
Operational Laws Bottleneck analysis Assumptions

Performance Modelling — Lecture 2
Operational Laws

Jane Hillston
School of Informatics,

The University of Edinburgh,
Scotland

19th January 2017

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Operational Laws

Operational laws are simple equations which may be used as
an abstract representation or model of the average behaviour
of almost any system.

The laws are very general and make almost no assumptions
about the behaviour of the random variables characterising
the system.

Another advantage of the laws is their simplicity: this means
that they can be applied quickly and easily by almost anyone.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Operational Laws

Operational laws are simple equations which may be used as
an abstract representation or model of the average behaviour
of almost any system.

The laws are very general and make almost no assumptions
about the behaviour of the random variables characterising
the system.

Another advantage of the laws is their simplicity: this means
that they can be applied quickly and easily by almost anyone.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Operational Laws

Operational laws are simple equations which may be used as
an abstract representation or model of the average behaviour
of almost any system.

The laws are very general and make almost no assumptions
about the behaviour of the random variables characterising
the system.

Another advantage of the laws is their simplicity: this means
that they can be applied quickly and easily by almost anyone.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observable variables

REQUESTS

ARRIVE

REQUESTS

SATISFIEDSYSTEM

Operational laws are based on observable variables — values which
we could derive from watching a system over a finite period of time.

We assume that the system receives requests from its environment.

Each request generates a job or customer within the system.

When the job has been processed the system responds to the
environment with the completion of the corresponding request.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observable variables

REQUESTS

ARRIVE

REQUESTS

SATISFIEDSYSTEM

Operational laws are based on observable variables — values which
we could derive from watching a system over a finite period of time.

We assume that the system receives requests from its environment.

Each request generates a job or customer within the system.

When the job has been processed the system responds to the
environment with the completion of the corresponding request.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observable variables

REQUESTS

ARRIVE

REQUESTS

SATISFIED

jobs

SYSTEM

Operational laws are based on observable variables — values which
we could derive from watching a system over a finite period of time.

We assume that the system receives requests from its environment.

Each request generates a job or customer within the system.

When the job has been processed the system responds to the
environment with the completion of the corresponding request.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observable variables

REQUESTS

ARRIVE

REQUESTS

SATISFIED

jobs

SYSTEM

Operational laws are based on observable variables — values which
we could derive from watching a system over a finite period of time.

We assume that the system receives requests from its environment.

Each request generates a job or customer within the system.

When the job has been processed the system responds to the
environment with the completion of the corresponding request.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T);

N, the average number of jobs in the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T);

N, the average number of jobs in the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T);

N, the average number of jobs in the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T);

N, the average number of jobs in the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T);

N, the average number of jobs in the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Four important quantities

From these observed values we can derive the following four
important quantities:

λ = A/T , the arrival rate;

X = C/T , the throughput or completion rate,

U = B/T , the utilisation;

S = B/C , the mean service time per completed job.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Four important quantities

From these observed values we can derive the following four
important quantities:

λ = A/T , the arrival rate;

X = C/T , the throughput or completion rate,

U = B/T , the utilisation;

S = B/C , the mean service time per completed job.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Four important quantities

From these observed values we can derive the following four
important quantities:

λ = A/T , the arrival rate;

X = C/T , the throughput or completion rate,

U = B/T , the utilisation;

S = B/C , the mean service time per completed job.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Four important quantities

From these observed values we can derive the following four
important quantities:

λ = A/T , the arrival rate;

X = C/T , the throughput or completion rate,

U = B/T , the utilisation;

S = B/C , the mean service time per completed job.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Job flow balance

We will assume that the system is job flow balanced. This
means that the number of arrivals is equal to the number of
completions during an observation period, i.e. A = C .

This is a testable assumption because an analyst can always
test whether the assumption holds.

Note that if the system is job flow balanced the arrival rate
will be the same as the completion rate, that is, λ = X .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Job flow balance

We will assume that the system is job flow balanced. This
means that the number of arrivals is equal to the number of
completions during an observation period, i.e. A = C .

