
7 Stochastic Petri Nets

In this lecture note we consider an important class of high level performance modelling
paradigms—stochastic extensions of Petri nets. These are Petri net formalisms into which
random variables have been added to represent the duration of activities, or the delay until
events. The basic extension, Stochastic Petri Nets (SPN), present a very straightforward
mapping between events in the SPN model and events in the underlying Markov process.
As in the Markov process, a delay, represented by a random variable, is associated with
every event in the model. This straightforward mapping has the advantage that gener-
ating the Markov process from any SPN model is simple and easy to implement. The
disadvantage is that models developed in this way tend to result in Markov processes
which have a large number of states.

We will go on to consider Generalised Stochastic Petri Nets (GSPN). The generalisation
involves adding some simple additional features to the set of modelling primitives provided
for the modeller. As a result the mapping between events in the model and events in the
underlying Markov process is more sophisticated. However the resulting state space is
usually more compact, and often a closer representation of the behaviour of the system
can be achieved.

Although Petri nets have been used for qualitative modelling of computer and commu-
nication systems since the 1960s, their use as a performance modelling paradigm started
about twenty years later. In particular they were found to be especially useful for mod-
elling distributed and parallel systems. Such systems were difficult to model with queueing
networks, which were the prevailing performance modelling paradigm at the time.

7.1 Petri Nets

Petri nets provide a graphical notation for the formal description of the dynamic behaviour
of systems. They are particularly well suited to systems which exhibit concurrency, syn-
chronisation, mutual exclusion and conflict.

The primitives of the notation are the following:

��
��

PLACES

Places are used to represent conditions or local system states, e.g.
a place may relate to one phase in the behaviour of a particular
component.

TRANSITIONS

Transitions are used to describe events that occur in the system;
these will usually result in a modification to the system state.
The occurrence of the event in the system is represented by the
firing of the corresponding transition in the Petri net.

•
TOKENS

Tokens are identity-less markers that reside in places. The pres-
ence of a token in a place indicates that the corresponding con-
dition or local state holds.



Performance Modelling LN-7

-

ARCS

Arcs specify the relationships between local states or conditions
(places) and events (transitions). An arc from a place to a tran-
sition is termed an input arc. This indicates the local state in which
the event can occur. An arc to a place from a transition is termed
an output arc. This indicates the local transformations which will
be induced by the event.

Tokens move between places according to the firing rules imposed by the transitions.
A transition can fire when each of the places connected to it has at least one token; when
it fires, the transition removes a token from each of these places and deposits a token in
each of the places it is connected to. This is called the firing rule.

Sometimes a transition will require an input place to contain two or more tokens before
it can fire. In this case, rather than draw more than one arc between the place and the
transition, we denote the multiplicity of the arc by a small number written next to the
arc. Similarly for output arcs.

The state of the system combines information about all the local states. Since each
local state is represented by the number of tokens present in a particular place, the state
of the system is represented by a tuple, with one entry for each place, and the value of
the entries denoting the number of tokens in that place. This is termed the marking of
the net.

A Petri net consisting of places and transitions linked by arcs is incomplete if it does
not also have tokens in some places. This initial placing of tokens is called the initial
marking—this represents the starting state of the system.

A
A
AAK

token
A
A

A
AAK

transition
A
A

A
AAK

place

input arc
A
A
A
AAU

output arc
A
A
AAU

��
��P1

• -
��
��P2

��
��
P3

T1

��
��*

H
HHHj

=⇒
fires ��
��

-
��
��
•

��
��
•

��
��*

H
HHHj

Figure 9: A Simple Petri Net Firing

Starting from an initial marking and following the firing rule we can progress through
the states of the model. This is sometimes called playing the token game. Continuing in
this way, recording all the states we see and stopping only when we can reach no states
that we have not already seen, we obtain all the possible states of the model. This is
called the reachability set ; it is the set of all possible markings that a net may exhibit,
starting from the initial marking and following the firing rules. Different initial markings
might lead to different reachability sets as we will see in the example below. This is why
the initial marking is an important part of the model definition.

If, when playing the token game, as well as all the states we come across, we record
the transitions between those states, we obtain the reachability graph. This is a graph
in which the nodes are the reachable markings and the arcs between nodes represent the
possible transition firings which may move the model from one marking to the other.

47



Performance Modelling LN-7

Example: For the simple Petri net shown in Figure 9 the initial marking is (1, 0, 0) and
the final marking is (0, 1, 1). These are the only possible markings. If the initial marking is
changed to (3, 2, 1) the set of reachable markings is: {(3, 2, 1), (2, 3, 2), (1, 4, 3), (0, 5, 4)}.
Exercise: Draw the reachability graph for this model with the second initial marking.

