
8 More about GSPN Models

In this note we will consider two simple systems modelled by GSPN and in the course of
doing so examine more closely the dynamics of these models with respect to timed and
immediate transitions. At the end of the note we will summarise some of the key features
of the PIPE modelling tool and describe how it may be used to generate and solve GSPN
models.

8.1 System Dynamics

Recall that in an untimed Petri net the firing of a transition corresponded to an event in
the system. In GSPN we recognised that these events might arise in two different ways:

• they may be induced by the completion of some activity; these activities can be
further divided into two categories:

– those which take significant time to complete.

– those whose duration is negligible compared with other actions in the system,
often called control actions.

• they may result from the verification of some logical condition of the system.

Timed transitions represent actions which take some time to be completed. Immediate
transitions represent logical events and control actions.

For timed transitions, when they become enabled, i.e. all the input places of the tran-
sition become marked with the necessary number of tokens and any inhibitor places are
unmarked, we imagine the corresponding activity starting in the system. This activity
will continue until it is completed or interrupted. We assume that each transition has
a timer or local clock associated with it: when the transition is enabled the timer is set
to a value. Since we are using a random variable to represent activity durations, this
value is sampled1 from the exponential distribution with the appropriate rate parameter.
While the transition is enabled we assume that the timer decrements at a constant speed.
When the timer reaches zero the transition fires (assuming that it has remained enabled
throughout the clock period).

For immediate transitions, the firing of the transition takes no time and is assumed to
occur instantaneously. We also assume that enabled immediate transitions always have
priority over any enabled timed transitions, so we fire all possible immediate transitions
first. If only one immediate transition is enabled, it fires, and the new marking is produced.
If several immediate transitions are enabled, some mechanism is necessary to identify
which transition will fire. In fact the choice of transition to be fired is only important
in cases where there is conflict between the enabled transitions, i.e. the firing of one
will disable another. If the enabled immediate transitions are concurrent, they can be

1Sampling means randomly choosing a value, in such a way that if you kept on doing this over time and
kept track of the values they would satisfy the probability distribution function. Sampling will be treated
in more detail when we study simulation. Note that for GSPN models solved as a Markov process this is
just a way of thinking about the dynamics of the system, we do not actually sample the distributions.



Performance Modelling LN-8

fired in any order. When enabled immediate transitions are in conflict GSPNs associate
weights, or relative probabilities, with each transition. We can think of a distribution
being sampled to determine which transition actually fires in each case.

Bearing this view of the system dynamics in mind we will consider again the two-
processor shared memory system from lecture note 5. For convenience it is shown again
in Figure 13.

8.1.1 Example: The multiprocessor system revisited

1 1 2 2 3

4

75645

3

6

P T P T P

P

PTPTP

T

T

Figure 13: GSPN representing the two-processor shared memory system

In the initial marking of the system we see that both transitions T1 and T4 are enabled.
Thus we think of them sampling their respective exponential distributions, with param-
eters λA and λB, and obtaining values VA and VB say. Which transition fires first will
be determined by whose associated timer reaches the value zero first—this is called the
race policy. If VA < VB, transition T1 will be the one to fire and the marking changes as
(1, 0, 0, 1, 1, 0, 0)→ (0, 1, 0, 1, 1, 0, 0). If VB < VA, transition T4 fires and the new marking
is (1, 0, 0, 1, 0, 1, 0). The case of VA = VB can only occur with probability zero2 so we do
not need to worry about it. Of course each time the distributions are sampled different
values may be obtained, and so which transition fires first will vary.

In either case we need to consider what happens to the remaining time on the timer
associated with the transition which did not fire. There seem to be two possibilities:
either it is forgotten or it is remembered. For example, in the two-processor system if
VA < VB and transition T1 fires, the time remaining on the timer associated with T4 will

2The probability that a sample extracted from an exponential distribution takes any specific value v
is always zero, so if we know that the value sampled by the first timer is VA the probability that the
second timer will sample the same value is zero.

54



Performance Modelling LN-8

be VB − VA. Since T4 remains enabled after T1 has fired it would seem unreasonable
for time the system has already spent on the corresponding activity to be forgotten. In
contrast, if T1 and T4 had been in conflict, so that the firing of T1 removed the enabling
tokens for T4 it might seem reasonable to forget the time that has already been spent on
the corresponding activity, and imagine the system starting that activity again from the
beginning whenever T4 next becomes enabled. Note that in the case of conflict between
timed transitions which transition will fire is always resolved by the race policy.

Fortunately, the memoryless characteristics of the exponential distribution mean that
we do not need to differentiate between the situations when a timed transition should
forget its previous work and those when it should remember. Indeed, whether the timer
is reset or not, the probability distribution of the time remaining until the firing of a tran-
sition will always be the same, and distributed according to the exponential distribution
when the transition was first enabled. Thus we can model either of these situations in
the same way in a GSPN.