This is a testable assumption because an analyst can always
test whether the assumption holds.

Note that if the system is job flow balanced the arrival rate
will be the same as the completion rate, that is, λ = X .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Job flow balance

We will assume that the system is job flow balanced. This
means that the number of arrivals is equal to the number of
completions during an observation period, i.e. A = C .

This is a testable assumption because an analyst can always
test whether the assumption holds.

Note that if the system is job flow balanced the arrival rate
will be the same as the completion rate, that is, λ = X .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Little’s Law

Little’s Law

N = XW

The average number of jobs in a system is equal to the product of
the throughput of the system and the average time spent in that
system by a job.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a disk that serves 40 requests/second (X = 40) and
suppose that on average there are 4 requests present in the disk
system (waiting to be served or in service) (N = 4).

Little’s law tells us that the average time spent at the disk by a
request must be 4/40 = 0.1 seconds.

If we know that each request requires 0.0225 seconds of disk
service we can then deduce that the average queueing time is
0.0775 seconds.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a disk that serves 40 requests/second (X = 40) and
suppose that on average there are 4 requests present in the disk
system (waiting to be served or in service) (N = 4).

Little’s law tells us that the average time spent at the disk by a
request must be 4/40 = 0.1 seconds.

If we know that each request requires 0.0225 seconds of disk
service we can then deduce that the average queueing time is
0.0775 seconds.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a disk that serves 40 requests/second (X = 40) and
suppose that on average there are 4 requests present in the disk
system (waiting to be served or in service) (N = 4).

Little’s law tells us that the average time spent at the disk by a
request must be 4/40 = 0.1 seconds.

If we know that each request requires 0.0225 seconds of disk
service we can then deduce that the average queueing time is
0.0775 seconds.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Subsystems within Systems

REQUESTS

ARRIVE

REQUESTS

SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

A system may be regarded as being made up of a number of
devices or resources.

Each of these may be treated as a system in its own right
from the perspective of operational laws.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Subsystems within Systems

REQUESTS

ARRIVE

REQUESTS

SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

A system may be regarded as being made up of a number of
devices or resources.

Each of these may be treated as a system in its own right
from the perspective of operational laws.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Subsystems within Systems

REQUESTS

ARRIVE

REQUESTS

SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

An external request generates a job within the system; this job
may then circulate between the resources until all necessary
processing has been done; as it arrives at each resource it is
treated as a request, generating a job internal to that resource.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Subsystems within Systems

REQUESTS

ARRIVE

REQUESTS

SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

An external request generates a job within the system; this job
may then circulate between the resources until all necessary
processing has been done; as it arrives at each resource it is
treated as a request, generating a job internal to that resource.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Visit count

REQUESTS

ARRIVE

REQUESTS

SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

In an observation interval we can count not only completions
external to the system, but also the number of completions at each
resource within the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Visit count

REQUESTS

ARRIVE

REQUESTS

SATISFIED

1

2

3

4

V = 2

V = 12

V = 23

V = 24

1

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

We define the visit count, Vi , of the ith resource to be the ratio of
the number of completions at that resource to the number of
system completions Vi ≡ Ci/C .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Visit count: example

For example, if, during an observation interval, we measure
10 system completions and 150 completions at a specific disk, then
on the average each system-level request requires
15 disk operations.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Forced Flow Law

The forced flow law captures the relationship between the different
components within a system. It states that the throughputs or
flows, in all parts of a system must be proportional to one another.

Forced Flow Law

Xi = XVi

The throughput at the ith resource is equal to the product of the
throughput of the system and the visit count at that resource.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Forced Flow Law

The forced flow law captures the relationship between the different
components within a system. It states that the throughputs or
flows, in all parts of a system must be proportional to one another.

