
14 Random Variables and Simulation

In this lecture note we consider the relationship between random variables and simulation
models. Random variables play two important roles in simulation models.

We assume that within the simulation models we consider some delays will not have
deterministic values, but instead will be represented by random variables; similarly when
a choice must be made between different alternative behaviours we will sometimes want
the decision to be made probabilistically. Both cases will involve sampling a probability
distribution to extract a value. For delays we will use continuous random variables and
for a choice we will use a boolean random variable. As we will see below, both cases rely
on the random number generator.

As with the models we have considered earlier in the course, we assume that the vari-
ables characterising the behaviour of the system/model, the performance measures or
output parameters, are also random variables. For example, a measure might be the
number of packets lost per million in a communication network, or the average waiting
time for an access to a disk. In general, each run of the simulation model provides a
single estimate for these random variables. If we are interested in steady state values the
longer we run a simulation the better our estimate will be. However, it still remains a
single observation in the sample space. We need more than a single estimate in order to
draw conclusions about the system. Thus we use output analysis techniques to improve
the quality of an estimate from a single model run, and to develop ways of gaining more
observations without excessive computational cost. Realistic simulation models take a
long time to run—there is always a trade-off between accuracy of estimates and execution
time.

14.1 Random Number Generation

Generating random values for variables with a specified random distribution, such as
an exponential or normal distribution, involves two steps. First, a sequence of random
numbers distributed uniformly between 0 and 1 is obtained. Then the sequence is trans-
formed to produce a sequence of random values which satisfy the desired distribution.
This second step is called random variate generation.

To obtain a sequence of uniform random numbers, it is sufficient to be able to generate
a sequence Xk of integers in the range [0,M − 1] since the sequence Xk/(M − 1) will then
be approximately uniformly distributed over (0, 1). In 1951, D.H. Lehmer discovered
that the residues of successive powers of a number have good randomness properties. He
obtained the kth number in the sequence by dividing the kth power of an integer a by
another integer M and taking the remainder.

Xk = ak mod M

This can be expressed as an iteration:

Xk = (a×Xk−1) mod M

The parameters a and M are called the multiplier and the modulus respectively. Random
number generators of this form are called Lehmer generators, or multiplicative linear-
congruential generators.



Performance Modelling LN-14

There are several desirable properties for a random number generator:

It should be efficiently computable. Since simulations typically require several thou-
sand random numbers in each run, the processor time required to generate these
numbers should be small.

It should be pseudo-random. Given the same seed the random number generator
should produce exactly the same sequence of numbers. Without this property it
would not be possible to recreate experiments.

The cycle should be long. A short cycle may cause the random number sequence to
recycle, resulting in a repeated event sequence. This may limit the useful length of
simulation runs.

Successive values should be independent and uniformly distributed. The corre-
lation between successive numbers should be small. Correlation, if significant, indi-
cates dependence.

Research has shown that Lehmer generators obey these properties provided a and M are
carefully chosen. However, care is needed. In the early 1970s most university mainframes
were using a linear-congruence generator known as RANDU. It used the values a = 65539
and M = 231. Although the output looked random, detailed statistical analysis showed
that there was significant correlation in the output.

Nevertheless, this form of generator continues to be used, if somewhat more warily.
These generators are particularly efficient if M is chosen to be a power of 2. In this case
finding the residue amounts to simply truncating the result of the multiplication. However
a modulus of the form 2k results in a shorter cycle: 2k−2 at best.

Care must be taken in the implementation of random number generators. For exam-
ple, properties such as the length of cycle are only maintained if all computations are
done precisely without round-off errors. Thus the computations should use only integer
arithmetic. Similarly, care must be taken to ensure that the multiplication a×Xk−1 does
not cause overflow—intermediate calculations may need to be carried out using extended
precision arithmetic operations.

Generation algorithms for values of the commonly used probability distributions, based
on a uniformly distributed stream of values between 0 and 1, can be found in many books
on simulation and performance modelling1. Inverse transformation algorithms are based
on the observation that for any probability distribution with distribution function F (x),
the value of F (x) is uniformly distributed between 0 and 1. Thus, using values from the
random number stream, u = Xk, the function is inverted to find the next value of x:
x = F−1(u). For example, given a random number u, we generate the next value in an
exponential distribution with parameter λ as2

x = −1

λ
ln(u)

1For example, The Art of Computer Systems Performance Analysis, R. Jain, Wiley, 1991.
2Strictly speaking, the equation should be x = −1/λ ln(1 − u) but since u is uniformly distributed

between 0 and 1, 1− u will be uniformly distributed between 0 and 1 and the generation algorithm can
be simplified.

102



Performance Modelling LN-14

Boolean valued distributions, which are used to make decisions within a model, take
a single real parameter, p, such that 0 ≤ p ≤ 1. This represents the probability of a
“positive” outcome. Then each time the branching point in the model is reached, the
next random number in the stream is generated u = Xk. If u ≤ p the positive branch is
taken; if u > p the other branch is selected.

