
5 Queueing Networks

5.1 Introduction

Mathematicians have studied queues for approximately 100 years, and one of their first
applications was to telephone exchanges (Erlang’s loss formula). However they gained
popularity with Computer Scientists about 45 years ago when it was realised that sin-
gle queues, and networks of queues could be used as performance models of computer
systems. More recently, developments in many of those systems have grown beyond the
expressiveness of queueing networks. Nevertheless, for many people performance analysis
is synonymous with queueing theory.

Queueing theory was first used in the late 1960s to model time-sharing computer sys-
tems. In particular single queues were used to study allocation policies for CPUs. Analysis
of the single queues led to a new qualitative, as well as quantitative, understanding of
some aspects of operating system and disk management system design. However, these
single queue models were too restrictive to represent systems of interacting computing
devices, as computers came to be viewed.

Later developments in queueing theory therefore studied the interaction between service
centres or queues—queueing networks. Contemporary computers at the time could be
viewed as a set of loosely coupled hardware components through which weakly interacting
jobs or transactions were circulating. The success of queueing theory as a performance
modelling paradigm relied on this view of computers. Computer and communication
systems today do not fit into this model so readily; however, queueing networks remain a
useful performance modelling paradigm, in some circumstances.

5.2 Single queues

The basic scenario for a single queue is that customers, who belong to some population
arrive at the service facility. The service facility has one or more servers who are capable
of performing the service required by customers. If a customer cannot gain access to a
server it must join a queue, in a buffer, until a server is available. When service is complete
the customer departs, and the server selects the next customer from the buffer according
to the service discipline.
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Figure 3: A Simple Queue



Performance Modelling LN-5

In order to describe a service facility accurately we need to know details about each of
the terms emphasised above:

Arrival Pattern of Customers The ability of the service facility to provide service for
an arriving stream of customers depends not only on the mean arrival rate λ, but
also on the pattern in which they arrive, i.e. the distribution function of the inter-
arrival times. In this course we will primarily be considering queues in which the
times between arrivals are assumed to be exponentially distributed1. However, you
should be aware that there are other possibilities.

Service Time Distribution The service time is the time which a server spends satis-
fying a customer. As with the inter-arrival stream, the important characteristics of
this time will be both its average duration and the distribution function. Similarly,
in this course we will mostly consider service times which obey an exponential dis-
tribution. If the average duration of a service interaction between a server and a
customer is 1/µ then µ is the service rate.

Number of Servers If there is more than one server in the service facility the processing
of customers can go on concurrently: one customer at each server. It is assumed
that the servers are indistinguishable from each other, so that it does not matter
which server actually serves a customer—the results, and the service characteristics,
will be the same.

The most commonly considered cases are of a single server or an infinite server. In
the first case, we assume that the service facility only has the capability to serve
one customer at a time; waiting customers will stay in the buffer until chosen for
service; how the next customer is chosen will depend on the service discipline. In
an infinite server facility we assume that there are always at least as many servers
as there are customers, so that each customer can have a dedicated server as soon
as it arrives in the facility. There is no queueing, (and no buffer) in such facilities.
Between these two extremes there are multiple server facilities. These have a fixed
number of servers (usually denoted c), each of which can service a customer at any
time. If the number of customers in the facility is less than or equal to c there will
no queueing—each customer will have direct access to a server. If there are more
than c customers, the additional customers will have to wait in the buffer.

Buffer Capacity Customers who cannot receive service immediately that they require
it must wait in the buffer and wait for a server to become available. Clearly the
number of customers waiting may grow, filling the places of the buffer. If the buffer
has finite capacity there is the possibility that it may become full. There are two
possibilities in this case:

• either, the fact that the facility is full is passed back to the arrival process
and arrivals are suspended until the facility has spare capacity (created by the
completion of a customer who is currently being served);

• or, arrivals continue and arriving customers are turned away and lost until the
facility has spare capacity again.

1Equivalently, the arrival stream obeys a Poisson distribution.

33



Performance Modelling LN-5

In some systems the buffer capacity is so large as to never affect the behaviour of
the customers; in this case the buffer capacity is assumed to be infinite.

Population The characteristic of the population which we are interested in is usually the
size. Clearly, if the size of the population is fixed, at some value N , no more than N
customers will ever be requiring service at any time. When the population is finite
the arrival rate of customers will be affected by the number who are already in the
service facility. The arrival rate will be zero when all the population is already in
the facility. Sometimes the size of the population is so large that this situation will
never arise. In this case we assume that the population is infinite—this simplifies
the mathematics.

Ideally, members of the population are indistinguishable from each other. When
this is not the case we divide the population into classes whose members all exhibit
the same behaviour. A class will represent a set of customers who share the same
characteristics. Different classes differ in one or more characteristics, for example,
arrival rate or service demand.

Service Discipline When more than one customer is waiting for service there has to
be a rule for selecting which of the waiting customers will be the next one to gain
access to a server. The commonly used service disciplines are

• FCFS first-come-first-serve (or FIFO first-in-first-out).

• LCFS last-come-first-serve (or LIFO last-in-first-out).

• RSS random-selection-for-service.

• PRI priority. The assignment of different priorities to elements of a population
is one way in which classes are formed.

We will only be considering systems which obey the FCFS service discipline.

A shorthand notation for these six characteristics of a system is provided by Kendall’s no-
tation for classifying queues. In this notation a queue is represented as A/S/c/m/N/SD:

A denotes the arrival process; usually M , to denote Markov (exponential), G, general, or
D, deterministic distributions.

S denotes the service rate and uses the distribution identifiers as above.

c denotes the number of servers available in the service facility.

m denotes the capacity of the service facility (buffer + server(s)), infinite by default.

