
9 Using a GSPN for Performance Evaluation

In this note we will consider two aspects of using a GSPN model of a system once it has
been constructed: generating and solving a corresponding Markov process, and deriving
performance measures. At the end of the note we will summarise the assumptions we are
making when we use GSPN models.

9.1 Generating and solving the corresponding Markov process

As stated in Section 5.2 generating the Markov process underlying an SPN model is very
straightforward. We take advantage of the isomorphism between the reachability graph
of the SPN and the state transition diagram of the Markov process. If the markings of
the SPN are {M0,M1, . . . ,MN} (where M0 is the initial marking), then the states of the
Markov process will be {x0, x1, . . . , xN} generated as follows:

• we associate a state, xi, in the Markov process with every marking, Mi, in the
reachability graph of the SPN;

• the transition rate from state xi (corresponding to marking Mi) to state xj (Mj),
is obtained as the sum of the firing rates of the transitions that are enabled in Mi

and whose firings generate marking Mj.

If we consider the very simple SPN model shown below, M0 = (1, 0) and M1 = (0, 1),
are the only possible markings. Suppose that the firing rates of transitions T1, T2 and T3
are λ1, λ2 and λ3 respectively.
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We associate states x0 and x1 with the markings M0 and M1. The transition rate from
x0 to x1 is λ2 because T2 is the only transition enabled in M0 whose firing results in M1.
The transition rate from x1 to x0 is λ1 + λ3 since both T1 and T3 are enabled in M1, and
the firing of either of them will result in the marking M0 (by the superposition principle).

Once the Markov process corresponding to an SPN model has been generated, it is
solved in exactly the same way as Markov processes which are constructed directly during
modelling. The steady state probability distribution is found by solving the global balance
equations, together with the normalisation condition.

Two additional features were added to SPN notation to give GSPN notation: inhibitor
arcs and immediate transitions. The effect of inhibitor arcs in a GSPN model is to alter
the reachability graph of model: some markings and transition firings which would have
been possible in the absence of the inhibitor arcs may no longer be possible. However, the
effect of this new type of arcs only impacts on the generation of the reachability graph,
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not on the subsequent generation of the underlying Markov process. Once the reachability
graph has been constructed obeying the constraints of the inhibitor arcs, they may be
forgotten as far as generating the Markov process is concerned. Unfortunately, the same
is not true for immediate transitions.

Recall that in a Markov process the delay spent in a state must be exponentially
distributed. However, in a GSPN the delay in a vanishing marking is of length zero
because the immediate transition will fire at once, moving the GSPN on to another
marking. As far as the Markov process is concerned this means that these markings
must be eliminated from the reachability graph before the state space of the Markov
process is generated. Moreover, if immediate transitions from a marking can lead to two
or more different markings, the transition rates to these markings need to be adjusted
(by the decomposition principle), as explained below.

Let us consider first the simplest case: when a vanishing marking, Mv, enables a single
immediate transition. In this case the next marking will clearly be the one resulting from
firing the immediate transition. We will call this the successor marking, Ms. First we
delete the vanishing marking from the reachability graph; similarly, we delete the arc from
Mv to Ms. In principle, there may have been arcs to Mv from any other marking, Mi,
in the reachability set. Each such arc is now taken directly from Mi to Ms; the name
of the eliminated immediate transition is added to the label of the arc, but the rate or
probability associated with the arc is unchanged.

If a vanishing marking, Mv enables more than one immediate transition it represents
a conflict state, and there will be more than one arc leaving the marking in the reach-
ability graph, each arc leading to a different possible successor marking. We will call
these markings the successor set. As before, we delete Mv from the reachability graph.
We also delete all arcs from Mv to markings in the successor set. For each arc which
did come to Mv, we now form an arc to every marking in the successor set. Thus, if
there are three markings in the successor set (i.e. the vanishing marking enabled three
immediate transitions) then a single arc to the vanishing marking which has now been
deleted will be replaced by three arcs, one to each of the three successor markings. As
in the case of a single immediate transition, the name of the transition which has been
removed is added to each of these new arcs. In addition, if these arcs represent timed
transitions the rate associated with the arc must be adjusted in each case to represent the
probability of that successor marking. For example, if the rate from some marking Mi

to the vanishing marking, Mv, was r, and Mv enabled two immediate transitions, whose
firing weights were equal (i.e. they were equally likely to fire) then the rate to each of the
two successor markings will be r/2. Similarly, if the arcs represent immediate transitions
then the relative probability of each of the new arcs must be chosen to reflect the original
probability of the arc multiplied by the probability of the immediate transition which has
been removed. For example, if the probability of the transition from some marking Mi to
the vanishing marking, Mv, was p, and, as above, Mv enabled two immediate transitions
whose firing weights were equal, then the probability of the transitions from Mi to the
two successor markings would be p/2.