Despite initial impressions from inspecting the net, the two immediate transitions in
the GSPN of the two-processor system can never both be enabled at the same time. Thus
at most one immediate transition is enabled in any marking and this transition will fire
instantaneously leading to the following marking. For example, if T1 fires as described
above, leading to the marking (0, 1, 0, 1, 1, 0, 0), transition T2 is now enabled and fires at
once, leading to the marking (0, 0, 1, 0, 1, 0, 0).

8.1.2 Example: The reader-writer system

The GSPN in Figure 14 is a representation of what is sometimes referred to as the reader-
writer system. The model represents a system in which there is a set of processes who
share access to a common database. On any particular access a process may wish to
perform a read or a write. Any number of readers may access the database concurrently;
in contrast, a writer requires exclusive access to the database. In between accesses to the
database each process will undertake some processing independently.

T
6

T
4

T
5

T
3

T
2

T
1

P
7

P
4

P
3

P
2

P
5

P
6

T
7

P
1

.K

Figure 14: GSPN representing the simple reader-writer system

55



Performance Modelling LN-8

Timed transitions are used to represent the reading and writing actions as well as
the local activities performed by the processes between two subsequent accesses to the
database. Immediate transitions are used to implement the decision of which action a
process wants to perform on the database (T2 and T3) and to implement the scheduling
between reading and writing activities (T4 and T5). The interpretations of the places and
transitions in the model shown in Figure 14 are given below.

• P1 represents a process undertaking local processing.

• P2 represents a process ready to commence access to the database.

• P3 and P4 model processes ready to read and ready to write respectively.

• P5 enforces unique access to the database for writing; it can be thought of as repre-
senting the condition no write access is in progress.

• P6 and P7 represent processes currently reading or currently writing respectively.

• T1 models the independent processing, not related to the database access; each
process undertakes local processing for a mean duration of 1/λ milliseconds.

• T2 and T3 model the “decision” of the process to make a read access or a write
access; the switching probabilities are chosen to reflect the relative frequencies of
these types of access.

• T4 represents a process gaining access to the database to start a read access.

• T5 represents a process gaining access to the database to start a write access; note
that the transition is inhibited whenever a read is already in progress (P6).

• T6 models the database read activity; the average read access lasts for 1/r millisec-
onds.

• T7 models the database write activity; the average write access lasts for 1/w mil-
liseconds.

This system is commonly used in texts about modelling with Petri nets because it is small
and easily understood but yet it exemplifies three interesting features which are often
important in models: concurrency of events (two or more processes may be concurrently
accessing the database for reading), mutual exclusion (only one process at a time may
access the database for writing) and choice (an access can either be a read or a write).
This version of the model is based on the one presented in the book by Ajmone Marsan
et al.3; in other books variations on this model appear.

Note that the initial marking of the GSPN has a single token in place P5, representing
that the condition is currently satisfied, and a parameter K in place P1. The parametric
marking represents the situation that there is some number of processes, K, within the
system, but the value of K has not yet been decided. A value must be assigned to K
before the model can be solved because, as we have already seen, the number of tokens
in the initial marking can drastically change the reachability set of a model.

Let us first consider the immediate transitions of the model. Whenever there is a token
in place P2 the two immediate transitions T2 and T3 are both enabled. These transitions

3Modelling with Generalized Stochastic Petri Nets, M. Ajmone Marsan, G. Balbo, G. Conte, S. Do-
natelli and G. Franceschinis, John Wiley, Series in Parallel Computing, 1995

56



Performance Modelling LN-8

are in conflict because the firing of one will disable the other. Thus weights, or relative
probabilities, must be assigned to the transitions to resolve the conflict. If we know
that 60% of database accesses are read accesses and 40% are write accesses, we associate
weights 0.6 and 0.4 with T2 and T4 respectively.

If transition T2 fires, and P5 contains a token, transition T4 is now enabled and fires
immediately—no other immediate transitions are enabled and the immediate transition
takes priority over any timed transitions which might be enabled, such as T1. Thus two
immediate transitions may fire one after another without any time progressing in our
model. If T3 fires a token appears in place P4, but transition T5 will only be enabled if
there is no token in place P6—this is the effect of the inhibitor arc—and there is a token
in place P5.

Let us now consider the timed transitions of the model. If there are K tokens in
place P1 it means that there are K processes currently involved in local processing, each
progressing at a rate λ. Thus the total rate at which processes complete local processing
is K × λ. In the model we represent this by saying that the rate of the transition T1 is
dependent on the marking of transition P1: the rate of the transition is λ multiplied by
the number of tokens in P1 (by the superposition principle). Such transitions are said to
have marking dependent firing rate.

Similarly when more than one process is engaged in a read access, the rate at which a
single read access is completed will depend on the number of processes currently reading—
the marking of place P6—and the rate at which reading occurs—the transition rate of
transitions T6 (r).

