
3 Constructing and Solving Markov Processes

3.1 Stochastic Processes

Formally, a stochastic model is one represented as a stochastic process ; a stochastic process
is a set of random variables {X(t), t ∈ T}. T is called the index set and in all the models
we consider T will be taken to represent time. Since we consider continuous time models
T = R≥0, the set of non-negative real numbers. The state space of the process is the set
of all possible values that the random variables X(t) can assume. Each of these values
is called a state of the process. These states will correspond to our intuitive notion of
states within the system represented, although there will not necessarily be a one-to-one
relation. Any set of instances of {X(t), t ∈ T} can be regarded as a path of a particle
moving randomly in the state space, S, its position at time t being X(t). These paths are
called sample paths or realisations of the stochastic process.

For example, if we consider the mobile phone antenna with frequency division multi-
plexing again, we might associate one random variable with each frequency and associate
the values 1 and 0 with the frequency being used or not. At any time the random variables
representing the system will be the set of random variables representing each of the fre-
quencies. Thus the state of the system is an n-tuple, where n is the number of frequencies
and the entry in each position represents the state of the individual frequency. The state
will change whenever a new connection is made or an existing connection is terminated.
Alternatively, we might consider the stochastic process characterised by a single random
variable, M , which records the number of frequencies in use. Now a single state at the
stochastic process level will correspond to several states of the system depending on which
frequencies are in use. This example shows how the degree of abstraction influences the
modelling process.

The stochastic processes we will be considering during the first half of the course will
all have the following properties:

{X(t)} is a Markov process. This implies that {X(t)} has the Markov or memoryless
property : given the value of X(t) at some time t ∈ T , the future path X(s) for s > t does
not depend on knowledge of the past history X(u) for u < t, i.e. for t1 < · · · < tn < tn+1,

Pr(X(tn+1) = xn+1 | X(tn) = xn, . . . , X(t1) = x1) = Pr(X(tn+1) = xn+1 | X(tn) = xn)

{X(t)} is irreducible. This implies that all states in S can be reached from all other
states, by following the transitions of the process. If we draw a directed graph of the state
space with a node for each state and an arc for each event, or transition, then for any
pair of nodes there is a path connecting them, i.e. the graph is strongly connected.

{X(t)} is stationary: for any t1, . . . tn ∈ T and t1 + τ, . . . , tn + τ ∈ T (n ≥ 1), then the
process’s joint distributions are unaffected by the change in the time axis and so,

FX(t1+τ)...X(tn+τ) = FX(t1)...X(tn)

{X(t)} is time homogeneous: the behaviour of the system does not depend on when
it is observed. In particular, the transition rates between states are independent of the
time at which the transitions occur. Thus, for all t and s, it follows that
Pr(X(t+ τ) = xk | X(t) = xj) = Pr(X(s+ τ) = xk | X(s) = xj).
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3.2 Markov Processes

In this course, our primary objective with respect to a Markovian model will be to cal-
culate the probability distribution of the random variable X(t) over the state space S,
as the system settles into a regular pattern of behaviour. This is termed the steady state
probability distribution. From this probability distribution we will derive performance
measures based on subsets of states where some condition holds. Markov processes are
widely used because it is well-understood how to solve them.

The memoryless property means that once we have arrived at a particular state the
future behaviour is always the same regardless of how we arrived in the state. The solution
of Markov processes is closely related to their representation by matrices. Finding the
average behaviour of the model then corresponds to solving a simple matrix equation.
This will be discussed in detail in the remainder of this note.

Like any stochastic process, a Markov process is characterised by a random variable
X(t), indexed over time t, and a state space S such that X(t) ∈ S for all t. The dynamic
behaviour of the system being modelled is represented by the transitions between these
states, and times spent in states, sojourn times. In general, these holding times represent
the periods while processing is occurring in the system, the transitions represent events
in the system.