7.2 Stochastic Petri Nets

Recall that if we wish to extract timing information from a model we must represent
timing information about the system in the model when it is constructed. In the case of
Petri nets there has been a variety of suggestions of how to introduce timing information
into Petri net notation.

If we consider the reachability graph of a Petri net model it resembles the state tran-
sition diagram of a Markov process. Stochastic Petri Nets (SPN) formalise this intuitive
correspondence. Given a Petri net model (complete with initial marking):

• we associate a state in the Markov process with every marking in the reachability
graph of the Petri net;

• we associate an event, or transition, in the Markov process with each firing of a
transition in the Petri net which causes the corresponding change of marking.

Since an exponentially distributed delay is associated with the delay until each event
in a Markov process, and transitions in the Petri net correspond to events, in an SPN
model an exponentially distributed delay is associated with each transition in the net
structure. Thus each transition in an SPN has a firing rate which is the parameter of
the corresponding exponential distribution, and transitions are sometimes termed timed
transitions.

How this works in practice is best illustrated by an example.

Example: Consider again the simple multi-processor system which was described in
Section 3.3.1. We make a slight modification to the system: we now explicitly represent
the processor requesting and gaining access to the common memory. In the previous
model we used a higher level of abstraction in which this action was ignored. A processor
executes locally for some time (mean duration 1/λ), and then requests access to common
memory (gaining access has mean duration 1/r). Once it has gained access, the duration
of common memory access is assumed to be 1/µ on average. We can model the behaviour
of a single processor interacting with the common memory using an SPN, as shown in
Figure 10. In this SPN

• place P1 represents the local state of the processor when it is executing privately;

• place P2 represents the local state of the processor when it is ready to commence
access to the common memory;

• place P3 represents the state when the process is using the common memory;

• place P4 represents the local state of the common memory when it is not in use;

• transition T1 represents the action of the processor executing privately ; the rate of
this transition is λ;

48



Performance Modelling LN-7

• transition T2 represents the processor gaining access to the common memory; the
rate of this transition is r;

• transition T3 represents the processor accessing the common memory; the rate of
this transition is µ.

1 1 2 2 3

4

3

executing 

in private

memory

common

memory

requesting accessing

P T P T P

P

T

Figure 10: Stochastic Petri net representing a single processor in a shared memory system

The reachability set of this model is {(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 0)}, and the reacha-
bility graph is

(1,0,0,1) (0,1,0,1) (0,0,1,0)
r

This is also the state transition diagram of the underlying Markov process and thus we
obtain the generator matrix:

Q =

 −λ λ 0
0 −r r
µ 0 −µ


Solving this we obtain the steady state probability

π =

(
µr

λr + µλ+ µr
,

µλ

λr + µλ+ µr
,

λr

λr + µλ+ µr

)
If we consider the two-processor system, as we did in Section 3.3.2, the SPN model is

as shown in Figure 11. Now we see why the action of gaining access needs to be explicitly
represented in the SPN model. Without it we could not enforce the necessary mutual
exclusion between the processors. If we assume the upper subnet represents processor A
and the lower subnet represents processor B, the interpretations for transitions should be
clear: T1 and T4 correspond to T1 in the single processor model, T2 and T5 correspond to
T2, and T3 and T6 correspond to T3. Similarly for the places. The rates of the transitions

49



Performance Modelling LN-7

1 1 2 2 3

4

75645

3

6

P T P T P

P

PTPTP

T

T

Figure 11: Stochastic Petri net representing a two-processor shared memory system

will be λA, rA and µA for T1, T2 and T3 respectively, and λB, rB and µB for the transitions
T4, T5 and T6.

The reachability set is now1{
(1, 0, 0, 1, 1, 0, 0), (1, 0, 0, 1, 0, 1, 0), (1, 0, 0, 0, 0, 0, 1), (0, 1, 0, 1, 1, 0, 0),
(0, 1, 0, 1, 0, 1, 0), (0, 1, 0, 0, 0, 0, 1), (0, 0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1, 0)

}
Exercise: Draw the reachability graph (state transition diagram) for this model, and

construct the generator matrix.

7.3 Generalised Stochastic Petri Nets

Although SPN provide a clear and intuitive formalism for generating Markov processes
they do have the disadvantage that the models constructed in this way can soon become
exceedingly large. One of the reasons for this is that actions which would not be explicitly
represented if we were working directly at the Markov process level have to be represented
by transitions. This has the effect of increasing the state space since we now have to
consider the state of waiting for these actions to occur, whereas we would prefer to abstract
away from these actions.

