean number of customers in the queue, N

This is the expectation of the number of customers in the service
facility as a whole, i.e.

No. in queue
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Single Queues

M/M/1: Mean number of customers waiting, N,

This is the expectation of the number of customers in the buffer

N, = i(n—l)an = i(n—l)x (1—p)p"
n=1 n:io n p
= p;nx @=0" = 7=
Number in buffer
Ny = 2
1—p
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Single Queues

M/M/1: Mean response time, R

Using Little's Law we can calculate the mean response time of the
queue to be the mean number in the queue N, divided by the
arrival rate )\,

R = N/\x =

Response time

1
=)
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Single Queues

Other single queues

We can derive symbolic steady state distributions, and expressions
for performance measures, for the other standard queues.
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Single Queues

Other single queues

We can derive symbolic steady state distributions, and expressions
for performance measures, for the other standard queues.

Thus, given almost any single queue model, in order to derive a
performance measure it is only necessary to select the appropriate

formula from a table and evaluate it using the parameters of your
model.
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Single Queues

Other single queues

We can derive symbolic steady state distributions, and expressions
for performance measures, for the other standard queues.

Thus, given almost any single queue model, in order to derive a
performance measure it is only necessary to select the appropriate
formula from a table and evaluate it using the parameters of your
model.

Some examples are in Lecture Note 6 and most textbooks on
performance models will contain these formulae.
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Single Queues

Example

m Consider again the wireless access gateway discussed
previously.
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Single Queues

Example

m Consider again the wireless access gateway discussed
previously.

m Measurements have shown that packets arrive at a mean rate
of 125 packets per second, and are buffered until they can be
transmitted.
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Single Queues

Example

m Consider again the wireless access gateway discussed
previously.

m Measurements have shown that packets arrive at a mean rate
of 125 packets per second, and are buffered until they can be
transmitted.

m The gateway takes 2 milliseconds on average to transmit a
packet.
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Single Queues

Example

m Consider again the wireless access gateway discussed
previously.

m Measurements have shown that packets arrive at a mean rate
of 125 packets per second, and are buffered until they can be
transmitted.

m The gateway takes 2 milliseconds on average to transmit a
packet.

m The gateway currently has 13 places (including the packet
being transmitted) and packets that arrive when the buffer is
full are lost.
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Single Queues

Example

m Consider again the wireless access gateway discussed
previously.

m Measurements have shown that packets arrive at a mean rate
of 125 packets per second, and are buffered until they can be
transmitted.

m The gateway takes 2 milliseconds on average to transmit a
packet.

m The gateway currently has 13 places (including the packet
being transmitted) and packets that arrive when the buffer is
full are lost.

m We wish to find out if the buffer capacity is sufficient to
ensure that less than one packet per million gets lost.
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Single Queues

Example

m We represent the gateway as a M/M/1/13 queue, with
A =125 and p = 1/0.002 = 500.
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Single Queues

Example

m We represent the gateway as a M/M/1/13 queue, with
A =125 and p = 1/0.002 = 500.

m The utilisation of the gateway will be p = \/u = 0.25.
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Single Queues

Example
m We represent the gateway as a M/M/1/13 queue, with
A =125 and p = 1/0.002 = 500.
m The utilisation of the gateway will be p = \/u = 0.25.

m The loss rate is the arrival rate multiplied by the probability
that the system is full, i.e. A x 7.
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Single Queues

Example

m We represent the gateway as a M/M/1/13 queue, with
A =125 and p = 1/0.002 = 500.
m The utilisation of the gateway will be p = \/u = 0.25.

m The loss rate is the arrival rate multiplied by the probability
that the system is full, i.e. A x 7.

m The proportion of lost packets is wk (expected no. lost per
time unit divided by the expected no. arriving per time unit)

1— K
i = (1_;53[) = (0.75 x 0.25%) /(1 — 0.25")

= (1.1176 x 107%)/0.99999999 = 1.12 x 1078
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Single Queues

Example

m We represent the gateway as a M/M/1/13 queue, with
A =125 and p = 1/0.002 = 500.
m The utilisation of the gateway will be p = \/u = 0.25.

m The loss rate is the arrival rate multiplied by the probability
that the system is full, i.e. A x 7.

m The proportion of lost packets is wk (expected no. lost per
time unit divided by the expected no. arriving per time unit)

1— K
i = (1_;53[) = (0.75 x 0.25%) /(1 — 0.25")

= (1.1176 x 107%)/0.99999999 = 1.12 x 1078

m Thus the expected proportion of packets lost is 0.0112 every
million packets, well within the requirement.
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Product Form Queueing Networks

Networks of queues

If we consider a network of queues rather than a single queue the
possible state space of the underlying Markov process become
much more diverse.
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Product Form Queueing Networks

Networks of queues

If we consider a network of queues rather than a single queue the
possible state space of the underlying Markov process become
much more diverse.