If a state i ∈ S is entered at time t and the next state transition takes place at
time t + T , T is the sojourn time in state i. By the Markov property, at any time
point τ , the distribution of the time until the next change of state is independent of
the time of the previous change of state. In other words, sojourn times are memoryless.
Since the only probability distribution function which has this property is the exponential
distribution this tells us that the sojourn time in any state of a Markov process is an
exponentially distributed random variable. Hence at time τ , the probability that there is
a state transition in the interval (τ, τ + dt) is qidt + o(dt), where qi is the parameter of
the exponential distribution of the sojourn time in state i.

Suppose that when a transition out of state i occurs, the new state is j with probability
pij. By the Markov property, this must only depend on i and j. Thus we have, for i 6= j,
i, j ∈ S,

Pr(X(t+ dt) = j | X(t) = i) = qijdt+ o(dt)

where the qij = qipij, by the decomposition property. The qij are called the instanta-
neous transition rates, and if the average time delay before a transition from i to j is
exponentially distributed with parameter µ, then qij = µ.

In practice, we are usually given the qij because we will know the parameter of the
distribution governing the time delay associated with the event which is represented by
the state transition. For example, we might be told that the average duration of a call
using the mobile phone antenna is 1/µ seconds. If we are using Markovian analysis, we
then choose to assume that the duration is exponentially distributed with parameter µ.

From the qij we can derive the exit rate, qi, and the transition probabilities, pij, as
follows. The exit rate is the rate at which the system leaves state i, i.e. it is the parameter
of the exponential distribution governing the sojourn time. This will be the minimum
of the delays until any of the possible transitions occurs. Thus, by the superposition
property it is the sum of the individual transition rates, i.e. qi =

∑
j∈S qij. The transition
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probability pij is the probability, given that a transition out of state i occurs, that it is
the transition to state j. By the definition of conditional probability, this is pij = qij/qi.

3.2.1 State transition diagrams

For small Markov processes the simplest way to represent the process is often in terms
of its state transition diagram. In such a diagram we represent each state of the process
as a node in a graph. The arcs in the graph represent possible transitions between
states of the process. The arcs are labelled by the transition rates between states. Since
every transition is assumed to be governed by an exponential distribution, the rate of the
transition will be the parameter of the distribution. Irreducibility implies that the state
transition diagram must be strongly connected.

Example: Consider again the mobile phone antenna taking the simplest representation
of the states of the system, i.e. the number of frequencies in use. Then, if there are 6
frequencies, the state space is {0, 1, 2, 3, 4, 5, 6}. The only possible transition from state
0 is to state 1, caused by a new connection. Similarly, from state 6 the only possible
transition is to state 5, caused by a frequency being released. For any other state, j,
1 ≤ j ≤ 5 there are two possible transitions, to states j + 1 or j − 1, caused by a new
connection or release of an old one, respectively. Let us assume that the arrival of calls
form a Poisson stream with parameter λ: the rate at which j → j + 1 transitions occur
is λ. As above, we assume that the mean duration of a connection is 1/µ, so that the
rate at which release transitions occur on each frequency is µ. Then the state transition
diagram for this process is:
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3.2.2 Generator matrices

A Markov process with n states can also be characterised by its n × n infinitesimal
generator matrix, Q. The entry in the jth column of the ith row of the matrix (j 6= i) will
be qij, the instantaneous transition rate from state i to state j. In other words, it will be
the sum of the parameters labelling arcs connecting nodes i and j in the state transition
diagram. The diagonal elements are chosen to ensure that the sum of the elements in

every row is zero, i.e. qii = −
∑

j∈S,j 6=i

qij.

