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State Space Explosion

The numerical solution of CTMC models such as those built using
stochastic Petri nets and stochastic process algebras, like PEPA,
relies on construction of the N × N infinitesimal generator matrix
Q, and the N-dimensional probability vector π, where N is the size
of the state space.

Unfortunately, the size of these entities often exceeds what can be
handled in memory.

This problem is known as state space explosion.

(All discrete state modelling approaches are prone to this problem.)
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 BC
{task1}

Res0

Proc0 BC
{task1}

Res0

?
(task1, R)

Proc1 BC
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 BC
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 BC
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4


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Simple example : multiple instances

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

The size of state space: 2NP × 2NR .
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Tackling state space explosion

To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

We will use the stochastic process algebra, PEPA as an
example, and give an overview of three different approaches to
tackling the state space explosion problem.

state space reduction via aggregation;

stochastic simulation over the discrete state space;

fluid approximation of the state space.
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Aggregation and lumpability

Model aggregation: partition the state space of a model, and
replace each set of states by one macro-state

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

In order to preserve the Markov property we must ensure that
the partition satisfies a condition called lumpability.
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Reducing by lumpability

Arbitrarily lumping the states of a Markov chain, will typically give
rise to a stochastic process which no longer satisfies the Markov
condition.
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Losing identity

The syntactic nature of PEPA makes models easily understood by
humans, but not so convenient for approaches such as aggregation
and simulation.

In particular when we have many instances of the same component
type, in the PEPA expression these instances are distinguished by
their location (position from left to right) in the expression.

However, in general we do not care which such instance is involved
in an event, just that one of them is, i.e. it is sufficient to count
the instances that are in the possible local states.

Thus we change to a state representation which is a numerical
state vector, analogous to the marking in a SPN.
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Reducing by lumpability

When we use the numerical vector state representation for PEPA
we group together those expressions that have the same counts for
each of the local states and we are certain that the partition that
we induce on the state space is lumpable and so the lumped
process is still a Markov process.
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Example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

(Res0 ‖ Res0) BC
{task1}

(Proc0 ‖ Proc0)
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Numerical vector form
For our example model:

m = (m[Proc0],m[Proc1],m[Res0],m[Res1]) .

When NP = NR = 2, the system equation of the model determines
the starting state:

m = (NP , 0,NR , 0) = (2, 0, 2, 0)

We can apply the possible activities in each of the states until we
find all possible states.

s1 = (2, 0, 2, 0), s2 = (1, 1, 1, 1), s3 = (1, 1, 2, 0),
s4 = (1, 1, 0, 2), s5 = (0, 2, 1, 1), s6 = (2, 0, 1, 1),
s7 = (0, 2, 0, 2), s8 = (0, 2, 2, 0), s9 = (2, 0, 0, 2).
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Numerical vector form

The initial state is (2, 0, 2, 0) where the entries in the vector are
counting the number of Res0, Res1, Proc0, Proc1 local derivatives
respectively, exhibited in the current state.

If we consider the state (1, 1, 1, 1) it is representing four distinct
syntactic states

(Res0,Res1,Proc0,Proc1)
(Res1,Res0,Proc0,Proc1)
(Res0,Res1,Proc1,Proc0)
(Res1,Res0,Proc1,Proc0)

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 15: Tackling state space explosion in PEPA models



Introduction Model reduction Simulation Fluid Approximation Summary

Numerical vector form

The initial state is (2, 0, 2, 0) where the entries in the vector are
counting the number of Res0, Res1, Proc0, Proc1 local derivatives
respectively, exhibited in the current state.

If we consider the state (1, 1, 1, 1) it is representing four distinct
syntactic states

(Res0,Res1,Proc0,Proc1)
(Res1,Res0,Proc0,Proc1)
(Res0,Res1,Proc1,Proc0)
(Res1,Res0,Proc1,Proc0)

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 15: Tackling state space explosion in PEPA models



Introduction Model reduction Simulation Fluid Approximation Summary

The resulting state space

( )2,0,2,0 T

( )1,1,2,0 T

( )2,0,0,2 T

( )2,0,1,1 T

( )0,2,0,2 T

( )1,1,1,1 T

( )0,2,1,1 T( )1,1,0,2 T

( )0,2,2,0 T

task1

task1

task2

task2

reset

reset task2 reset

task1 task1

resettask2

task2

reset task2

reset

The size of the state space: (NP + dP − 1)dP−1 × (NR + dR − 1)dR−1.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 15: Tackling state space explosion in PEPA models



Introduction Model reduction Simulation Fluid Approximation Summary

Solution of an aggregated model

Once we have the state space of the aggregated model we
construct the CTMC in the obvious way — associating one state
with each node in the aggregated state transition diagram.

This CTMC will typically have a smaller state space than the one
derived from the original state representation as a derivative graph,
and certainly no larger.

The steady state probability distribution can then be derived in the
usual way by solving the global balance equations.