Similarly, for discrete probability distributions a technique known as aliasing is used.
Here a cumulative distribution function is calculated based on the probability mass func-
tion, once some order is imposed on possible outcomes. Random values between 0 and 1
are then compared with the cumulative function, and the appropriate outcome selected
based on the interval into which the value falls.

One of the benefits of using a simulation package is that at least some of these algorithms
are provided for us. Some simulation tools allow the seed of the random number generator
to be set explicitly. This is useful if you want to run the model with exactly the same
sequence of values again, for example during debugging. Some tools even allow separate
seeds to be set for each sequence of random numbers required in the model (keeping a
separate sequence associated with each choice and each random delay). However, if these
seeds are not well-spaced, there may be overlap between the sequences of random numbers
used by the generators resulting in correlation between the samples used in the simulation.

The default random number generator in many languages, including Python, R, PHP
and MATLAB is based on the Mersenne Twister algorithm, which has been optimised for
use in simulations. It comes in a number of variants, but the commonly used MT19937
variant produces a sequence of 32-bit integers, and has the following desirable properties:

• It has a very long period of 219937 − 1. A long period is not a guarantee of quality
in a random number generator, but short periods are definitely problematic.

• It passes numerous tests for statistical randomness, including some stringent tests
which are failed by linear congruential random number generators.

14.2 Simulation output analysis

In performance modelling our objective in constructing a simulation model of a system
is to generate one or more performance measures for the system. In the Markov models
we considered earlier in the course such measures were derived from the steady state
probability distribution, after the model had been solved. In contrast, in a simulation
model measures are evaluated directly during the execution of the model. It is part
of model construction to make sure that all the necessary counters and updates are in
place to allow the measures to be collected as the model runs. This is sometimes called
instrumentation of a model as it is analogous to inserting probes and monitors on a real
system.

However the data from a simulation model is generated, it is important to remember
that each run of a model constitutes a single trajectory over the state space. Consequently,
in general, any estimate for the value of a performance measure generated from a single run
constitutes a single observation in the possible sample space. To gain an accurate measure
of the performance of the system we should not base our results on a single observation.
When carrying out steady state analysis we should bear in mind that the averages we

103



Performance Modelling LN-14

calculate from data collected during execution will always be an approximation of the
unknown true long-term averages that characterise the system performance. Important
issues are:

• choosing the starting state of the simulation;

• choosing the warm-up period that is allowed to elapse before data collection begins;

• choosing a run length that ensures that the calculated averages are representative
of the unknown true long term average.

Statistical techniques can be used to assess how and when the calculated averages ap-
proximate the true average, i.e. to analyse the accuracy of our current estimate. This is
often done in terms of a confidence interval. A confidence interval expresses probabilistic
bounds on the error of our current estimate. So a confidence interval (c1, c2) with con-
fidence level X%, means that with probability X/100 the real value v lies between the
values c1 and c2, i.e.

Pr(c1 ≤ v ≤ c2) = X/100

X/100 is usually written in the form 1 − α, and α is called the significance level, and
(1− α) is called the confidence coefficient. Usually performance modellers will run their
simulation models until their observations give them confidence levels of 90% or 95% and
a confidence interval which is acceptably tight. Calculation of the confidence interval is
based on the variance within the observations which have been gathered. The greater
the variance, the wider the confidence interval; the smaller the variance, the tighter the
bounds.

In many simulation engines the confidence level can be used to control the period over
which a model is run or the number of times it is run for.

14.2.1 Steady state measures

For some modelling studies the length of time for which a simulation model should be
run is defined by the problem itself. For example, if we wish to investigate how many
downloads can be processed by a music download website in the first hour after being
launched then it makes sense to run the model for 3600 seconds. However, if the question
is how many messages can be processed by the music download site in an average hour
then running the model for 3600 seconds is unlikely to be enough.

The first question identifies the simulation as a transient or terminating simulation. It
is said to have a cold-start : the system is initially empty which is not its usual state but we
still include this data in the observation period. For this type of simulation the question
becomes how many times the simulation must be repeated (with different random number
streams) to achieve a required confidence interval.

In the second scenario we are interested in the steady state behaviour of the system. As
in Markovian modelling we associate steady state behaviour with long term behaviour.
In other words, we are theoretically interested in the observations obtained from runs of
the model which are infinitely long. However, in practice we are interested in finite run
lengths and estimating the steady state distribution of the measures we are interested in
from finitely many samples.

104



Performance Modelling LN-14

The initial conditions of the model, its starting state, influence the sequence of states
through which the simulation will pass, especially near the start of a run. In a steady
state distribution the output values should be independent of the starting state. Thus
the modeller must make some effort to remove the effect of the starting state, sometimes
termed bias, from the sample data used for estimating the performance measure of interest.
Unfortunately it is not possible to define exactly when the model has moved from transient
behaviour to steady state behaviour. This initial period before steady state is reached is
sometimes called the warm-up period. Therefore, although several techniques exist, they
are all heuristics. The common techniques are

1. Long runs.

2. Proper initialisation.

3. Truncation.

4. Initial data deletion.

5. Moving average of independent replications.

6. Batch means.

The last four techniques are all based on the assumption that variability is less during
steady state behaviour than during transient behaviour.