Example: For the mobile phone antenna example, whose state transition diagram is
shown in the previous section, the infinitesimal generator matrix is:
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Q =



−λ λ 0 0 0 0 0
µ −(µ+ λ) λ 0 0 0 0
0 2µ −(2µ+ λ) λ 0 0 0
0 0 3µ −(3µ+ λ) λ 0 0
0 0 0 4µ −(4µ+ λ) λ 0
0 0 0 0 5µ −(5µ+ λ) λ
0 0 0 0 0 6µ −6µ


3.3 Steady state distribution

Performance analysis is usually concerned with the behaviour of systems over an extended
period of time. The running time of the system will be very large relative to the individual
inter-event times within the system. From a modelling point of view this is important
because we may have to choose an initial state of our model arbitrarily. Considering
the long term probability distribution will overcome any bias introduced by the chosen
starting state. This will have serious impact on how we use models when we consider
simulation models, because each run of the model is a particular sample path of the
model over its state space. For Markovian models we avoid the problems of bias because
we do not consider individual sample paths but the probability distribution over the states
of the process which we can deduce knowing the transition rates between states.

We assume that when the effects of initial bias have been overcome, the model, and the
system, will enter into equilibrium or steady state behaviour. This does not mean that
the model has entered one state and no longer makes transitions. It does mean that the
model is assumed to exhibit regularity and predictability in its behaviour over the state
space. Thus, the probability distribution of the random variable X(t) over the state space
S, will be no longer changing.

Let us denote by πk(t) the probability that if we observe the Markov process at time t it
will be in state xk, for xk ∈ S. Equilibrium has been reached when, for all states xk ∈ S,
πk(t + τ) = πk(t), i.e. the time at which we observe the model does not influence the
probability that it is in a particular state. Thus we denote the steady state probabilities
without the time variable, e.g. πk, for the probability that the model is in state xk.

The steady state distribution is useful to us because the following theorem tells us that,
for the types of model we are considering, the steady state distribution is exactly the same
as the long term probability distribution over states.

Theorem: A steady state probability distribution, {πk, xk ∈ S}, exists for every time
homogeneous, finite, irreducible Markov process. Moreover, this distribution is the same
as the limiting distribution

lim
t→∞

Pr(X(t) = xk | X(0) = x0) = πk

3.3.1 Global Balance Equations

In steady state, πi is the proportion of time that the process spends in state xi. Recall
that the transition “rate” qij is the instantaneous probability that the model makes a
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transition from state xi to state xj. Thus, in an instant of time, the probability that a
transition will occur from state xi to state xj is the probability that the model was in
state xi, πi, multiplied by the transition rate qij. This is called the probability flux from
state xi to state xj.

When the model is in steady state, in order to maintain the equilibrium, we must
assume that the total probability flux out of a state is equal to the total probability flux
into the state. If this were not the case the distribution over states would change. So, for
any particular state xi, this implies

πi ×
∑

xj∈S,j 6=i

qij︸ ︷︷ ︸
flux out of xi

=
∑

xj∈S,j 6=i

(πj × qji)︸ ︷︷ ︸
flux into xi

The collection of these equations for all states xi ∈ S is called the global balance equa-
tions. If we recall that the diagonal elements of the infinitesimal generator matrix Q
are the negative sum of the other elements in the row (i.e. qii = −

∑
xj∈S,j 6=i qij) we can

rearrange the equation above to be: ∑
xj∈S

πjqji = 0.

Expressing the values πi as a row vector π, we can write this as a matrix equation:

π Q = 0

The πi are unknown; they are the values we wish to find since they are the probability
distribution. If there are n states in the state space there are n such equations in n
unknowns. Unfortunately, this collection of equations is irreducible: we need another
equation in order to solve the equations for a unique solution and find the unknowns.
Fortunately, since {πi} is a probability distribution we also know that the normalisation
condition holds: ∑

xi∈S

πi = 1

With these n+ 1 equations we can solve to find the n unknowns, {πi}.

