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Key notions

A model can be constructed to represent some aspect of the
dynamic behaviour of a system.

Once constructed, such a model becomes a tool with which we can
investigate the behaviour of the system.
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The discrete event view

In this course we will consider discrete event systems.

The state of the system is characterised by variables which take
distinct values and which change by discrete events, i.e. at a
distinct time something happens within the system which results in
a change in one or more of the state variables.
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The discrete event view: example

We might be interested in the number of nodes in a communication
network which are currently waiting to send a message N.

If a node, which was not previously waiting, generates a
message and is now waiting to send then N → N + 1, or

If a node, which was previously waiting, successfully transmits
its message then N → N − 1.
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Discrete time vs. Continuous time

Within discrete event systems there is a distinction between a
discrete time representation and a continuous time representation:

Discrete time: such models only consider the system at
predetermined moments in time, which are typically
evenly spaced, eg. at each clock “tick”.

Continuous time: such models consider the system at the time of
each event so the time parameter in such models is
conceptually continuous.

At levels of abstraction above the hardware clock continuous time
models are generally appropriate for computer and communication
systems.
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Performance Modelling

Performance modelling is concerned with the dynamic behaviour of
systems and quantified assessment of that behaviour.

There are often conflicting interests at play:

Users typically want to optimise external measurements of the
dynamics such as response time (as small as possible),
throughput (as high as possible) or blocking probability
(preferably zero);

In contrast, system managers may seek to optimize internal
measurements of the dynamics such as utilisation (reasonably
high, but not too high), idle time (as small as possible) or
failure rates (as low as possible).
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Performance Modelling: Motivation

Capacity planning

How many clients can the
existing server support and
maintain reasonable response
times?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Tuning

What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Performance Modelling: Response time analysis

Quality of Service issues

Can the server maintain
reasonable response
times?
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Performance Modelling: Capacity planning

Scalability and capacity plan-
ning issues

How many times do we
have to replicate this
service to support all of
the subscribers?
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Performance Modelling: Scalability analysis
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Robustness and scalability is-
sues

Will the server withstand
a distributed denial of
service attack?
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Performance Modelling: Service Level Agreements

Service-level agreements

What percentage of
downloads do complete
within the time we
advertised?
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Quantitative modelling

When systems are modelled to verify their functional behaviour
(correctness), all definite values are abstracted away — qualitative
modelling.

In contrast, performance modelling is quantitative modelling as we
must take into account explicit values for time (latency, service
time etc.) and probability (choices, alternative outcomes, mixed
workload).

Probability will be used to represent randomness (e.g. from human
users) but also as an abstraction over unknown values (e.g. service
times).
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Probability Theory

1 There is a sample space, Ω, which encompasses all possible
observations or outcomes.

2 There is a collection of subsets of Ω, denoted E , and termed
events; these subsets are usually identified as sample points
which satisfy some condition.

3 There is a probability mapping, Pr, from E to IR. Pr must
satisfy three simple conditions:

1 For any event A, A ∈ E , the mapping Pr is defined and
satisfies 0 ≤ Pr(A) ≤ 1.

2 Pr(Ω) = 1.
3 If A and B are mutually exclusive, that is, they contain no

sample points in common, then Pr(A ∪ B) = Pr(A) + Pr(B).
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Simple properties of probabilities

Various properties of probabilities can be derived from the axioms
and simple set theory.

For example, the probability of the union of two events A and B
which are not mutually exclusive is

Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B).

Similarly, the probability of the complement of event A, denoted by
¬A, is

Pr(¬A) = 1− Pr(A).
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Conditional Probability
The conditional probability of A occurring, given that B has
occurred, is

Pr(A | B) =
Pr(A ∩ B)

Pr(B)

If A and B are mutually exclusive Pr(A | B) = 0.

If B is a precondition for A, then Pr(A ∩ B) = Pr(A).

Two events are independent if knowledge of the occurrence of
one of them tells us nothing about the probability of the
other, i.e. Pr(A | B) = Pr(A), or

Pr(A ∩ B) = Pr(A)× Pr(B).
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Random experiments and events

To apply probability theory to the process under study, we
view it as a random experiment.

The sample space of a random experiment is the set of all
individual outcomes of the experiment.

These individual outcomes are also called sample points or
elementary events.

An event is a subset of a sample space.
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Random variables

We are interested in the dynamics of a system as events happen
over time.

A function which associates a (real-valued) number with the
outcome of an experiment is known as a random variable.

Formally, a random variable X is a real-valued function defined on
a sample space Ω.

Jane Hillston School of Informatics The University of Edinburgh Scotland

Performance Modelling — Lecture 1



Motivation and Background Probability Theory – refresher The rest of the course

Distribution function

For each random variable X we define its distribution function F
for each real x by

F (x) = Pr[X ≤ x ]

We associate another function p(·), called the probability mass
function, with X (pmf), for each x :

p(x) = Pr[X = x ]

A random variable X is continuous if p(x) = 0 for all real x .

