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Stochastic Processes

Stochastic Process

m Formally, a stochastic model is one represented as a stochastic
process;
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m Formally, a stochastic model is one represented as a stochastic
process;

m A stochastic process is a set of random
variables{X(t),t € T}.
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Stochastic Processes

Stochastic Process

m Formally, a stochastic model is one represented as a stochastic
process;

m A stochastic process is a set of random
variables{X(t),t € T}.

m T is called the index set usually taken to represent time.
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Stochastic Processes

Stochastic Process

m Formally, a stochastic model is one represented as a stochastic
process;

m A stochastic process is a set of random
variables{X(t),t € T}.

m T is called the index set usually taken to represent time.

m Since we consider continuous time models T = R29 the set
of non-negative real numbers.
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Stochastic Processes

State Space

The state space of a stochastic process is the set of all possible
values that the random variables X(t) can assume.
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Stochastic Processes

State Space
The state space of a stochastic process is the set of all possible
values that the random variables X(t) can assume.

Each of these values is called a state of the process.
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Stochastic Processes

State Space
The state space of a stochastic process is the set of all possible
values that the random variables X(t) can assume.
Each of these values is called a state of the process.

Any set of instances of {X(t),t € T} can be regarded as a path of
a particle moving randomly in the state space, S, its position at
time t being X(t).

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 3 Constructing and Solving Markov Processes



Stochastic Processes

State Space

The state space of a stochastic process is the set of all possible
values that the random variables X(t) can assume.

Each of these values is called a state of the process.

Any set of instances of {X(t),t € T} can be regarded as a path of
a particle moving randomly in the state space, S, its position at
time t being X(t).

These paths are called sample paths or realisations of the
stochastic process.
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Stochastic Processes

Properties of Stochastic Processes

In this course we will focus on stochastic processes with the
following properties:
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Stochastic Processes

Properties of Stochastic Processes
In this course we will focus on stochastic processes with the
following properties:

{X(t)} is a Markov process.

This implies that {X(t)} has the Markov or memoryless property:
given the value of X(t) at some time t € T, the future path X(s)
for s > t does not depend on knowledge of the past history X(u)
foru<t,ie fortg < -+ <ty <tpr,

Pr(X(th) = Xp+1 ’ X(tn) = Xp, ... ,X(tl) = Xl) =
Pr(X(tn+1) = xn41 | X(tn) = xn)
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Stochastic Processes

Properties of Stochastic Processes
In this course we will focus on stochastic processes with the
following properties:

{X(t)} is irreducible.

This implies that all states in S can be reached from all other
states, by following the transitions of the process. If we draw a
directed graph of the state space with a node for each state and an
arc for each event, or transition, then for any pair of nodes there is
a path connecting them, i.e. the graph is strongly connected.
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Stochastic Processes

Properties of Stochastic Processes
In this course we will focus on stochastic processes with the
following properties:
{X(t)} is stationary:
forany t1,...tp€ Tand ty +7,...,tp+7 € T (n>1), then the
process'’s joint distributions are unaffected by the change in the
time axis and so,

Fx(ty+7).. X (tat7) = Fx(t1)..X(t)
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Stochastic Processes

Properties of Stochastic Processes
In this course we will focus on stochastic processes with the
following properties:

{X(t)} is time homogeneous:

the behaviour of the system does not depend on when it is
observed. In particular, the transition rates between states are
independent of the time at which the transitions occur. Thus, for
all t and s, it follows that

Pr(X(t+7) = xk | X(t) = xj) = Pr(X(s+ 1) = x¢ | X(s) = xj).
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Markov Processes

Exit rate and sojourn time

In any stochastic process the time spent in a state is called the
sojourn time.
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Markov Processes

Exit rate and sojourn time

In any stochastic process the time spent in a state is called the
sojourn time.