Forced Flow Law

Xi = XVi

The throughput at the ith resource is equal to the product of the
throughput of the system and the visit count at that resource.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Utilisation Law

If we know the amount of processing each job requires at a
resource then we can calculate the utilisation of the resource.

Let us assume that each time a job visits the ith resource the
amount of processing, or service time it requires is Si .

(Note that service time is not necessarily the same as the
residence time of the job at that resource: in general a job
might have to wait for some time before processing begins.)

The total amount of service that a system job generates at
the ith resource is called the service demand, Di :

Di = SiVi

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Utilisation Law

If we know the amount of processing each job requires at a
resource then we can calculate the utilisation of the resource.

Let us assume that each time a job visits the ith resource the
amount of processing, or service time it requires is Si .

(Note that service time is not necessarily the same as the
residence time of the job at that resource: in general a job
might have to wait for some time before processing begins.)

The total amount of service that a system job generates at
the ith resource is called the service demand, Di :

Di = SiVi

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Utilisation Law

If we know the amount of processing each job requires at a
resource then we can calculate the utilisation of the resource.

Let us assume that each time a job visits the ith resource the
amount of processing, or service time it requires is Si .

(Note that service time is not necessarily the same as the
residence time of the job at that resource: in general a job
might have to wait for some time before processing begins.)

The total amount of service that a system job generates at
the ith resource is called the service demand, Di :

Di = SiVi

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Utilisation Law

If we know the amount of processing each job requires at a
resource then we can calculate the utilisation of the resource.

Let us assume that each time a job visits the ith resource the
amount of processing, or service time it requires is Si .

(Note that service time is not necessarily the same as the
residence time of the job at that resource: in general a job
might have to wait for some time before processing begins.)

The total amount of service that a system job generates at
the ith resource is called the service demand, Di :

Di = SiVi

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Utilisation Law

The utilisation of a resource, the percentage of time that the ith
resource is in use processing to a job, is denoted Ui .

Utilisation Law

Ui = XiSi = XDi

The utilisation of a resource is equal to the product of the
throughput of that resource and the average service requirement at
that resource.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Utilisation Example

Consider again the disk that is serving 40 requests/second,
each of which requires 0.0225 seconds of disk service.

The utilisation law tells us that the utilisation of the disk must
be 40× 0.0225 = 90%.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Utilisation Example

Consider again the disk that is serving 40 requests/second,
each of which requires 0.0225 seconds of disk service.

The utilisation law tells us that the utilisation of the disk must
be 40× 0.0225 = 90%.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law

One method of computing the mean residence or response
time per job in a system is to apply Little’s Law to the system
as a whole.

However, if the mean number of jobs in the system, N, or the
system level throughput, X , are not known an alternative
method can be used.

Applying Little’s Law to the ith resource we see that
Ni = XiWi , where Ni is the mean number of jobs at the
resource and Wi is the average response time of the resource.

From the Forced Flow Law we know that Xi = XVi . Thus we
can deduce that

Ni/X = ViWi .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law

One method of computing the mean residence or response
time per job in a system is to apply Little’s Law to the system
as a whole.

However, if the mean number of jobs in the system, N, or the
system level throughput, X , are not known an alternative
method can be used.

Applying Little’s Law to the ith resource we see that
Ni = XiWi , where Ni is the mean number of jobs at the
resource and Wi is the average response time of the resource.

From the Forced Flow Law we know that Xi = XVi . Thus we
can deduce that

Ni/X = ViWi .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law

One method of computing the mean residence or response
time per job in a system is to apply Little’s Law to the system
as a whole.

However, if the mean number of jobs in the system, N, or the
system level throughput, X , are not known an alternative
method can be used.

Applying Little’s Law to the ith resource we see that
Ni = XiWi , where Ni is the mean number of jobs at the
resource and Wi is the average response time of the resource.

From the Forced Flow Law we know that Xi = XVi . Thus we
can deduce that

Ni/X = ViWi .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law

One method of computing the mean residence or response
time per job in a system is to apply Little’s Law to the system
as a whole.