So we would not expect to derive symbolic steady state
distributions of wide applicability in the same way as we have done
for single queues.
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Product Form Queueing Networks

Networks of queues

If we consider a network of queues rather than a single queue the
possible state space of the underlying Markov process become
much more diverse.

So we would not expect to derive symbolic steady state
distributions of wide applicability in the same way as we have done
for single queues.

However, for a large class of queueing networks a straightforward
and efficient means of solving models has been found. These
networks are known as product form networks.
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Product Form Queueing Networks

Product form queueing networks

The term product form comes from the fact that the steady state
distribution of these models can be derived as the product of the
steady state distributions of the service centres in the network.
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Product Form Queueing Networks

Product form queueing networks

The term product form comes from the fact that the steady state
distribution of these models can be derived as the product of the
steady state distributions of the service centres in the network.

In a queueing network the state of the system is characterised by

the number of customers waiting at each of the service centres,
usually represented as a tuple.
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Product Form Queueing Networks

Product form queueing networks

The term product form comes from the fact that the steady state
distribution of these models can be derived as the product of the
steady state distributions of the service centres in the network.

In a queueing network the state of the system is characterised by
the number of customers waiting at each of the service centres,
usually represented as a tuple.

For example, in a simple queueing network with two service
centres, the state (m, np) indicates that there are ny customers in
service centre 1 (queueing or in service) and ny customers in
service centre 2.
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Product Form Queueing Networks

Product form distributions

e
= BT

Y

A

For this model to have a product form steady state distribution
means that the distribution can be expressed as a product of terms
representing the steady states of each of the service centres
considered in isolation, e.g.

71'(/’11, n2) = 7r1(n1) X 71'2(n2)
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Product Form Queueing Networks

Product form distributions

e
= BT

Y

A

For this model to have a product form steady state distribution
means that the distribution can be expressed as a product of terms
representing the steady states of each of the service centres
considered in isolation, e.g.

71'(/’11, n2) = 7r1(n1) X 71'2(n2)

At steady state the service centres behave independently.
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Product Form Queueing Networks

Traffic Equations

For a product form network the steady state distribution can be
derived from the steady state distributions of the individual queues,
which in turn can be derived from the traffic intensity.
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Product Form Queueing Networks

Traffic Equations

For a product form network the steady state distribution can be
derived from the steady state distributions of the individual queues,
which in turn can be derived from the traffic intensity.

This means that we need to find the arrival rate \; at each queue
i, in addition to the service rate u; which we are usually given.
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Product Form Queueing Networks

Traffic Equations

For a product form network the steady state distribution can be
derived from the steady state distributions of the individual queues,
which in turn can be derived from the traffic intensity.

This means that we need to find the arrival rate \; at each queue
i, in addition to the service rate u; which we are usually given.

The effective arrival rate at each queue must be derived taking into
consideration any external arrivals and arrivals from other queues.
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Product Form Queueing Networks

Traffic Equations

For a product form network the steady state distribution can be
derived from the steady state distributions of the individual queues,
which in turn can be derived from the traffic intensity.

This means that we need to find the arrival rate \; at each queue
i, in addition to the service rate u; which we are usually given.

The effective arrival rate at each queue must be derived taking into
consideration any external arrivals and arrivals from other queues.

A series of established theorems, the decomposition principle of

Poisson /exponential distributions, and simple algebra, can help us
to work out the arrival rate at each node in the network.
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Product Form Queueing Networks

Burke's Theorem

Burke's Theorem

A Poisson arrival process at a service centre with
exponential service rates generates a Poisson process
of departures. Moreover the rate of departure is the

same as the arrival rate.
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Product Form Queueing Networks

Burke's Theorem

Burke's Theorem

A Poisson arrival process at a service centre with
exponential service rates generates a Poisson process
of departures. Moreover the rate of departure is the

same as the arrival rate.