In a Markov process the rate of leaving a state x;, g; the exit rate,
is exponentially distributed with the rate which is the sum of all

N
the individual transitions that leave the state, i.e. g; = Z qij-
Jj=Li#i
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Markov Processes

Exit rate and sojourn time

In any stochastic process the time spent in a state is called the
sojourn time.

In a Markov process the rate of leaving a state x;, g; the exit rate,
is exponentially distributed with the rate which is the sum of all

N
the individual transitions that leave the state, i.e. g; = Z qij-
J=Li
This follows from the superposition principle of exponential
distributions.
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Markov Processes

Exit rate and sojourn time

In any stochastic process the time spent in a state is called the
sojourn time.

In a Markov process the rate of leaving a state x;, g; the exit rate,
is exponentially distributed with the rate which is the sum of all

N
the individual transitions that leave the state, i.e. g; = Z qij-
J=Li
This follows from the superposition principle of exponential
distributions.

It follows that the sojourn time will be 1/g;.
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Markov Processes

Exit rate and sojourn time

In any stochastic process the time spent in a state is called the
sojourn time.

In a Markov process the rate of leaving a state x;, g; the exit rate,
is exponentially distributed with the rate which is the sum of all

N
the individual transitions that leave the state, i.e. g; = Z qij-
J=Li
This follows from the superposition principle of exponential
distributions.

It follows that the sojourn time will be 1/g;.

Note: by the Markov property, the sojourn times are memoryless.

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 3 Constructing and Solving Markov Processes



Markov Processes

Transition rates and transition probabilities

At time 7, the probability that there is a state transition in the
interval (7,7 + dt) is g;dt + o(dt).
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Markov Processes

Transition rates and transition probabilities

At time 7, the probability that there is a state transition in the
interval (7,7 + dt) is g;dt + o(dt).

When a transition out of state x; occurs, the new state is x; with
probability p;j, which must depend only on i and j (Markov).
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Markov Processes

Transition rates and transition probabilities

At time 7, the probability that there is a state transition in the
interval (7,7 + dt) is g;dt + o(dt).

When a transition out of state x; occurs, the new state is x; with
probability p;j, which must depend only on i and j (Markov).

Thus, for i #j,i,j € S,

Pr(X(r 4 dt) = j | X(7) = i) = g;jdt + o(dt)
where the gjj = g;pj;j, by the decomposition property.
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Markov Processes

Transition rates and transition probabilities
At time 7, the probability that there is a state transition in the
interval (7,7 + dt) is g;dt + o(dt).

When a transition out of state x; occurs, the new state is x; with
probability p;j, which must depend only on i and j (Markov).

Thus, for i #j,i,j € S,
Pr(X(r 4 dt) = j | X(7) = i) = g;jdt + o(dt)
where the gjj = g;pj;j, by the decomposition property.

The gj; are called the instantaneous transition rates.
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Markov Processes

Transition rates and transition probabilities

At time 7, the probability that there is a state transition in the
interval (7,7 + dt) is g;dt + o(dt).

When a transition out of state x; occurs, the new state is x; with
probability p;j, which must depend only on i and j (Markov).

Thus, for i #j,i,j € S,
Pr(X(r 4 dt) = j | X(7) = i) = g;jdt + o(dt)
where the gjj = g;pj;j, by the decomposition property.

The gj; are called the instantaneous transition rates.

The transition probability p;; is the probability, given that a
transition out of state / occurs, that it is the transition to state j.
By the definition of conditional probability, this is p; = gi;/qi.
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Markov Processes

Infinitesimal Generator Matrix

The state transition diagram of a Markov process captures all the
information about the states of the system and the transitions
which can occur between then.
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Markov Processes

Infinitesimal Generator Matrix

The state transition diagram of a Markov process captures all the
information about the states of the system and the transitions
which can occur between then.

We can capture this information in a matrix, Q , termed the
infinitesimal generator matrix.
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Markov Processes

Infinitesimal Generator Matrix

The state transition diagram of a Markov process captures all the
information about the states of the system and the transitions
which can occur between then.