(If X is a continuous random variable, then X can assume
infinitely many values, and so it is reasonable that the probability
of its assuming any specific value we choose beforehand is zero.)
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Mean, or expected value

If X is a continuous random variable with density function f (·), we
define the mean or expected value of X , µ = E [X ] by

µ = E [X ] =

∫ ∞
−∞

xf (x)dx

If X is a discrete random variable with probability mass function
p(·), we define the mean or expected value of X ∈ S , µ = E [X ] by

E (X ) =
∑
x∈S

xp(x)
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Variance

The expectation only gives us an idea of the average value
assumed by a random variable, not how much individual values
may differ from this average.

The variance, Var(X ), gives us an indication of the “spread” of
values:

Var(X ) = E [(X − E [X ])2] = E [X 2]− E [X ]2.
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Exponential random variables, distribution function

The random variable X is said to be an exponential random
variable with parameter λ (λ > 0) or to have an exponential
distribution with parameter λ if it has the distribution function

F (x) =

{
1− e−λx for x > 0
0 for x ≤ 0

Some authors call this distribution the negative exponential
distribution.
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Exponential random variables, density function

The density function f = dF/dx is given by

f (x) =

{
λe−λx if x > 0
0 if x ≤ 0
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Mean, or expected value, of the exponential distribution

Suppose X has an exponential distribution with parameter λ > 0.
Then

µ = E [X ] =

∫ ∞
−∞

xλe−λxdx

=
1

λ
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Exponential inter-event time distribution

The time interval between successive events can also be deduced.

Let F (t) be the distribution function of T , the time between
events. Consider Pr(T > t) = 1− F (t):

Pr(T > t) = Pr(No events in an interval of length t)

= 1− F (t)

= 1− (1− e−λt)

= e−λt
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Memoryless property of the exponential distribution

The exponential distribution is said to have the memoryless
property because the time to the next event is independent of
when the last event occurred.
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Memoryless property of the exponential distribution

Suppose the last event occurred at time 0.

What is the probability that the next event will be after t + s,
given that time t has elapsed since the last event, and no events
have occurred?

Pr(T > t + s | T > t) =
Pr(T > t + s and T > t)

Pr(T > t)

=
e−λ(t+s)

e−λt

= e−λs

This value is independent of t (and so the time already spent has
not been remembered).
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The Poisson distribution

The exponential distribution function is closely related to a discrete
random variable, the Poisson distribution.

This random variable takes values in the set {0, 1, 2, . . .} and has
the mass function

pi = e−µ
µi

i !
i ≥ 0.

The expectation of a Poisson random variable with parameter µ is
also µ.
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The Poisson random variable

The Poisson random variable is typically used as a counting
variable, recording the number of events that occur in a given
period of time.

If we observe a Poisson process with parameter µ for some short
time period of length h then:

the probability that one event occurs is µh + o(h).
the probability that two or more events occur is o(h).
the probability that no events occur is 1− µh + o(h).
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Relationship between the Poisson and exponential
distributions

If we observe a Poisson process for a infinitesimal time period dt
the probability that an event occurs is µdt.

If the occurrence of events is governed by a Poisson distribution
then the inter-event times are governed by an exponential
distribution with the same parameter, and vice versa.

Therefore, if we know that the delay until an event is exponentially
distributed then the probability that it will occur in the
infinitesimal time interval of length dt, is µdt.
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Superposition and decomposition of exponential
distributions

If X and Y are two exponentially distributed random variables,
with parameters λX and λY respectively, then min(X ,Y ) is also an
exponentially distributed random variable, with parameter
λX + λY .

Consider a stream of events which has events of two types — type
A and type B — and assume that the probability that an event has
type A is pA and the probability it has type B is pB (pA + pB = 1).

Then if the inter-event time for any events is exponentially
distributed with parameter λ, then the inter-event time for type A
events is pA × λ and similarly for type B events it is pB × λ.
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Topics Covered in the Course

Operational Laws

Modelling with Continuous Time Markov Chains

High-level modelling formalisms:

Queueing Networks
Stochastic Petri Nets
Stochastic Process Algebra

Stochastic Simulation

Model Parameterisation

Model Verification and Validation
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Practicalities

There will be sixteen 50 minute lectures;
Mondays and Thursdays at 10.00 in Room S1, 7 George Square.

There are no formal tutorials for the course but individual help will
be available from the lecturer by arrangement.

Learn by experimentation: example models and instructions on how
to use appropriate software will be given.

There is a set of lecture notes. These will appear on the web page
at least 24 hours prior to the lecture. You are encouraged to read
them prior to the lecture.

There are two practicals which together account for 25% of the
marks for the course. The first will be due 14th February; the
second, 21st March.

There will also be opportunities to develop your modelling skills
through formative exercises in lectures and between lectures.
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