This result implies that each service centre in a chain of simple
exponential service centres with Poisson arrivals can be analysed
independently using results from simple queues.
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Product Form Queueing Networks

Jackson’s Theorem

Jackson generalised Burke's Theorem to an arbitrary network of
exponential service centres each of which is driven by a Poisson
arrival process.
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Product Form Queueing Networks

Jackson’s Theorem

Jackson generalised Burke's Theorem to an arbitrary network of
exponential service centres each of which is driven by a Poisson
arrival process.

Although the presence of feedback paths destroys the Poisson

nature of the service centre arrivals, Jackson showed that they still
behave as if they were Poisson driven.
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Product Form Queueing Networks

Jackson’s Theorem

Jackson generalised Burke's Theorem to an arbitrary network of
exponential service centres each of which is driven by a Poisson
arrival process.

Although the presence of feedback paths destroys the Poisson
nature of the service centre arrivals, Jackson showed that they still
behave as if they were Poisson driven.

Moreover the relationship between the arrival stream and the

output stream is maintained. The networks considered by Jackson
were open.
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Product Form Queueing Networks

Jackson’s Theorem

Jackson generalised Burke's Theorem to an arbitrary network of
exponential service centres each of which is driven by a Poisson
arrival process.

Although the presence of feedback paths destroys the Poisson
nature of the service centre arrivals, Jackson showed that they still
behave as if they were Poisson driven.

Moreover the relationship between the arrival stream and the
output stream is maintained. The networks considered by Jackson
were open.

Again, this implies that each service centre in the queueing
network can be analysed independently.
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Product Form Queueing Networks

Gordon and Newell's Theorem

Gordon and Newell considered a modification of Jackson's
networks to networks which are closed rather than open.
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Product Form Queueing Networks

Gordon and Newell's Theorem

Gordon and Newell considered a modification of Jackson's
networks to networks which are closed rather than open.

Closed queueing networks are not driven by any external Poisson
arrival process. Instead, the number of customers in the network is
fixed, K.
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Product Form Queueing Networks

Gordon and Newell's Theorem

Gordon and Newell considered a modification of Jackson's
networks to networks which are closed rather than open.

Closed queueing networks are not driven by any external Poisson
arrival process. Instead, the number of customers in the network is
fixed, K.

Gordon and Newell's product form equation has the form:
w(ny, n ng) = L ﬁﬂ'-(n-)
1, 112y« ooy N _G(K)I:1 1 1

where G(K) is a normalisation constant chosen to ensure that the
steady state probabilities sum to 1.
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Product Form Queueing Networks

Traffic equations: implications of these results

If the arrival rate at queue / is \;, the departure rate will also be A;.
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Product Form Queueing Networks

Traffic equations: implications of these results

If the arrival rate at queue / is \;, the departure rate will also be A;.

So, if all the departures from queue i go directly to queue i + 1 the
arrival rate at queue / 4+ 1 will also be A;, i.e. A\jiy1 = A
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Product Form Queueing Networks

Traffic equations: implications of these results

If the arrival rate at queue / is \;, the departure rate will also be A;.

So, if all the departures from queue i go directly to queue i + 1 the
arrival rate at queue / 4+ 1 will also be A;, i.e. A\jiy1 = A

By the decomposition principle we know that if the departure
stream is split and only goes to queue i/ 4+ 1 with probability p,
then the arrival rate at queue / + 1 will be A\jr1 = p X A;
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Product Form Queueing Networks

Traffic equations

If we analyse all the service centres of a queueing network in this
way, expressing its input stream as a sum of output streams from
the environment or other service centres, we obtain what are
known as the traffic equations.
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Product Form Queueing Networks

Traffic equations

If we analyse all the service centres of a queueing network in this
way, expressing its input stream as a sum of output streams from
the environment or other service centres, we obtain what are
known as the traffic equations.