We can capture this information in a matrix, Q , termed the
infinitesimal generator matrix.

For a state space of size N, this is a N x N matrix, where entry
q(i,j) or gij, records the transition rate of moving from state x; to
state x;.
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Markov Processes

Infinitesimal Generator Matrix

The state transition diagram of a Markov process captures all the
information about the states of the system and the transitions
which can occur between then.

We can capture this information in a matrix, Q , termed the
infinitesimal generator matrix.

For a state space of size N, this is a N x N matrix, where entry
q(i,j) or gij, records the transition rate of moving from state x; to
state x;.

By convention, the diagonal entries g; ; are the negative row sum

for row i, i.e.
N
gii = — g qgij
J=1j#i
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Markov Processes

Steady state probability distribution

In performance modelling we are often interested in the probability
distribution of the random variable X(t) over the state space S, as
the system settles into a regular pattern of behaviour.
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Markov Processes

Steady state probability distribution

In performance modelling we are often interested in the probability
distribution of the random variable X(t) over the state space S, as
the system settles into a regular pattern of behaviour.

This is termed the steady state probability distribution.
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Markov Processes

Steady state probability distribution

In performance modelling we are often interested in the probability
distribution of the random variable X(t) over the state space S, as
the system settles into a regular pattern of behaviour.

This is termed the steady state probability distribution.

From this probability distribution we will derive performance
measures based on subsets of states where some condition holds.
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Markov Processes

Existence of a steady state probability distribution

For every time-homogeneous, finite, irreducible Markov process
with state space S, there exists a steady state probability
distribution

{’R’k,Xk S 5}
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Markov Processes

Existence of a steady state probability distribution

For every time-homogeneous, finite, irreducible Markov process
with state space S, there exists a steady state probability
distribution

{’R’k,Xk S 5}

This distribution is the same as the limiting or long term
probability distribution:

Tk = Jim Pr(X(t) = xc [ X(0) = x0)
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Markov Processes

Existence of a steady state probability distribution

For every time-homogeneous, finite, irreducible Markov process
with state space S, there exists a steady state probability
distribution

{’R’k,Xk S 5}

This distribution is the same as the limiting or long term
probability distribution:

Tk = Jim Pr(X(t) = xc [ X(0) = x0)

This distribution is reached when the initial state no longer has any
influence.
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Markov Processes

Probability flux

In steady state, 7r; is the proportion of time that the process
spends in state x;.
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Markov Processes

Probability flux

In steady state, 7r; is the proportion of time that the process
spends in state x;.

Recall gjj is the instantaneous probability that the model makes a
transition from state x; to state Xx;.

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 3 Constructing and Solving Markov Processes



Markov Processes

Probability flux

In steady state, 7r; is the proportion of time that the process
spends in state x;.

Recall gjj is the instantaneous probability that the model makes a
transition from state x; to state Xx;.

Thus, in an instant of time, the probability that a transition will
occur from state x; to state x; is the probability that the model
was in state x;, 7, multiplied by the transition rate g;;.
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Markov Processes

Probability flux

In steady state, 7r; is the proportion of time that the process
spends in state x;.

Recall gjj is the instantaneous probability that the model makes a
transition from state x; to state Xx;.

Thus, in an instant of time, the probability that a transition will
occur from state x; to state x; is the probability that the model
was in state x;, 7, multiplied by the transition rate g;;.