An example of this is the action of gaining access to the common memory in two-
processor model of the previous section. When we modelled this system as a Markov
process in Section 4.2.2 we did not represent this action because we constructed the state
space directly and so could prohibit the state of both processors accessing the common
memory at once. One of the disadvantages of using a high level modelling paradigm, such

1Note that we now have eight distinct states as opposed to the five states we had in the Markov
process when we modelled the system directly (Lecture Note 3).

50



Performance Modelling LN-7

as SPN, to generate the state space automatically, is that we sometimes have to introduce
mechanisms into the model to make sure that only “genuine” states are generated.

Generalised Stochastic Petri Nets (GSPN) represent an extension of the SPN formalism,
which is designed to address this problem. Two new primitives are added to the notation,
all others remaining the same and keeping the same interpretation. These new primitives
are immediate transitions and inhibitor arcs.

IMMEDIATE
TRANSITIONS

Immediate transitions are represented by a single bar, instead
of the rectangle used to represent timed transitions. Immedi-
ate transitions are used to describe events which are assumed
to take no time. When they are enabled in a model they fire
immediately, taking precedence over any enabled timed tran-
sitions. In other respects the firing rule is exactly the same as
for timed transitions. If two or more immediate transitions can
be enabled at the same time, the probability that each of them
is the one to fire must be declared in the model.

��
�� f

INHIBITOR ARCS

An inhibitor arc is used to indicate when a local state or condi-
tion disables a transition, rather than enables it. An inhibitor
arc from a place to a transition, indicates that the transition
cannot fire if there is a token in the place; it can fire when there
is no token in the place if the places connected to its input arcs
do contain tokens. In other words, the usual firing rule still
applies; the inhibitor arcs impose an additional constraint to
that rule. Inhibitor arcs may have multiplicities in the same
way as ordinary arcs.

The types of events represented by immediate actions usually fall into two categories:
control actions and logical actions. Control actions are ones which are necessary to ensure
the correct behaviour of the model but which take negligible time to be executed, which
means that they are unlikely to affect the performance of the system. For example,
gaining access to the common memory in the two-processor model considered in the
previous section can be regarded as a control action. The GSPN representing the system
in this way is shown in Figure 12. In these cases immediate actions provide an additional
tool for abstraction within the model.

Logical actions arise when the system makes a choice between two or more alternatives.
In an SPN these actions must be represented as actions which take time. However it is
more natural to think of them occurring instantaneously. In the GSPN a choice between
two alternatives will be represented by two immediate transitions which have exactly the
same input places (firing conditions), and the probabilities assigned to them will reflect
the relative probabilities of the two choices.

7.3.1 Generating the Markov process from a GSPN model

One of the advantages of SPN models was the straightforward correspondence between
the reachability graph of the SPN and the state transition diagram of the Markov process
it generated. The inclusion of inhibitor arcs within the GSPN notation does not affect

51



Performance Modelling LN-7

1 1 2 2 3

4

75645

3

6

P T P T P

P

PTPTP

T

T

Figure 12: GSPN representing a two-processor shared memory system

this correspondence. The effect of the inhibitor arc will be to eliminate some arcs which
might have been possible in the reachability graph. Thus the relationship between the
Markov process and the reachability graph is unaffected. In contrast, the introduction of
immediate actions has serious implications for the Markov process.

If there is an immediate transition in a GSPN model, in the reachability graph there
will be arcs between nodes which represent immediate transitions between markings in
the GSPN. Such arcs are labelled with rate ∞. In other words, in the reachability graph
some transitions between states take place instantaneously, without an associated delay.
Such instantaneous transitions are not possible in a Markov process. Therefore these
transitions, and the states that give rise to them, must be eliminated from the reachability
graph before the Markov process is generated.

Formally the transitions of a GSPN can be partitioned into two subsets—timed tran-
sitions and immediate transitions. Since immediate transitions always take precedence
over timed transitions, we can also partition the marking of a GSPN into those which
only enable timed transitions, and those which enable at least one immediate transition.
The latter are called vanishing markings, since the model will always move on to another
marking instantaneously. In contrast, the markings which enable only timed transitions
are called tangible markings. It is the vanishing markings which must be eliminated from
the reachability graph before the Markov process is generated. In the simple examples we
will consider by hand it will be clear how this is done; for more complex GSPN models the
elimination will be carried out automatically by software, as explained in Lecture Note 8.

Exercise: Draw the reachability graph of the GSPN model of the two-processor system
and identify the vanishing markings and the tangible markings.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. February 1, 2017.

52