This procedure is systematically applied to all the vanishing markings in the reachability
graph. In the end all arcs in the modified reachability graph will have a rate originating
from a timed transition associated with every arc. As explained above, this rate may
have been adjusted during the elimination of vanishing markings to reflect the relative
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probability of immediate transitions enabled after the timed transition. It is this modified
reachability graph that is used to generate the Markov process underlying a GSPN model.
Each tangible marking corresponds to a state in the Markov process, and the transition
rate between states of the Markov process are derived as described above for SPNs. Once
the Markov process is generated, it is solved as before, via the generator matrix.

9.1.1 Example: The reader-writer system revisited
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Figure 18: GSPN representing the simple reader-writer system

M0 (2, 0, 0, 0, 1, 0, 0) tangible

M1 (1, 1, 0, 0, 1, 0, 0) vanishing

M2 (1, 0, 1, 0, 1, 0, 0) vanishing

M3 (1, 0, 0, 1, 1, 0, 0) vanishing

M4 (1, 0, 0, 0, 1, 1, 0) tangible

M5 (1, 0, 0, 0, 0, 0, 1) tangible

M6 (0, 1, 0, 0, 1, 1, 0) vanishing

M7 (0, 0, 1, 0, 1, 1, 0) vanishing

M8 (0, 0, 0, 1, 1, 1, 0) tangible

M9 (0, 0, 0, 0, 1, 2, 0) tangible

M10 (0, 1, 0, 0, 0, 0, 1) vanishing

M11 (0, 0, 1, 0, 0, 0, 1) tangible

M12 (0, 0, 0, 1, 0, 0, 1) tangible

Table 2: Table showing the markings of the reader-writer GSPN model

We will now illustrate the elimination of vanishing markings for the reachability graph
of the reader-writer GSPN model, shown in Figure 18. Note that the parametric marking
of place P1, considered in the previous lecture note, has now been replaced in the initial
marking by two tokens in P1.
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Figure 19: Reachability graph of the reader-writer GSPN model

The reachability set of the model is given in Table 2, together with an indication
of whether each marking is vanishing or tangible, i.e. whether it enables an immediate
transition or not. Note that there are 13 markings; if we considered the untimed Petri net
with the same structure it would have 19 states. The reduction is caused by the priority
of immediate transitions.

The full reachability graph, including vanishing markings, is shown in Figure 19.

Exercise: In this, and each of the modifications of the reachability graph, the transition
rates have been omitted from the arcs—you should write them in. (Recall that the rate
at which each process undertakes independent work is λ, the rate at which a process can
perform a read access is r and the rate at which a process can perform a write access
is w. The probability that a process chooses to read is 0.6, while the probability that it
chooses to write is 0.4.)

In Figure 20 the effect of removing the vanishing markings which enable the choice
between T2 and T3 is shown. For example, marking M1 is now eliminated. The arc which
previously went from M0 to M1 is now replaced by two arcs, one from M0 to M2 and one
from M0 to M3. These arcs are labelled by the transitions which must fire to make this
transformation of the marking occur: in this case, T1 +T2 and T1 +T3. The rates labelling
arcs will also be adjusted. For example in M0 the rate of the transition to M1 will be
2× λ since independent processing takes place concurrently. The choice of transition T2
occurs with probability 0.6. Therefore the rate which will be associated with the arc from
M0 to M2 in the modified reachability graph is 1.2× λ. Similarly, the arc from M4 to M7

will now be labelled with rate 0.6× λ.

Once the vanishing markings which enabled the choice between T2 and T3 have been
eliminated, it remains to remove those markings which enable T4 and T5. Note that
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Figure 20: Reachability graph of the reader-writer model with vanishing markings which
enable choices removed

it is always the case that if one of these transitions is enabled in a marking it is the
only transition enabled. Therefore elimination of the corresponding vanishing markings
is simpler in this case. For example, M2 enables T4. In Figure 21 we can see that this
marking has been deleted. The arc from M0 to M2 (introduced in the last step) is now
deleted and replaced by an arc from M0 to M4. Similarly the arc from M11 is now
redirected to M4. In each case the label of the arc is changed appropriately.