This is called the probability flux from state x; to state Xx;.
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Markov Processes

Global balance equations

In steady state, equilibrium is maintained so for any state the total
probability flux out is equal to the total probability flux into the

state.
mx > g= Y, (mxaq)

XES j#i €S j#i
J/ N

\ . 4

Vv Vv
flux out of x; flux into x;
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Markov Processes

Global balance equations

In steady state, equilibrium is maintained so for any state the total
probability flux out is equal to the total probability flux into the

state.
mx > g= Y, (mxaq)

XES j#i €S j#i
J/ N

\ . 4

Vv Vv
flux out of x; flux into x;

(If this were not true the distribution over states would change. )
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Markov Processes

Global balance equations

Recall that the diagonal elements of the infinitesimal generator
matrix Q are the negative sum of the other elements in the row,

e i = = )y cs i il
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Markov Processes

Global balance equations

Recall that the diagonal elements of the infinitesimal generator
matrix Q are the negative sum of the other elements in the row,

e i = = )y cs i il

We can use this to rearrange the flux balance equation to be:

Z Tiqji = 0.

XjES
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Markov Processes

Global balance equations

Recall that the diagonal elements of the infinitesimal generator
matrix Q are the negative sum of the other elements in the row,

i.e. qii = — Z)(jés,j#i qU

We can use this to rearrange the flux balance equation to be:
Z Tiqji = 0.
XjES

Expressing the unknown values 7r; as a row vector 7, we can write
this as a matrix equation:

Q=0
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Markov Processes

Normalising constant

The 7r; are unknown — they are the values we wish to find.
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Markov Processes

Normalising constant

The 7r; are unknown — they are the values we wish to find.

If there are N states in the state space, the global balance
equations give us N equations in N unknowns.
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Markov Processes

Normalising constant

The 7r; are unknown — they are the values we wish to find.

If there are N states in the state space, the global balance
equations give us N equations in N unknowns.

However this collection of equations is irreducible.
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Markov Processes

Normalising constant

The 7r; are unknown — they are the values we wish to find.

If there are N states in the state space, the global balance
equations give us N equations in N unknowns.

However this collection of equations is irreducible.

Fortunately, since {m;} is a probability distribution we also know
that the normalisation condition holds:

Zﬂ‘,’—l

x; €S
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Markov Processes

Normalising constant

The 7r; are unknown — they are the values we wish to find.

If there are N states in the state space, the global balance
equations give us N equations in N unknowns.

However this collection of equations is irreducible.

Fortunately, since {m;} is a probability distribution we also know
that the normalisation condition holds:

Zﬂ‘,’:l

x; €S

With these n + 1 equations we can use standard linear algebra
techniques to solve the equations and find the n unknowns, {7;}.

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 3 Constructing and Solving Markov Processes



Markov Processes

Example

m Consider a system with multiple CPUs, each with its own
private memory, and one common memory which can be
accessed only by one processor at a time.
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Markov Processes

Example

m Consider a system with multiple CPUs, each with its own
private memory, and one common memory which can be
accessed only by one processor at a time.

m The CPUs execute in private memory for a random time
before issuing a common memory access request. Assume
that this random time is exponentially distributed with
parameter \.
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Markov Processes

Example

m Consider a system with multiple CPUs, each with its own
private memory, and one common memory which can be
accessed only by one processor at a time.

m The CPUs execute in private memory for a random time
before issuing a common memory access request. Assume
that this random time is exponentially distributed with
parameter \.

m The common memory access duration is also assumed to be
exponentially distributed, with parameter 1 (the average
duration of a common memory access is 1/u).
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Markov Processes

Example

If the system has only one processor, it has only two states:

The processor is executing in its private memory;
The processor is accessing common memory.
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Markov Processes

Example

If the system has only one processor, it has only two states:

The processor is executing in its private memory;
The processor is accessing common memory.

The system behaviour can be modelled by a 2-state Markov
process whose state transition diagram and generator matrix are as
shown below:
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Markov Processes

Example

-2 A
@ a- ( )
B
If we consider the probability flux in and out of state 1 we obtain:
71 A = . Similarly, for state 2: mp = w1 A.
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Markov Processes

Example

-2 A
@ a- ( )
B
If we consider the probability flux in and out of state 1 we obtain:
71 A = . Similarly, for state 2: mp = w1 A.