However, if the mean number of jobs in the system, N, or the
system level throughput, X , are not known an alternative
method can be used.

Applying Little’s Law to the ith resource we see that
Ni = XiWi , where Ni is the mean number of jobs at the
resource and Wi is the average response time of the resource.

From the Forced Flow Law we know that Xi = XVi . Thus we
can deduce that

Ni/X = ViWi .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law

The total number of jobs in the system is clearly the sum of the
number of jobs at each resource, i.e. N = N1 + · · ·+ NM if there
are M resources. From Little’s Law that W = N/X and so:

General Residence Time Law

W =
M∑
i=1

WiVi

The average residence time of a job in the system will be the sum
of the product of its average residence time at each resource and
the number of visits it makes to that resource.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example

A program running on a compute server requires 126 bursts of
CPU time and makes 75 I/O requests to disk A and 50 I/O
requests to disk B.

On average each CPU burst requires 30 milliseconds (waiting
+ processing time).

Monitoring has shown that the throughput of disk A is 15
requests per second and the average number in the buffer is 4
whilst at disk B the throughput is 10 requests per second and
the average number in the buffer is 3.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example

A program running on a compute server requires 126 bursts of
CPU time and makes 75 I/O requests to disk A and 50 I/O
requests to disk B.

On average each CPU burst requires 30 milliseconds (waiting
+ processing time).

Monitoring has shown that the throughput of disk A is 15
requests per second and the average number in the buffer is 4
whilst at disk B the throughput is 10 requests per second and
the average number in the buffer is 3.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example

A program running on a compute server requires 126 bursts of
CPU time and makes 75 I/O requests to disk A and 50 I/O
requests to disk B.

On average each CPU burst requires 30 milliseconds (waiting
+ processing time).

Monitoring has shown that the throughput of disk A is 15
requests per second and the average number in the buffer is 4
whilst at disk B the throughput is 10 requests per second and
the average number in the buffer is 3.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (continued)

Using Little’s Law we calculate the residence time at each of the
disks (remembering that the number in the system is the number
in the buffer +1):

WdiskA =
NdiskA

XdiskA

=
5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000
=

4000

10

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (continued)

Using Little’s Law we calculate the residence time at each of the
disks (remembering that the number in the system is the number
in the buffer +1):

WdiskA =
NdiskA

XdiskA
=

5

15/1000

=
5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000
=

4000

10

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (continued)

Using Little’s Law we calculate the residence time at each of the
disks (remembering that the number in the system is the number
in the buffer +1):

WdiskA =
NdiskA

XdiskA
=

5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000
=

4000

10

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (continued)

Using Little’s Law we calculate the residence time at each of the
disks (remembering that the number in the system is the number
in the buffer +1):

WdiskA =
NdiskA

XdiskA
=

5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB

=
4

10/1000
=

4000

10

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (continued)

Using Little’s Law we calculate the residence time at each of the
disks (remembering that the number in the system is the number
in the buffer +1):

WdiskA =
NdiskA

XdiskA
=

5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000

=
4000

10

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (continued)

Using Little’s Law we calculate the residence time at each of the
disks (remembering that the number in the system is the number
in the buffer +1):

WdiskA =
NdiskA

XdiskA
=

5

15/1000
=

5000

15

WdiskB =
NdiskB

XdiskB
=

4

10/1000
=

4000

10

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (concluded)

Then

W = WCPUVCPU + WdiskAVdiskA + WdiskBVdiskB

= 30× 126 +
5000

15
× 75 +

4000

10
× 50

= 3780 + 25000 + 20000

= 48780milliseconds

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (concluded)

Then

W = WCPUVCPU + WdiskAVdiskA + WdiskBVdiskB

= 30× 126 +
5000

15
× 75 +

4000

10
× 50

= 3780 + 25000 + 20000

= 48780milliseconds

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (concluded)

