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Introduction

Random variables play two important roles in simulation
models.

1 We assume that within our models some delays will not have
deterministic values, but instead will be represented by random
variables; and

2 when a choice must be made within the behaviour of an entity
we will sometimes want the decision to be made
probabilistically.

Both cases will involve sampling a probability distribution to
extract a value each time this part of the entity’s behaviour is
reached.

Both cases rely on the random number generator.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 14: Random Variables and Simulation



Introduction

Random variables play two important roles in simulation
models.

1 We assume that within our models some delays will not have
deterministic values, but instead will be represented by random
variables; and

2 when a choice must be made within the behaviour of an entity
we will sometimes want the decision to be made
probabilistically.

Both cases will involve sampling a probability distribution to
extract a value each time this part of the entity’s behaviour is
reached.

Both cases rely on the random number generator.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 14: Random Variables and Simulation



Introduction

Random variables play two important roles in simulation
models.

1 We assume that within our models some delays will not have
deterministic values, but instead will be represented by random
variables; and

2 when a choice must be made within the behaviour of an entity
we will sometimes want the decision to be made
probabilistically.

Both cases will involve sampling a probability distribution to
extract a value each time this part of the entity’s behaviour is
reached.

Both cases rely on the random number generator.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 14: Random Variables and Simulation



Introduction

Random variables play two important roles in simulation
models.

1 We assume that within our models some delays will not have
deterministic values, but instead will be represented by random
variables; and

2 when a choice must be made within the behaviour of an entity
we will sometimes want the decision to be made
probabilistically.

Both cases will involve sampling a probability distribution to
extract a value each time this part of the entity’s behaviour is
reached.

Both cases rely on the random number generator.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 14: Random Variables and Simulation



Introduction

Random variables play two important roles in simulation
models.

1 We assume that within our models some delays will not have
deterministic values, but instead will be represented by random
variables; and

2 when a choice must be made within the behaviour of an entity
we will sometimes want the decision to be made
probabilistically.

Both cases will involve sampling a probability distribution to
extract a value each time this part of the entity’s behaviour is
reached.

Both cases rely on the random number generator.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 14: Random Variables and Simulation



Random variables

We also assume that the variables characterising the
behaviour of the system/model, the performance measures or
output parameters, are also random variables.

In general, each run of the simulation model provides a single
estimate for these random variables.
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Simulation and steady-state

If we want steady state values, the longer we run a simulation
the better our estimate will be. However, it still remains a
single observation in the sample space.

We need more than a single estimate in order to draw
conclusions about the system.

We use output analysis techniques to improve the quality of
an estimates and to develop ways of gaining more
observations without excessive computational cost.

Realistic simulation models take a long time to run—there is
always a trade-off between accuracy of estimates and
execution time.
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Random number generation

Generating random values for variables with a specified
random distribution, such as an exponential or normal
distribution, involves two steps.

1 A sequence of random numbers distributed uniformly between
0 and 1 is obtained.

2 The sequence is transformed to produce a sequence of random
values which satisfy the desired distribution.

This second step is called random variate generation.
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Generating uniform random numbers

To obtain a sequence of uniform random numbers between 0
and 1 in fact we generate a sequence Xk of integers in the
range [0,M − 1]

The sequence Xk/(M − 1) will then be approximately
uniformly distributed over (0, 1).

In 1951, D.H. Lehmer discovered that the residues of
successive powers of a number have good randomness
properties.
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Lehmer generators

Lehmer obtained the kth number in the sequence by dividing
the kth power of an integer a by another integer M and
taking the remainder.

Xk = ak mod M

This can be expressed as an iteration:

Xk = (a× Xk−1) mod M

The parameters a and M are called the multiplier and the
modulus respectively.

Random number generators of this form are called Lehmer
generators, or multiplicative linear-congruential generators.
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Desirable properties for a random number generator

It should be efficiently computable
Simulations typically require several thousand random
numbers in each run so processor time to generate these
should be kept small.

It should be pseudo-random
Given the same seed, the random number generator should
produce exactly the same sequence of numbers. (Good for
reproducibility of experiments.)

The cycle should be long
A short cycles may lead to repeated event sequences. This
may limit the useful length of simulation runs.

Independent and uniformly distributed succesive values
The correlation between successive numbers should be small.
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Problems with random number generators

Research has shown that Lehmer generators obey these
properties provided a and M are carefully chosen. However
care is needed.

In the early 1970s most university mainframes were using a
linear-congruence generator known as RANDU.

It used the values a = 65539 and M = 231.

Although the output looked random, detailed statistical
analysis showed that there was significant correlation in the
output.
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Efficiency of random number generators

This form of generator continues to be used, if somewhat
more warily.

These generators are particularly efficient if M is chosen to be
a power of 2.

In this case finding the residue amounts to simply truncating
the result of the multiplication.

However a modulus of the form 2k results in a shorter cycle:
2k−2 at best.
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Mersenne Twister

One of the best families of random number generators for
simulation is that based on the Mersenne Twister algorithm.