In general, whenever a transition’s enabling condition is satisfied more than once, e.g.
K tokens in place P1 when only one is required to enable transition T1, there are two
possibilities with respect to the firing rate of the transition. We can imagine the transition
progressing each set of enabling input tokens serially. In this case we only consider the
transition to be enabled or not, and when it is enabled it always works at the same
rate. This is called single server semantics and it is the default case for GSPN models.
Alternatively we can think of the transition progressing each complete set of enabling
input tokens concurrently. In this case the rate at which the transition works will depend
upon its enabling degree. This is called infinite server semantics and in GSPN models it
is achieved by setting a marking dependent firing rate.

In the reader-writer model the enabling degree of the transition T1 in the initial marking
is K. Similarly the enabling degree of transitions T6 can have any value between 1 and
K. In contrast, enabling degree of T5 is at most 1: even though the place P4 may have
up to K tokens, the enabling degree will not be greater than 1 because there is only one
token in place P5.

8.2 The PIPE Modelling Tool

PIPE (Platform Independent Petri net Editor) is an open source, platform independent
tool used of the creation and analysis of Petri Nets, and some of their extension, developed
at Imperial College. It is implemented in Java and has a graphical user interface, which
makes it very straightforward to use. The most recent version is PIPEv4.3.0 and it
is recommended that this is the version you install, as earlier versions did have some

57



Performance Modelling LN-8

Figure 15: Image of PIPE tool on opening

problems with the delete function and consistency of the graphical user interface and the
internal representation. PIPEv.4.3.0 is available for download from
http://sourceforge.net/projects/pipe2/files/PIPEv4/PIPEv4.3.0/

Once you have unpacked the directory/folder PIPEv4.3.0, enter that directory and
issue the command

. /launch.sh or .\launch.bat

according to your operating system, to launch the PIPE tool. This will open window like
the one shown in Figure 15.

The large pane on the right is a drawing canvas, and by default the tool is in drawing
mode. The elements of a Petri net (places, immediate transitions, timed transitions,
arc etc) are all displayed as icons above the drawing canvas. Immediate transitions are
represented by dark filled boxes and timed transitions by white boxes. To place an element
on the canvas simply click on the icon and then click on the canvas. Places and transitions
must be in place before arcs can be added connecting them. Arcs can start and finish on
either side of transitions, and bends can be added to an arc by clicking on a position on
the canvas that does not correspond to any element.

Once the basic net structure is completed, tokens can be added to indicate the initial
marking of the GSPN using the icons to the right of the drawing icons. The dot with a
green plus can be used to add tokens while the dot with the red cross icon can be used to
delete tokens. If you want to change the layout of the GSPN as displayed on the canvas,
clicking on the arrow icon to the left of the drawing icons switches the cursor to selection
mode. Now clicking on an element will allow the user to move it. Double clicking on

58



Performance Modelling LN-8

Figure 16: Image of PIPE tool modelling the multiprocessor example as a GSPN

a transition will open a popup menu that allows the characteristics of the transition to
be set. For example, for a timed transition the rate and the server semantics may be
specified. It is also possible to change the name of the transition, or the orientation of
its display. Double clicking on a place allows its name to be changed and provides an
alternative way to set the number of tokens in the initial marking. Double clicking on
arcs allows their multiplicity to be set. Elements may be deleted via the delete icon which
is the large red cross icon immediately below the Help menu.

Figure 16, shows PIPE being used to represent the GSPN representation of the mul-
tiprocessor example with two processors. Models can be saved, as an .xml file, via the
File menu.

PIPE offers a variety of analysis tools which are listed as modules on the left hand side
of the drawing canvas. The one that is most relevant to us is GSPN Analysis. Double
clicking on this will pop up a separate window that asks for confirmation of which GSPN
is to be analysed; by default it will be the model currently displayed in the canvas but
it is also possible to specifyy another model from a file. Once this is confirmed analysis
will be carried out, and results displayed in the same popup window. The GSPN analysis
displays

• the list of tangible markings,

• the steady state probability distribution over those markings,

• the average number of tokens per place,

59



Performance Modelling LN-8

• the probability density over each place showing the likelihood of each possible num-
ber of tokens in that place,

• the throughput of each timed transition in steady state,

• the average sojourn time in each tangible marking in steady state.

8.3 A GSPN model of the PC LAN with 4 nodes

The model below is a GSPN representation of the PC LAN with four nodes considered
in lecture note 4. Note that the inhibitor arc from place Pi2 to transition Tbi (for i =
1, . . . , 4) ensures that a token does not bypass a PC in which a data packet is waiting for
transmission. The source file can be found on the course web page as PCLAN4.xml.

Figure 17: GSPN representing the PC LAN with four nodes

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. February 2, 2017.

60