Then

W = WCPUVCPU + WdiskAVdiskA + WdiskBVdiskB

= 30× 126 +
5000

15
× 75 +

4000

10
× 50

= 3780 + 25000 + 20000

= 48780milliseconds

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

General Residence Time Law: Example (concluded)

Then

W = WCPUVCPU + WdiskAVdiskA + WdiskBVdiskB

= 30× 126 +
5000

15
× 75 +

4000

10
× 50

= 3780 + 25000 + 20000

= 48780milliseconds

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Interactive Response Time Law

Back when most processing was done on shared mainframes,
think time, Z , was quite literally the length of time that a
programmer spent thinking before submitting another job.

More generally in interactive systems, jobs spend time in the
system not engaged in processing, or waiting for processing:
this may be because of interaction with a human user, or may
be for some other reason.

The key feature of such a system is that the residence time
can no longer be taken as a true reflection of the response
time of the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Interactive Response Time Law

Back when most processing was done on shared mainframes,
think time, Z , was quite literally the length of time that a
programmer spent thinking before submitting another job.

More generally in interactive systems, jobs spend time in the
system not engaged in processing, or waiting for processing:
this may be because of interaction with a human user, or may
be for some other reason.

The key feature of such a system is that the residence time
can no longer be taken as a true reflection of the response
time of the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Interactive Response Time Law

Back when most processing was done on shared mainframes,
think time, Z , was quite literally the length of time that a
programmer spent thinking before submitting another job.

More generally in interactive systems, jobs spend time in the
system not engaged in processing, or waiting for processing:
this may be because of interaction with a human user, or may
be for some other reason.

The key feature of such a system is that the residence time
can no longer be taken as a true reflection of the response
time of the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

For example, if we are studying a cluster of workstations with
a central file server to investigate the load on the file server,
the think time might represent the average time that each
workstation spends processing locally without access to the
file server.

At the end of this non-processing period the job generates a
fresh request.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Example

For example, if we are studying a cluster of workstations with
a central file server to investigate the load on the file server,
the think time might represent the average time that each
workstation spends processing locally without access to the
file server.

At the end of this non-processing period the job generates a
fresh request.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Think time, residence time, response time

The think time represents the time between processing being
completed and the job becoming available as a request again.

Thus the residence time of the job, as calculated by Little’s
Law as the time from arrival to completion, is greater than
the system’s response time.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Think time, residence time, response time

The think time represents the time between processing being
completed and the job becoming available as a request again.

Thus the residence time of the job, as calculated by Little’s
Law as the time from arrival to completion, is greater than
the system’s response time.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Interactive Response Time Law

The interactive response time law reflects this: it calculates the
response time, R as follows:

Interactive Response Time Law

R = N/X − Z

The response time in an interactive system is the residence time
minus the think time.

Note that if the think time is zero, Z = 0 and R = W , then the
interactive response time law simply becomes Little’s Law.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Interactive Response Time Law

The interactive response time law reflects this: it calculates the
response time, R as follows:

Interactive Response Time Law

R = N/X − Z

The response time in an interactive system is the residence time
minus the think time.

Note that if the think time is zero, Z = 0 and R = W , then the
interactive response time law simply becomes Little’s Law.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Interactive Response Time Law: Example

Suppose that the library catalogue system has 64 interactive
users connected via Browsers, that the average think time is
30 seconds, and that system throughput is 2
interactions/second.

Then the interactive response time law tells us that the
response time must be 64/2− 30 = 2 seconds.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Interactive Response Time Law: Example

Suppose that the library catalogue system has 64 interactive
users connected via Browsers, that the average think time is
30 seconds, and that system throughput is 2
interactions/second.

Then the interactive response time law tells us that the
response time must be 64/2− 30 = 2 seconds.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bottleneck analysis

The resource within a system which has the greatest service
demand is known as the bottleneck resource or bottleneck
device, and its service demand is maxi{Di}, denoted Dmax .