It is used by default in python, R, MATLAB and several other
languages.

It comes in a number of variants, but the commonly used
MT19937 variant produces a sequence of 32-bit integers, and
has the following desirable properties:

It has a very long period of 219937 − 1.
It passes numerous tests for statistical randomness, including
some stringent tests which are failed by linear congruential
random number generators.
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Random variate generation algorithms

Random variate generation algorithms for values of the commonly
used probability distributions, based on a uniformly distributed
stream of values between 0 and 1, can be found in many books on
simulation and performance modelling.

A good example is the book by Raj Jain:

The Art of Computer Systems Performance Analysis, Wiley, 1991.
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Inverse transformations

Inverse transformation algorithms are based on the
observation that for any probability distribution with
distribution function F (x), the value of F (x) is uniformly
distributed between 0 and 1.

Thus, using values from the random number stream, u = Xk ,
the function is inverted to find the next value of x :
x = F−1(u).
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Exponential distributions

For example, given a random number u, we generate the next
value in an exponential distribution with parameter λ as

x = − 1

λ
ln(u)

Note
Strictly speaking, the equation should be

x = − 1

λ
ln(1− u)

but since u is uniformly distributed between 0 and 1, 1− u will be
uniformly distributed between 0 and 1 and the generation
algorithm can be simplified.
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Boolean-valued distributions

Boolean-valued distributions which are used to make decisions
within a model take a single real parameter, p, such that
0 ≤ p ≤ 1.

This represents the probability of a “positive” outcome.

Then each time the branching point in the model is reached,
the next random number in the stream is generated u = Xk .

If u ≤ p the positive branch is taken;

If u > p the other branch is selected.
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Simulation packages

One of the benefits of using a simulation package is that at
least some of these algorithms are provided for us.

Each time that a distribution is instantiated the seed for the
random number generator can be set explicitly.

If seeds are not well-spaced there may be overlap between the
sequences of random numbers used by the generators resulting
in correlation between the samples used in the simulation.

Some simulation packages provide an automatic seeding
mechanism which will seed each distribution with a distinct
seed which is far in the cycle from other seeds currently in use.
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Simulation output analysis

Our objective in constructing a simulation model is to
generate one or more performance measures for the system.

In the Markov models such measures were derived from the
steady state probability distribution, after the model solution.

In contrast, in a simulation model measures are observed or
evaluated directly during the execution of the model.

It is part of model construction to make sure that all the
necessary counters and updates are in place to allow the
measures to be collected as the model runs.

This is sometimes called instrumentation of a model as it is
analogous to inserting probes and monitors on a real system.
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Simulation trajectories

It is important to remember that each run of a model constitutes a
single trajectory over the state space.

So, in general, any estimate for the value of a performance
measure generated from a single run constitutes a single
observation in the possible sample space.
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Simulation and long-term averages

To gain an accurate measure of the performance of the
system we should not base our results on a single observation.

For steady state analysis the averages we calculate from data
collected during execution will always be an approximation of
the unknown true long-term averages that characterise the
system performance.

Important issues are:

choosing the starting state of the simulation;
choosing the warm-up period that is allowed to elapse before
data collection begins;
choosing a run length that ensures that the calculated averages
are representative of the unknown true long term average.
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Example

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (simulation run D)
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100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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Statistical techniques

Statistical techniques can be used to assess how and when the
calculated averages approximate the true average, i.e. to
analyse the accuracy of our current estimate.

This is often done in terms of a confidence interval.

A confidence interval expresses probabilistic bounds on the
error of our current estimate.
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Confidence intervals

A confidence interval (c1, c2) with confidence level X%, means
that with probability X/100 the real value v lies between the
values c1 and c2, i.e.

Pr(c1 ≤ v ≤ c2) = X/100

X/100 is usually written in the form 1− α, and α is called the
significance level, and (1− α) is called the confidence coefficient.
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Confidence intervals and variance

Usually performance modellers will run their simulation models
until their observations give them confidence levels of 90% or 95%
and a confidence interval which is acceptably tight.

Calculation of the confidence interval is based on the variance
within the observations which have been gathered.

The greater the variance, the wider the confidence interval; the
smaller the variance, the tighter the bounds.
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Confidence interval example
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Length of simulation runs

For some modelling studies the length of time for which a
simulation model should be run is defined by the problem itself.

For example, if we wish to investigate how many messages can be
processed by a dealers’ transaction processing system in the first
hour of trading then it makes sense to run the model for 3600
seconds.

However, if the question is how many messages can be processed
in an average hour then running the model for 3600 seconds is
unlikely to be enough.
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Terminating simulations and cold-start

The first question (“the first hour”) identifies the simulation as a
transient or terminating simulation.

It is said to have a cold-start: the system is initially empty which is
not its usual state but we still include this data in the observation
period.