9.2 Deriving performance measures

The steady state probability distribution, π, is still the basis of performance evaluation.
In other words the aim is to derive performance characteristics of the system based on
the steady state probability of being in certain states, or markings. Recall that when
we were modelling directly at the Markov process level, defining performance measures,
such as the average number of data packets waiting at a PC, involved examining the state
representation of each state. Now, however, we can identify the states we are interested
in by their characteristics at the GSPN level.

At the GSPN level the states (markings) which we are interested in can usually be
identified either by whether a particular transition is enabled, or by whether a particular
place is marked. To derive a performance measure we then associate a value with each
of the markings we are interested in, just as we did when working directly at the Markov
process level (cf. Section 3.3). For example, to derive the utilisation of the database in
the reader-writer system, we associate a value 1 with any marking in which transitions
T6 or T7 are enabled, and a value 0 with all other markings.

The value associated with each marking is generally termed a reward. Different rewards
can be used to calculate different measures. Indeed, typically a reward over all markings
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Figure 21: Reachability graph of the reader-writer model with all vanishing markings
removed

must be defined for each performance measure to be calculated. For example, if we wanted
to derive the throughput of accesses to the database we associate a reward of w(= 0.01)
with all markings in which T7 is enabled, and a reward of r(= 0.05) multiplied by the
number of readers (number of tokens in P6) with all markings in which T6 is enabled.

Like most SPN/GSPN modelling tools, PIPE automatically calculates the expected
values of measures such as the throughput of each transition and the average marking of
each place. Additionally PIPE will calculate the token probability density for each place
— this is the probability that each place has 0, 1, 2, . . . tokens. You can think of it as the
proportion of time that a given place has a given marking. It also calculates the average
sojourn time in each tangible state/marking.

Figures 22-24, show the output generated by PIPE for the Reader-Writer model with
two users that has been considered earlier in this note. In the PIPE examples on the
course web page you will also find version of the model with 4 and 6 users.

9.3 Assumptions

Since we are using the GSPN to generate a Markov process which we then solve numer-
ically using the techniques discussed in lecture note 3 the assumptions we need to make
about our model are the same ones as are needed for Markov processes in general. How-
ever, since we are now modelling at the GSPN level rather than the state space level, it
is perhaps more natural to consider what these assumptions tell us about the GSPN.

Recall that in order to ensure that the stochastic process we were considering was a
Markov process we made the assumption that all delays and inter-event times within
the model were exponentially distributed. As we have seen, in a GSPN this condition
is violated because some inter-event times have no duration: in a vanishing marking the
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Figure 22: PIPE performance measures for the Reader-Writer model with 2 users

time until the next event (transition firing) is zero. However, as we have demonstrated
that it is possible to get round this problem by eliminating the vanishing markings before
the Markov process is generated.

Assumptions we previously made to ensure that the steady state probability distribu-
tion coincided with the long-term probability distribution are that the model is finite,
time homogeneous and irreducible. Since we still rely on the steady state probability
distribution to derive performance measures we are making the same assumptions for
GSPN.

Finite implies that the number of markings in the reachability set of a model (both
tangible and vanishing markings) is finite. It can be shown that a GSPN is finite
if it is bounded. A place in a Petri net is k-bounded if the number of tokens in
the place will never exceed k. A Petri net is bounded if every place in the net is
K-bounded for some finite value K.

Time homogeneity implies that the firing characteristics and system dynamics of a
model do not change depending on when you observe it. This does not necessarily
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Figure 23: PIPE performance measures for the Reader-Writer model with 2 users

Figure 24: PIPE performance measures for the Reader-Writer model with 2 users
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mean that these characteristics are static—we have seen that marking dependent
rates and infinite server semantics may mean that the rate at which a transition
fires may vary—but that firing rate will change only as dictated by the state of the
model, not by how long it has been running.

Irreducibility implies that it is possible to reach an arbitrary state from every other
state. In particular it must be possible to reach the initial marking from every
reachable marking of the GSPN, and this implies that the reachability graph is
strongly connected.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. February 11, 2017.

69