The bottleneck resource is important because it limits the
possible performance of the system.

This will be the resource which has the highest utilisation in
the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bottleneck analysis

The resource within a system which has the greatest service
demand is known as the bottleneck resource or bottleneck
device, and its service demand is maxi{Di}, denoted Dmax .

The bottleneck resource is important because it limits the
possible performance of the system.

This will be the resource which has the highest utilisation in
the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bottleneck analysis

The resource within a system which has the greatest service
demand is known as the bottleneck resource or bottleneck
device, and its service demand is maxi{Di}, denoted Dmax .

The bottleneck resource is important because it limits the
possible performance of the system.

This will be the resource which has the highest utilisation in
the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Residence time, service demand, contention

The residence time of a job within a system will always be at
least as large as the total amount of processing that each job
requires.

The total amount of processing that a job requires is D, the
total service demand,

D =
M∑
i=1

Di

In general, there will be some contention in the system
meaning that jobs have to wait for processing so the residence
time will be larger than this, i.e. W ≥ D

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Residence time, service demand, contention

The residence time of a job within a system will always be at
least as large as the total amount of processing that each job
requires.

The total amount of processing that a job requires is D, the
total service demand,

D =
M∑
i=1

Di

In general, there will be some contention in the system
meaning that jobs have to wait for processing so the residence
time will be larger than this, i.e. W ≥ D

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Residence time, service demand, contention

The residence time of a job within a system will always be at
least as large as the total amount of processing that each job
requires.

The total amount of processing that a job requires is D, the
total service demand,

D =
M∑
i=1

Di

In general, there will be some contention in the system
meaning that jobs have to wait for processing so the residence
time will be larger than this, i.e. W ≥ D

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Throughput, utilisation and overall performance

The throughput of a system will always be limited by the
throughput at the slowest resource (think of the Forced Flow
Law); this is the bottleneck device.

By the utilisation law, at this resource, let’s call it b,
Ub = XDmax .

Therefore, since Ub ≤ 1

X ≤ 1/Dmax

It follows that if we wish to improve throughput we should
first concentrate on this resource—improving throughput at
other resources in the system might have little effect on the
overall performance.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Throughput, utilisation and overall performance

The throughput of a system will always be limited by the
throughput at the slowest resource (think of the Forced Flow
Law); this is the bottleneck device.

By the utilisation law, at this resource, let’s call it b,
Ub = XDmax .

Therefore, since Ub ≤ 1

X ≤ 1/Dmax

It follows that if we wish to improve throughput we should
first concentrate on this resource—improving throughput at
other resources in the system might have little effect on the
overall performance.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Throughput, utilisation and overall performance

The throughput of a system will always be limited by the
throughput at the slowest resource (think of the Forced Flow
Law); this is the bottleneck device.

By the utilisation law, at this resource, let’s call it b,
Ub = XDmax .

Therefore, since Ub ≤ 1

X ≤ 1/Dmax

It follows that if we wish to improve throughput we should
first concentrate on this resource—improving throughput at
other resources in the system might have little effect on the
overall performance.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Throughput, utilisation and overall performance

The throughput of a system will always be limited by the
throughput at the slowest resource (think of the Forced Flow
Law); this is the bottleneck device.

By the utilisation law, at this resource, let’s call it b,
Ub = XDmax .

Therefore, since Ub ≤ 1

X ≤ 1/Dmax

It follows that if we wish to improve throughput we should
first concentrate on this resource—improving throughput at
other resources in the system might have little effect on the
overall performance.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Obtaining a tighter bound

Using Little’s Law or the Interactive Response Time Law, we
can derive a tighter bound on the response time which applies
when the system is heavily loaded (i.e. the mean number of
jobs, N, is high).

Applying the Interactive Response Time Law to the
throughput bound, X ≤ 1/Dmax we obtain:

R = N/X − Z ≥ NDmax − Z

Applying Little’s Law we obtain W ≥ NDmax .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Obtaining a tighter bound

Using Little’s Law or the Interactive Response Time Law, we
can derive a tighter bound on the response time which applies
when the system is heavily loaded (i.e. the mean number of
jobs, N, is high).