For this type of simulation the question becomes how many times
the simulation must be repeated (with different random number
streams) to achieve a required confidence interval.
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Steady-state behaviour

In the second scenario (“an average hour”) we are interested in the
steady state behaviour of the system.

As in Markovian modelling we associate steady state behaviour
with long term behaviour.

In other words we are theoretically interested in the observations
obtained from runs of the model which are infinitely long.

However, in practice we are interested in finite run lengths and
estimating the steady state distribution of the measures we are
interested in from finitely many samples.
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Initial conditions, bias

The initial conditions or starting state of a model influence the
sequence of states seen in the simulation, especially early in a run.

In a steady state distribution the output values should be
independent of the starting state.

Thus the modeller must make some effort to remove the effect of
the starting state, sometimes termed bias, from the sample data
used for estimating the performance measure of interest.

Unfortunately there is no precise procedure for this as we cannot
generally detect when the model has moved from transient
behaviour (the warm-up period) to steady state behaviour.
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Heuristics for reducing bias

The common techniques are

1 Long runs.
2 Proper initialisation.
3 Truncation.
4 Initial data deletion.
5 Moving average of independent replications.
6 Batch means.

The last four techniques are all based on the assumption that
variability is less during steady state behaviour than during
transient behaviour.
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Options for terminating a simulation

Option 1

begin the simulation at time 0

begin data collection at specified time w ≥ 0

complete data collection at specified time w + t

terminate execution of the simulation at time w + t

calculate summary statistics based on sample path data
collected in the time interval (w ,w + t).
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Options for terminating a simulation

Option 2

begin the simulation at time 0

begin data collection when the Mth event completes

complete data collection when the (M +N)th event completes

terminate execution of the simulation when the (M + N)th
event completes

calculate summary statistics based on sample path data
collected in the time interval (tM , tM+N), where tj is the time
at which the jth event completes.
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Advantages and disadvantages

Option 1 implies that the simulated time (w ,w + t) for data
collection is predetermined but the number of event
completions is random.

Conversely, Option 2 implies that the time period for data
collection is random but the number of event completions is
predetermined.

In queueing networks, Option 1 is preferable for calculating
queue lengths and resource utilisations, whereas Option 2 is
preferable for calculating waiting times.
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Variance reduction techniques

Assume that we are running a simulation model in order to
estimate some performance measure M.

During the ith execution of the model we make observations
of M, oij and at the end of the run we calculate the mean
value of the observations Oi .

Note that the observations oij in most simulations are not
independent. Successive observations are often correlated.
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Example of correlation

If we are interested in the delay of messages in a
packet-switching network, if the delay of one message is long
because the network is heavily congested, the next message is
likely to be similarly delayed.

Thus the two observations are not independent.

Note
This is why, in general, a simulation model must be run several
times.
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Independent replications

If independent replications are used the model is run m times
in order to generate m independent observations.

For the runs to be independent, the random number generator
seeds must be carefully chosen.

If steady state or long term behaviour is being investigated
the data relating to the warm-up period must be discarded.

Let O denote the mean value of the retained observations, Oi ,
after m runs.

The variance over all observations is calculated as:

V =
1

m − 1

m∑
i=1

(Oi − O)2
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Independent replications and steady-state

For steady-state analysis independent replication is an inefficient
way to generate samples, since for each sample point, Oi , k
observations, {oi1, . . . , oik}, must be discarded.
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Batch means

In the method of batch means the model is run only once but
for a very long period.

The run is divided into a series of sub-periods of length `, and
measures over each sub-run form a single point estimate.

If the observations made during the run form a set {oi}, the
set is partitioned into subsets

Si = {oj | oj observed between (i − 1)× ` and i × `}

Each sample point Oi is the mean generated from a subset of
observations Si , and O is the mean generated from the Oi .

Variance is calculated as above.
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Batch means and independence

This method is unreliable since the sub-periods are clearly not
independent.

However it has the advantage that only one set of observations
{oi . . . ok} needs to be discarded to overcome the warm-up effects
in steady state analysis.
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Regeneration

It is sometimes possible within the run of a simulation model
to identify points in the trajectory where the model returns to
exactly equivalent states: so-called regeneration points.

Periods between regeneration points are genuinely
independent sub-runs, e.g. a queue which empties.

The behaviour of the model (queue length, waiting time etc)
after a visit to such a state does not depend on the previous
history of the model in any way.

The duration between two successive regeneration points is
called a regeneration cycle.
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Variance computation and regeneration

The variance computation using regeneration cycles is a bit
more complex than that in the method of batch means or the
method of independent replications.

This is because the regeneration cycles are of different
lengths, whereas in the other two methods the batches or
replications are all of the same length.
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Regeneration considered

Unlike the previous two methods, the method of regeneration does
not require any transient observations to be removed.

Unfortunately not all models have easily defined regeneration
states, and even when they exist they can be computationally
expensive to identify.

Another disadvantage is that it is not possible to define the length
of a simulation run beforehand.
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