We know from the normalisation condition that: w1 + 7wo= 1.
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Example
A A
SN C) a-( )
pnoo—p

If we consider the probability flux in and out of state 1 we obtain:
71 A = . Similarly, for state 2: mp = w1 A.

We know from the normalisation condition that: w1 + 7wo= 1.
Thus the steady state probability distribution is

)
<,u+)\ p+ A
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Markov Processes

Example

-2 A
@ a- ( )
B
If we consider the probability flux in and out of state 1 we obtain:
71 A = . Similarly, for state 2: mp = w1 A.

We know from the normalisation condition that: w1 + 7wo= 1.

Thus the steady state probability distribution is
I A
T=—v, ——|.
LA pEA

From this we can deduce, for example, that the probability that the
processor is executing in private memory is 1/ (1 + ).
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Markov Processes

Solving the global balance equations

m In general the systems of equations will be too large to solve
by hand.

m Instead we take advantage of linear algebra packages which
can solve matrix equations of the form Ax = b.

m Here

m Aisan N x N matrix,
m X is a column vector of N unknowns, and
m b is a column vector of N values.
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Markov Processes

Solving the global balance equations

First we must resolve two problems:

1 Our global balance equation is expressed in terms of a row
vector of unknowns 7, m Q = 0: the unknowns.
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Markov Processes

Solving the global balance equations

First we must resolve two problems:

1 Our global balance equation is expressed in terms of a row
vector of unknowns 7, m Q = 0: the unknowns.

This problem is resolved by transposing the equation, i.e.
Q7w =0, where the right hand side is now a column vector
of zeros, rather than a row vector.
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Markov Processes

Solving the global balance equations

2 We must eliminate the redundancy in the global balance
equations and add in the normalisation condition.
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Markov Processes

Solving the global balance equations

2 We must eliminate the redundancy in the global balance
equations and add in the normalisation condition.

We replace one of the global balance equations by the
normalisation condition. In QT we replace one row (usually
the last) by a row of 1's. We denote the modified matrix Q.
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Markov Processes

Solving the global balance equations

2 We must eliminate the redundancy in the global balance
equations and add in the normalisation condition.

We replace one of the global balance equations by the
normalisation condition. In QT we replace one row (usually
the last) by a row of 1's. We denote the modified matrix Q.

We must also make the corresponding change to the
“solution” vector 0, to be a column vector with 1 in the last
row, and zeros everywhere else. We denote this vector, ey.
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Markov Processes

Solving the global balance equations

2 We must eliminate the redundancy in the global balance
equations and add in the normalisation condition.

We replace one of the global balance equations by the
normalisation condition. In QT we replace one row (usually
the last) by a row of 1's. We denote the modified matrix Q.

We must also make the corresponding change to the
“solution” vector 0, to be a column vector with 1 in the last
row, and zeros everywhere else. We denote this vector, ey.

Now we can use any linear algebra solution package, such as
MatLab to solve the resulting equation:

Q/—(/_Tl' = ey
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Markov Processes

Example

Consider the two-processor version of the multiprocessor with
processors A and B.
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Markov Processes

Example

Consider the two-processor version of the multiprocessor with
processors A and B.

We assume that the processors have different timing
characteristics, the private memory access of A being governed by
an exponential distribution with parameter A4, the common
memory access of B being governed by an exponential distribution
with parameter up, etc.
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Markov Processes

Example: state space

Now the state space becomes:
A and B both executing in their private memories;

B executing in private memory, and A accessing common
memory;

A executing in private memory, and B accessing common
memory;

A accessing common memory, B waiting for common memory;

B accessing common memory, A waiting for common memory;
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Markov Processes

Example: state space

HA A\

Aa
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Markov Processes

Example: generator matrix

—(Aa+ ) AA B 0 0
KA —(pna+ AB) 0 AB 0
Q= KB 0 —(ug+2ra) O AA
0 0 pA —pa 0
0 0 0 0 —us
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Markov Processes