Applying the Interactive Response Time Law to the
throughput bound, X ≤ 1/Dmax we obtain:

R = N/X − Z ≥ NDmax − Z

Applying Little’s Law we obtain W ≥ NDmax .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Obtaining a tighter bound

Using Little’s Law or the Interactive Response Time Law, we
can derive a tighter bound on the response time which applies
when the system is heavily loaded (i.e. the mean number of
jobs, N, is high).

Applying the Interactive Response Time Law to the
throughput bound, X ≤ 1/Dmax we obtain:

R = N/X − Z ≥ NDmax − Z

Applying Little’s Law we obtain W ≥ NDmax .

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Asymptotic bound

Thus the asymptotic bound for residence time or response time is:

Residence Time Bound

W ≥ max{D,NDmax}

Response Time Bound

R ≥ max{D,NDmax − Z}

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bound on a lightly loaded system

The bound on the throughput of an interactive system may be
made tighter when the system is lightly loaded (i.e. the mean
number of jobs, N, is small).

From the interactive response time law:

X = N/(R + Z) ≤ N/(D + Z)

Applying Little’s Law (when Z = 0) we obtain X ≤ N/D.

Throughput Bound (lightly loaded system)

X ≤ min{1/Dmax ,N/(D + Z)}

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bound on a lightly loaded system

The bound on the throughput of an interactive system may be
made tighter when the system is lightly loaded (i.e. the mean
number of jobs, N, is small).

From the interactive response time law:

X = N/(R + Z) ≤ N/(D + Z)

Applying Little’s Law (when Z = 0) we obtain X ≤ N/D.

Throughput Bound (lightly loaded system)

X ≤ min{1/Dmax ,N/(D + Z)}

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bound on a lightly loaded system

The bound on the throughput of an interactive system may be
made tighter when the system is lightly loaded (i.e. the mean
number of jobs, N, is small).

From the interactive response time law:

X = N/(R + Z) ≤ N/(D + Z)

Applying Little’s Law (when Z = 0) we obtain X ≤ N/D.

Throughput Bound (lightly loaded system)

X ≤ min{1/Dmax ,N/(D + Z)}

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bound on a lightly loaded system

The bound on the throughput of an interactive system may be
made tighter when the system is lightly loaded (i.e. the mean
number of jobs, N, is small).

From the interactive response time law:

X = N/(R + Z) ≤ N/(D + Z)

Applying Little’s Law (when Z = 0) we obtain X ≤ N/D.

Throughput Bound (lightly loaded system)

X ≤ min{1/Dmax ,N/(D + Z)}

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bottleneck

Notice that the bottleneck depends on both resource
parameters (Xi or Si) and the workload parameters (Vi).

If we change the number of visits that each job makes to a
resource we might move the bottleneck.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Bottleneck

Notice that the bottleneck depends on both resource
parameters (Xi or Si) and the workload parameters (Vi).

If we change the number of visits that each job makes to a
resource we might move the bottleneck.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

Operational Laws Bottleneck analysis Assumptions

Assumptions

As mentioned in the introduction, the operational laws do not rely
on many assumptions.

The only explicit assumption we have made is that the system is job
flow balanced—the same number of requests are completed by the
system as arrive at the system.

We are also implicitly assuming that this holds at each of the
resources or devices within a system. A consequence of this is that
jobs are not created or destroyed anywhere in the system. This is
sometimes called conservation of work.

We have also assumed that the system is homogeneous, that is,
that the behaviour of jobs or resources within a system does not
depend on the global state of the system.

Jane Hillston School of Informatics, The University of Edinburgh, Scotland

Performance Modelling — Lecture 2 Operational Laws

	Operational Laws
	Bottleneck analysis
	Assumptions