Example: Consider a system with multiple CPUs, each with its own private memory,
and one common memory which can be accessed only by one processor at a time. The
CPUs execute in private memory for a random time before issuing a common memory
access request. Assume that this random time is exponentially distributed with parameter
λ (the average time a CPU spends executing in private memory between two common
memory access requests is 1/λ). The common memory access duration is also assumed
to be exponentially distributed, with parameter µ (the average duration of a common
memory access is 1/µ). If the system has only one processor, it has only two states:
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1. The processor is executing in its private memory;

2. The processor is accessing common memory.

The system behaviour can be modelled by a 2 state Markov process whose state transition
diagram and generator matrix are as shown below:
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If we consider the probability flux in and out of state 1 we obtain: π1 λ = π2µ
Similarly, for state 2 1: π2 µ = π1λ

Finally, we know from the normalisation condition that: π1 + π2= 1

It follows that the steady state probability distribution is π =

(
µ

µ+ λ
,

λ

µ+ λ

)
.

From this information we can deduce, for example that the probability that the processor
is executing in its private memory is µ/(µ+ λ).

3.3.2 Solving the global balance equations

Once we are considering models which have more than a few of states it is unlikely that we
want to solve the equations ourselves by hand. Instead we take advantage of the matrix
equation formulation of the global balance equations and use suitable software packages.
Any linear algebra package will solve matrix equations of the form Ax = b, where A is
an n × n matrix, x is a column vector of n unknowns, and b is a column vector of n
values. There are two problems which have to be resolved before we can take advantage
of such software:

1. Our global balance equation comes in the “wrong” form π Q = 0: the unknowns,
π are given as a row vector not a column vector. This problem is resolved by
transposing2 the equation, i.e. QTπ = 0, where the right hand side is now a column
vector of zeros, rather than a row vector.

2. The second problem is the redundancy amongst the global balance equations—even
after transposing there is insufficient information to solve for the unknowns. As
already noted, we need the additional information of the normalisation condition.
This problem is resolved by replacing one of the global balance equations by the
normalisation condition. In the transposed matrix this corresponds to replacing one
row by a row of 1’s. We usually choose the last row and denote the modified matrix
QT
n . Similarly we change the “solution” vector, which was all zeros to be a column

vector with 1 in the last row, and zeros everywhere else. We denote this vector, en.

Now we can use any computer mathematics package, such as maple or MATLAB to solve
the resulting equation:

QT
nπ = en

1Note, here the two equations are in fact the same. There will always be a redundant equation in the
global balance equations which is why we need the additional information of the normalisation condition.

2i.e. rearranging the matrix so that the rows are columns and vice versa.
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Example: Consider the two-processor version of the system introduced in the previous
section. We denote the processors A and B, respectively. We assume that the processors
have different timing characteristics, the private memory access of A being governed by
an exponential distribution with parameter λA, the common memory access of B being
governed by an exponential distribution with parameter µB, etc. Now the state space
becomes:

1. A and B both executing in their private memories;

2. B executing in private memory, and A accessing common memory;

3. A executing in private memory, and B accessing common memory;

4. A accessing common memory, B waiting for common memory;

5. B accessing common memory, A waiting for common memory;
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Q =


−(λA + λB) λA λB 0 0

µA −(µA + λB) 0 λB 0
µB 0 −(µB + λA) 0 λA
0 0 µA −µA 0
0 µB 0 0 −µB


This matrix is still small enough to be solved by hand but for the purposes of illustration
we solve it using Matlab. The Matlab script used to achieve this is given at the end of
this note. After appropriate transformations the modified generator matrix is as follows:

QT
n =


−(λA + λB) µA µB 0 0

λA −(µA + λB) 0 0 µB
λB 0 −(µB + λA) µA 0
0 λB 0 −µA 0
1 1 1 1 1


If we choose the following values for the parameters:

λA = 0.05 λB := 0.1 µA = 0.02 µB = 0.05

solving the matrix equation, and rounding figures to 4 significant figures, we obtain:

π = (0.0693, 0.0990, 0.1683, 0.4951, 0.1683)
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Exercise: Consider the multiprocessor example, but with three processors, A, B and
C sharing the common memory instead of two. List the states of the system, and draw
the state transition diagram for this case. What is the difficulty in doing this and what
further information do you need?