14.2.2 Termination Conditions

How the simulation run is terminated can also have an effect on the accuracy of the data
collected. There are two generally used options for choosing when to stop the simulation
of a performance model:

Option 1

• begin the simulation at time 0

• begin data collection at specified time w ≥ 0

• complete data collection at specified time w + t

• terminate execution of the simulation at time w + t

• calculate summary statistics based on sample path data collected in the time interval
(w,w + t).

Option 2

• begin the simulation at time 0

• begin data collection when the Mth event completes in the system

• complete data collection when the (M +N)th event completes in the system

105



Performance Modelling LN-14

• terminate execution of the simulation when the (M +N)th event completes

• calculate summary statistics based on sample path data collected in the time interval
(tM , tM+N), where tj is the time at which the jth event completes in the system.

Option 1 implies that the simulated time (w,w+t) for data collection is predetermined but
the number of event completions is random. Conversely, Option 2 implies that the time
period for data collection is random but the number of event completions is predetermined.
In queueing network models Option 1 is preferable for calculating queue lengths and
resource utilisations, whereas Option 2 is preferable for calculating waiting times.

14.2.3 Variance reduction techniques

Assume that we are running a simulation model in order to estimate some performance
measure M . During the ith execution of the model we make observations of M , oij and
at the end of the run we calculate the mean value of the observations Oi. Note that the
observations oij in most simulations are not independent. Successive observations are
often correlated. For example, if we are interested in the delay of messages in a packet-
switching network, if the delay of one message is long because the network is heavily
congested, the next message is likely to be similarly delayed. Thus the two observations
are not independent. This is why, in general, a simulation model must be run several
times.

Independent Replications If independent replications are used, the model is run m
times in order to generate m independent observations. In order for the runs to be
independent the seeds used for the random number generator must be carefully chosen to
ensure that they are independent.

If transient or short term behaviour is being investigated all the data collected during
the ith run will be used to calculate the ith observation, i.e. Oi is the mean value over all
oij.

If steady state or long term behaviour is being investigated the data relating to the
warm-up period must be discarded. The observation for the run, Oi will be the mean
value over oij such that j > k, where {oi1, . . . oik} are the observations made during the
warm-up period.

In either case let O denote the mean value of the observations, Oi, after m runs. Then
the variance over all observations is calculated as shown below:

V =
1

m− 1

m∑
i=1

(Oi −O)2

For steady state analysis independent replication is an inefficient way to generate sam-
ples, since for each sample point, Oi, k observations, {oi1, . . . , oik}, must be discarded.

Batch Means In the method of batch means the model is run only once but for a con-
siderable period. The run is divided into a series of sub-periods of length `, and measures

106



Performance Modelling LN-14

are collected over each sub-run to form a single point estimate. If the observations made
during the run form a set {oi}, the set is partitioned into subsets

Si = {oj | oj observed between (i− 1)× ` and i× `}

Now each sample point Oi is the mean generated from a subset of observations Si, and O
is the mean generated from the Oi. Variance is calculated as above.

This method is unreliable since the sub-periods are clearly not independent. However
it has the advantage that only one set of observations {oi . . . ok} needs to be discarded to
overcome the warm-up effects in steady state analysis.

Regeneration It is sometimes possible within the run of a simulation model to identify
points in the trajectory where the model returns to exactly equivalent states. These are
called regeneration points. Periods between regeneration points are genuinely independent
sub-runs. The simplest example to consider is the state when a queue becomes empty.
Whatever the distribution used to generate the behaviour of the model the trajectory
(queue length, waiting time etc) after a visit to this state does not depend on the previous
history of the model in any way. The duration between two successive regeneration points
is called a regeneration cycle.

The variance computation using regeneration cycles is a bit more complex than that in
the method of batch means or the method of independent replications. This is because
the regeneration cycles are of different lengths, whereas in the other two methods the
batches or replications are all of the same length. Suppose that we divide a sample into
m cycles of length n1, . . . , nm respectively. The mean for each cycle, generating a single
observation sample can be calculated as expected: Oi = 1

ni

∑ni

j=1 oij. However the overall
mean O, is not the arithmetic mean of the Oi. Instead we use a different approach to
calculate O:

O =

∑m
i=1

∑ni

j=1 oij∑m
i=1 ni

Variance of the summed observations is then calculated as shown below:

Vs =
1

m− 1

m∑
i=1

(ni(Oi −O))2

Notice that, unlike the previous two methods, the method of regeneration does not
require any transient observations to be removed. Unfortunately not all models have
easily defined regeneration states, and even when they exist they can be computationally
expensive to identify. Another disadvantage is that it is not possible to define the length
of a simulation run beforehand. However, research suggests that this method gives the
most accurate results and so it is the method of choice when it is feasible.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. March 2, 2017.

107