Example: modified generator matrix

—(Aa+ AB) HA KB 0 0

AA —(pa+Ag) 0 0 s

Q) = AB 0 —(uB+Aa) pa O
0 Ag 0 a0

1 1 1 1 1
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Markov Processes

Example: steady state probability distribution

If we choose the following values for the parameters:
Aa = 0.05 Ag:=0.1 ua = 0.02 ug = 0.05

solving the matrix equation, and rounding figures to 4 significant
figures, we obtain:

7 = (0.0693, 0.0990, 0.1683, 0.4951, 0.1683)

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 3 Constructing and Solving Markov Processes



Derivation of Performance Measures

Deriving Performance Measures
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Derivation of Performance Measures

Deriving Performance Measures

SN

e =D e
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SYSTEM PROCESS
NN A

i

EQUILIBRIUM PROBABILITY
P.p.p. wwe DISTRIBUTION ....,p,

PERFORMANCE MEASURES
e.g. throughput, response time, utilisation
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Derivation of Performance Measures

Deriving Performance Measures

Broadly speaking, there are three ways in which performance
measures can be derived from the steady state distribution of a
Markov process.
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Derivation of Performance Measures

Deriving Performance Measures

Broadly speaking, there are three ways in which performance
measures can be derived from the steady state distribution of a
Markov process.

These different methods can be thought of as corresponding to
different types of measure:

m state-based measures, e.g. utilisation;
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Derivation of Performance Measures

Deriving Performance Measures

Broadly speaking, there are three ways in which performance
measures can be derived from the steady state distribution of a
Markov process.

These different methods can be thought of as corresponding to
different types of measure:

m state-based measures, e.g. utilisation;

m rate-based measures, e.g. throughput;
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Derivation of Performance Measures

Deriving Performance Measures

Broadly speaking, there are three ways in which performance
measures can be derived from the steady state distribution of a
Markov process.

These different methods can be thought of as corresponding to
different types of measure:

m state-based measures, e.g. utilisation;
m rate-based measures, e.g. throughput;

m other measures which fall outside the above categories, e.g.
response time.
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Derivation of Performance Measures

State-based measures

State-based measures correspond to the probability that the model
is in a state, or a subset of states, which satisfy some condition.
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Derivation of Performance Measures

State-based measures

State-based measures correspond to the probability that the model
is in a state, or a subset of states, which satisfy some condition.

For example, utilisation will correspond to those states where a
resource is in use.
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Derivation of Performance Measures

State-based measures

State-based measures correspond to the probability that the model
is in a state, or a subset of states, which satisfy some condition.

For example, utilisation will correspond to those states where a
resource is in use.

If we consider the multiprocessor example, the utilisation of the
common memory, Umem, is the total probability that the model is

in one of the states in which the common memory is in use:

Umem = T2 + T3 + 4 + 75 = 93.07%
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Derivation of Performance Measures

State-based measures

Other examples of state-based measures are idle time, or the
number of jobs in a system.
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Derivation of Performance Measures

State-based measures

Other examples of state-based measures are idle time, or the
number of jobs in a system.

Some measures such as the number of jobs will involve a weighted
sum of steady state probabilities, weighted by the appropriate value
(expectation).
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Derivation of Performance Measures

State-based measures

Other examples of state-based measures are idle time, or the
number of jobs in a system.

Some measures such as the number of jobs will involve a weighted
sum of steady state probabilities, weighted by the appropriate value
(expectation).

For example, if we consider jobs waiting for the common memory
to be queued in that subsystem, then the average number of jobs
in the common memory, Npem, is:

Nmem = (l X Tl'z) + (]. X 71'3) + (2 X 7T4) + (2 X 7T5) =1.594
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Derivation of Performance Measures

Rate-based measures

Rate-based measures are those which correspond to the predicted
rate at which some event occurs.
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Derivation of Performance Measures

Rate-based measures

Rate-based measures are those which correspond to the predicted
rate at which some event occurs.