If there are n service centres, we will have n equations in n

unknown and solving the traffic equations we can find the arrival
rate at each service centre.
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Product Form Queueing Networks

Traffic equations: example

e
P
=l G

For this simple network the traffic equations are:

Y

A

Al = A+gXxX A
A2 = pXxXA
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Product Form Queueing Networks

Traffic equations: example

e
P
=l G

For this simple network the traffic equations are:

Y

A

Al = A+gXxX A
A2 = pXxXA

Assume that A =10, p = 0.5 and g = 0.4.
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Product Form Queueing Networks

Traffic equations: example

e
P
=l G

For this simple network the traffic equations are:

Y

A

Al = A+gXxX A
A2 = pXxXA

Assume that A =10, p = 0.5 and g = 0.4.
Substituting A, = 0.5\ into the first equation: A\; = 10 + 0.2),
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Product Form Queueing Networks

Traffic equations: example

e
P
=l G

For this simple network the traffic equations are:

Y

A

Al = A+gXxX A
A2 = pXxXA

Assume that A =10, p = 0.5 and g = 0.4.
Substituting A, = 0.5\ into the first equation: A\; = 10 + 0.2),
i.e. 0.8A; = 10.

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 6 Solving Queueing Models



Product Form Queueing Networks

Traffic equations: example

e
P
=l G

For this simple network the traffic equations are:

Y

A

Al = A+gXxX A
A2 = pXxXA

Assume that A =10, p = 0.5 and g = 0.4.
Substituting A, = 0.5\ into the first equation: A\; = 10 + 0.2),
i.e. 0.8A; = 10.

Therefore \; = 12.5 and A\, = 6.25.
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Product Form Queueing Networks

Traffic equations vs. Global balance equations

The great advantage of solving traffic equations rather than the
global balance equations is that the number of equations we need
to solve grows linearly with the number of service centres, rather
than exponentially, which is the case for global balance equations.
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Assumptions

The assumptions are essentially those that we have seen previously
with respect to Markov process, although they can be made more
specific to the features of queueing networks.
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Assumptions

The assumptions are essentially those that we have seen previously
with respect to Markov process, although they can be made more
specific to the features of queueing networks.

One exception is that we can now consider models with an infinite

number of states since we do not need to numerically solve the
global balance equations.
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Assumptions

m Each service centre is flow balanced — the number of customers
that arrive at each centre is equal to the number who depart.
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Assumptions

m Each service centre is flow balanced — the number of customers
that arrive at each centre is equal to the number who depart.

m The system exhibits one step behaviour — no two customers in the
system ‘“change state” at exactly the same time.
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Assumptions

m Each service centre is flow balanced — the number of customers
that arrive at each centre is equal to the number who depart.

m The system exhibits one step behaviour — no two customers in the
system ‘“change state” at exactly the same time.

m The system has routing homogeneity — the routing behaviour of
customers is independent of the current queue lengths at both the
source and the destination service centre.
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Assumptions

m Each service centre is flow balanced — the number of customers
that arrive at each centre is equal to the number who depart.

m The system exhibits one step behaviour — no two customers in the
system ‘“change state” at exactly the same time.

m The system has routing homogeneity — the routing behaviour of
customers is independent of the current queue lengths at both the
source and the destination service centre.

m The system has device homogeneity — the service rate of customers
at a service centre may depend on the number of jobs at that
centre, but not more generally on the placement of customers
within the network.
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Assumptions

m Each service centre is flow balanced — the number of customers
that arrive at each centre is equal to the number who depart.

m The system exhibits one step behaviour — no two customers in the
system ‘“change state” at exactly the same time.

m The system has routing homogeneity — the routing behaviour of
customers is independent of the current queue lengths at both the
source and the destination service centre.

m The system has device homogeneity — the service rate of customers
at a service centre may depend on the number of jobs at that
centre, but not more generally on the placement of customers
within the network.

m The system experiences homogeneous external arrivals — the times
at which arrivals from outside the network occur may not depend on
the number or placement of customers within the network.
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Exercise

(1—q)

A "iﬂ@:)p—*ﬂ@ ;
— [[Je)—z

Write down the traffic equations for the network.

If the value of A is 9, p = 0.2 and g = 0.5, what is the effective
arrival rate at point A?

Y

(|

]

Using the same values, what is the rate of external departures at
point B in the network? Explain your reasoning.

If the service rate at service centre 1 is u; = 20, what is the
probability that this queue is empty but the server is not idle?
Explain your reasoning.
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