N denotes the customer population, also infinite by default.

SD denotes the service discipline, FCFS by default.

Example: Consider a wireless access gateway, at which measurements have shown that
packets arrive at a mean rate of 125 packets per second, and are buffered until they can be
transmitted. The gateway takes 2 milliseconds on average to transmit a packet. The buffer
currently has 13 places, including the place occupied by the packet being transmitted and
packets that arrive when the buffer is full are lost. We wish to find out if the buffer
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Figure 4: The state transition diagram for a simple M/M/1 queue

capacity is sufficient to ensure that less than one packet per million gets lost. Making
exponential assumptions about the arrival rate and the service rate we would model the
gateway as an M/M/1/13/∞/FCFS queue.

Example: Consider the mobile phone antenna discussed in Sections 1.5 and 3.2.1. As-
suming that we are interested in the simpler characterisation of the system as a random
variable, whose value denotes the number of frequencies in use, we can now see that this
is a M/M/6/6/∞/FCFS queueing system. Since the last two characteristics are default
values we would usually omit them and talk about an M/M/6/6 queue.

5.3 Traffic Intensity

The two most important features of a single queue are the arrival rate of customers λ,
and the service rate of the server(s), µ. These are combined into a single parameter which
characterises a single or multiple server system2, the traffic intensity.

traffic intensity, ρ =
λ

c× µ

As we will see in the next lecture, many of the important performance measures associ-
ated with a queue can be expressed in terms of ρ. These are measures such as utilisation
(the proportion of time the server is busy), residence time (the average time spent at the
service facility by a customer, both queueing and receiving service), waiting time (the av-
erage time spent queueing), queue length (the average number of customers at the service
facility, both waiting and receiving service), and throughput (the rate at which customers
pass through the service facility). For the moment we just point out that for the system
to be stable, ρ must be less than 1: that is the arrival rate of customers must be less than
the rate at which they are served. The alternative, if the arrival rate is greater than the
service rate, would result in a queue which grew unboundedly.

2c = 1 in the single server case
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Figure 5: State transition diagrams for some other commonly occurring queues

5.4 Networks of Queues

If we view a computer as an interaction of devices, which jobs visit sequentially, then it is
natural to model the system as a queueing network. Each device or resource of the system
is represented by a separate service facility, now termed a service centre. Customers in
the queueing network correspond to the users or transactions in the computer system.
It is assumed that after service at one service centre a customer may progress to other
service centres in the system, following some previously defined pattern of behaviour,
representing the task which the customer wishes to achieve. Note that this is very similar
to the view of systems taken in operational analysis.

The characteristics of each service centre are analogous to the single queue case, i.e. the
arrival rate, the service rate, the number of servers, the buffer capacity, the population
and the service discipline. However, note that these characteristics are not completely in-
dependent for the service centres within a queueing network. For example, the population
will usually be the same for all service centres, and the arrival rate at one service centre
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will often depend on the arrival rate at another. If a service centre with finite capacity
buffer becomes full, service may be suspended at the service centres which send customers
to this queue.

Defining a queueing network model of a particular system is made relatively straight-
forward by the close correspondence between the attributes of queueing network models
and the attributes of the systems.

A queueing network can be represented as a directed graph in which the nodes represent
the service centres (see Figure 6). Various conventions have been developed for this
representation but you should note that this is an informal representation. In the case of
stochastic Petri nets that we will consider next, the graphical representation of the Petri
net has a formal interpretation from which the dynamic behaviour of the system can be
deduced. In contrast, the diagram of a queueing network is schematic, representing the
topology of the system, and the route that customers take between resources. In the
diagram the routing of customers is represented by the routing probabilities, which label
branches in the paths between service centres. For example, in the network shown in
Figure 6, a customer leaving the first service centre goes to the second service centre with
probability p and leaves the system with probability 1− p.
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Figure 6: A Simple Open Queueing Network

The state of the system is typically represented as the number of customers currently
occupying each of the service centres. There may be a number of different classes of
customers each exhibiting different characteristics within the network. In this case the
state is the number of customers of each class at each service centre. As well as differences
in arrival rate and/or service demand, classes may be distinguished by the routes which
customers take through the network.

A network may be closed, open or mixed depending on whether a fixed population
of customers remain within the system; customers may arrive from, or depart to, some
external environment; or there are classes of customers within the system exhibiting open
and closed patterns of behaviour respectively.
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5.5 Expressiveness

As mentioned in the Introduction, contemporary computer and communication systems
often have features which are not easily represented by queueing networks. Some of
the most important of these features are listed below. In some cases ways of adapting
queueing models to represent, and provide solutions for, systems with such features have
been found. However, these are not often supported by software tools and largely remain
topics for research.

Simultaneous resource possession In a computer system a job may continue to com-
pute while its I/O requests are progressing in parallel. Thus, the job may be simul-
taneously using two or more resources of the system.

Fork and Join Fork and Join primitives are used in computer systems to create and
synchronise subprocesses. This causes the number of jobs in the system to change
and also invalidates the assumption of independence among jobs.

Bulk and train arrivals In communication networks the arrival of packets may occur
in batches (bulk arrivals) or in quick succession (train arrivals). Such situations
do not fit assumptions of independence between customers, nor exponential inter-
arrival times.

Load dependent arrivals Computer networks and distributed systems have intelligent
load-balancing policies that cause new jobs or packets to go to one of a number of
devices depending upon the load observed in the recent past.

Defections from the queue Communication systems sometimes set a maximum limit
on the time that a packet or request is able to stay in a queue. Thus, the packets that
have been in the queue for a long time are dropped from the queue on the assumption
that they may have already been retransmitted by higher protocol layers.
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