This will be the product of the rate of the event, and the
probability that the event is enabled, i.e. the probability of being in
one of the states from which the event can occur.
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Derivation of Performance Measures

Example: rate-based measures

In order to calculate the throughput of the common memory, we
need the average number of accesses from either processor which it
satisfies in unit time.

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 3 Constructing and Solving Markov Processes



Derivation of Performance Measures

Example: rate-based measures

In order to calculate the throughput of the common memory, we
need the average number of accesses from either processor which it
satisfies in unit time.

Xmem is thus calculated as:
Xmem = (11a X (w2 + m4)) + (ug X (w3 + 7s)) = 0.0287

or, approximately one access every 35 milliseconds.
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Derivation of Performance Measures

Other measures

The other measures are those which are neither rate-based or
state-based.

Jane Hillston School of Informatics The University of Edinburgh Scotland
Performance Modelling — Lecture 3 Constructing and Solving Markov Processes



Derivation of Performance Measures

Other measures

The other measures are those which are neither rate-based or
state-based.

In these cases, we usually use one of the operational laws to derive
the information we need, based on values that we have obtained
from solution of the model.
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Derivation of Performance Measures

Other measures

The other measures are those which are neither rate-based or
state-based.

In these cases, we usually use one of the operational laws to derive
the information we need, based on values that we have obtained

from solution of the model.

For example, applying Little's Law to the common memory we see
that

Wmem = Nmem/Xmem = 1.594/0.0287 = 55.54 milliseconds
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Assumptions

Stochastic Hypothesis
“The behaviour of a real system during a given period of

time is characterised by the probability distributions of a
stochastic process.”
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Assumptions

m All delays and inter-event times are exponentially distributed.
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Assumptions

m All delays and inter-event times are exponentially distributed.

m (This will often not fit with observations of real systems.)
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Assumptions

m All delays and inter-event times are exponentially distributed.
m (This will often not fit with observations of real systems.)

m We make the assumption because of the nice mathematical
properties of the exponential distribution, and because it is
the only distribution giving us a Markov process.
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Assumptions

m All delays and inter-event times are exponentially distributed.
m (This will often not fit with observations of real systems.)

m We make the assumption because of the nice mathematical
properties of the exponential distribution, and because it is
the only distribution giving us a Markov process.

m Plus only a single parameter to be fitted (the rate), which can
be easily derived from observations of the average duration.
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Assumptions

m All delays and inter-event times are exponentially distributed.
m (This will often not fit with observations of real systems.)

m We make the assumption because of the nice mathematical
properties of the exponential distribution, and because it is
the only distribution giving us a Markov process.

m Plus only a single parameter to be fitted (the rate), which can
be easily derived from observations of the average duration.

m The Markov/memoryless assumption — future behaviour is
only dependent on the current state, not on the past history
— is a reasonable assumption for computer and
communication systems, if we choose our states carefully.
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Assumptions

m All delays and inter-event times are exponentially distributed.
m (This will often not fit with observations of real systems.)

m We make the assumption because of the nice mathematical
properties of the exponential distribution, and because it is
the only distribution giving us a Markov process.

m Plus only a single parameter to be fitted (the rate), which can
be easily derived from observations of the average duration.

m The Markov/memoryless assumption — future behaviour is
only dependent on the current state, not on the past history
— is a reasonable assumption for computer and
communication systems, if we choose our states carefully.

m We generally assume that the Markov process is finite, time
homogeneous and irreducible.
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Exercise

m Consider the multiprocessor example, but with three
processors, A, B and C sharing the common memory instead
of two.

m List the states of the system, and draw the state transition
diagram for this case.

m What is the difficulty in doing this and what further
information do you need?

m Solution will be presented online later in the week.
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