3.4 Derivation of Performance Measures

Roughly speaking, there are three ways in which performance measures can be derived
from the steady state distribution of a Markov process. These different methods can be
thought of as corresponding to different types of measure:

• state-based measures, e.g. utilisation;

• rate-based measures, e.g. throughput;

• other measures which fall outside the above categories, e.g. response time.

State-based measures are those which clearly correspond to the probability that the
model is in a state, or a subset of states, which satisfy some condition. For example,
utilisation will correspond to those states where a resource is in use. If we consider the
example above, the utilisation of the common memory, Umem, is the total probability that
the model is in one of the states in which the common memory is in use:

Umem = π2 + π3 + π4 + π5 = 93.07%

Other examples of state-based measures are idle time, or the number of jobs in a system.
Some measures such as the number of jobs will involve a weighted sum of steady state
probabilities, weighted by the appropriate value. For example, if we consider jobs waiting
for the common memory to be queued in that subsystem, then the average number of
jobs in the common memory, Nmem

3, is:

Nmem = (1× π2) + (1× π3) + (2× π4) + (2× π5) = 1.594

Rate-based measures are those which correspond to the predicted rate at which some
event occurs. This will be the product of the rate of the event, and the probability that
the event is enabled, i.e. the probability of being in one of the states from which the
event can occur. Thus, to calculate the throughput of the common memory, the average
number of accesses from either processor which it processes in unit time, Xmem, we use

Xmem = (µA × (π2 + π4)) + (µB × (π3 + π5)) = 0.0287

or, approximately one access every 35 milliseconds.

Finally, the other category of measures are those which do not readily fit into either
of the above categories. In these cases, we usually use one of the operational laws to
derive the information we need, based on values that we have obtained from solution of
the model. Thus, applying Little’s law to the common memory we see that

Wmem = Nmem/Xmem = 1.594/0.0287 = 55.54 milliseconds

3The expectation of Nmem.
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3.5 Assumptions

The most fundamental assumption we have made is the stochastic hypothesis: “The
behaviour of a real system during a given period of time is characterised by the probability
distributions of a stochastic process.”4 Although it can never be conclusively proved,
evidence suggests that this hypothesis is true. In contrast, the assumption that all delays
and inter-event times are exponentially distributed, is less likely to fit with observations
of real systems. We make this assumption nevertheless because of the nice mathematical
properties of the exponential distribution, and because the exponential distribution is the
only one we can use if we wish to assume that the stochastic process characterising our
system is a Markov process. Moreover the exponential distribution has the advantage
that it only has a single parameter to be fitted (the rate), which can be straightforwardly
derived from observations of the average duration.

The Markov assumption that future behaviour of the system is only dependent on
its current state, not on its past history is a reasonable assumption for computer and
communication systems, if we choose our states carefully. We assume that the Markov
process is finite, time homogeneous and irreducible: necessary conditions for a steady
state distribution to exist, and coincide with the long term probability distribution.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. January 21, 2017.

4P.J. Denning and J.P. Buzen, The Operational Analysis of Queueing Network Models, ACM Compu-
ing Surveys 10(3), 225–261, 1978.
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3.6 MATLAB script for the simple multiprocessor example

lambdaA=0.05

muA=0.02

lambdaB=0.1

muB=0.05

size=5

Q=zeros(size,size)

e=zeros(size,1)

Q(1,2) = lambdaA

Q(1,3) = lambdaB

Q(2,1) = muA

Q(2,4) = lambdaB

Q(3,1) = muB

Q(3,5) = lambdaA

Q(4,3) = muA

Q(5,2) = muB

for i=1:size

s=0

for j=1:size

s = s+Q(i,j)

end

Q(i,i) = -s

end

Qt = Q’

for i=1:size

Qt(size,i) = 1

end

e(size) = 1

p = linsolve(Qt,e)

If this file is saved as, say, MP2.m, then typing “MP2” in MATLAB will yield the result:

p =

0.0693

0.0990

0.1683

0.4950

0.1683
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