The solution gives you the probability of being in the set of states
that have the same behaviour.
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Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.
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The Gillespie Stochastic Simulation Algorithm

You can think of the simulation of PEPA as being a process-based
simulation.

Instead of an event list the simulation engine keeps the state of the
system and so knows for each component what activity or
activities it currently enables (for shared activities it will check that
all participating components are able to undertake the actions).

From this list of possible activities it will select one to execute
according to the race policy and then update the state accordingly,
modifying the list of current activities as necessary.
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Two Observations

If we have a number of possible activities
(α1, r1), (α2, r2), . . . , (αn, rn) enabled in the current state, then we
know from the superposition principle for the exponential
distribution that the time until something happens is governed by
an exponential distribution with rate r1 + r2 + · · ·+ rn.

We also know that the probability that it is the activity of type αi

is
ri

r1 + r2 + · · ·+ rn
.
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The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 15: Tackling state space explosion in PEPA models



Introduction Model reduction Simulation Fluid Approximation Summary

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 15: Tackling state space explosion in PEPA models



Introduction Model reduction Simulation Fluid Approximation Summary

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 15: Tackling state space explosion in PEPA models



Introduction Model reduction Simulation Fluid Approximation Summary

Fluid Approximation

The third approach to tackling state space explosion that we
consider is the use of fluid or continuous approximation.

Here the key idea is to approximate the behaviour of a discrete
event system which jumps between discrete states by a continuous
system which moves smoothly over a continuous state space.
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Continuously varying counting variables

When this is applied in performance models the state space is
usually characterised by counting variables:

the number of customers in a queue,

the number of servers who are busy, or

the number of local derivatives in a particular state in a PEPA
model.

Allowing continuous variables for these quantities might seem odd
to begin with — what does it mean for 0.65 servers to be busy?
— but when we think of it as the average it becomes easier to
interpret.
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Fluid Approximation

When we have multiple instances of components within a model,
the effect of a state change by one component in the system
becomes relatively small.

Randomness in behaviour also begins to average out between the
different components.

So we can use continuous state variables to approximate the
discrete state space (assuming numerical state representation).
We then use ordinary differential equations to represent the
evolution of those variables over time.
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Fluid approximation

Use a more abstract state representation rather than the
CTMC complete state space based on LTS: numerical vector
form.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type.
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Differential equations from PEPA models

The PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.
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Example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

We can capture the relationship between activities and
components in a matrix called the activity matrix which has one
row for each component and one column for each activity.
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= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1 and
increases Proc0

reset decreases Res1 and
increases Res0

We can capture the relationship between activities and
components in a matrix called the activity matrix which has one
row for each component and one column for each activity.
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Example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −r1 min(x1, x3) + r2 x2

x1 = no. of Proc1
dx2
dt = r1 min(x1, x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −r1 min(x1, x3) + r4 x4

x3 = no. of Res0
dx4
dt = r1 min(x1, x3)− r4 x4

x4 = no. of Res1

We can capture the relationship between activities and
components in a matrix called the activity matrix which has one
row for each component and one column for each activity.
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Activity matrix

Derivation of the system of ODEs representing the PEPA model
can proceed via the activity matrix which records the influence of
each activity on each component type/derivative.

The matrix has one row for each component type and one column
for each activity type.

One ODE is generated corresponding to each row of the matrix,
taking into account the negative entries in the non-zero columns as
these are the components for which this is an exit activity.
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Activity matrix for the small example

task1 task2 reset

Proc0 −1 +1 0 x1
Proc1 +1 −1 0 x2
Res0 −1 0 +1 x3
Res1 +1 0 −1 x4
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Activity matrix to ODEs

The entry in the (i , j)-th position in the matrix can be −1, 0, or 1.

If the entry is -1 it means that this local state undertakes an
activity of that type and so when the activity is completed
there will be one less instance of this local state.

If the entry is 0 this local state is not involved in this activity.

If the entry is 1 it means that this local state is produced
when the activity of that type is completed, so there will be
one more instance of this local state.
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ODEs

dx1(t)

dt
= −r1 min(x1(t), x3(t)) + r2x2(t)

dx2(t)

dt
= r1 min(x1(t), x3(t))− r2x2(t)

dx3(t)

dt
= −r1 min(x1(t), x3(t)) + sx4(t)

dx4(t)

dt
= r1 min(x1(t), x3(t))− sx4(t)

The form of ODEs is independent of the number of instances
of components in the model.

The only impact of changing the number of instances is to
alter the initial conditions.
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Initialising the ODEs

Consider the model Proc0[100] BC
{task1}

Res0[80].

There are initially 100 processors, all starting in state Proc0 and 80
resources, all of which start in state Res0.

Then we set the initial conditions of the ODEs to be:

x1(0) = 100 x2(0) = 0 x3(0) = 80 x4(0) = 0

The system of ODEs can then be given to any suitable numerical
solver as an initial value problem.
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (simulation run D)
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100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (average of 10000 runs)
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100 processors and 80 resources (ODE solution)
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Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.
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Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language may be used to generate a Markov Process (CTMC).

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.
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