13 Simulation Models—Introduction and Motivation

So far in the course the stochastic models which we have considered have been solved ana-
lytically. What this means is that by carrying out analysis of the system we have been able
to deduce the steady state behaviour of the corresponding stochastic process, expressed
as a probability distribution over the possible states. Such models can be regarded as
a mathematical abstraction of the system. The analytic model is a representation which
can be analysed mathematically to deduce the behaviour of the system.

In contrast, a stochastic simulation model can be regarded as an algorithmic abstraction
of the system—a simulation model gives a representation which when ezecuted reproduces
the behaviour of the system.

We still assume that the system is characterised by a family of random variables
{X(t),t € T}. As the value of time increases, and in response to the “environment”
(represented by random variables within the model) the stochastic process progresses
from state to state. Any set of instances of {X(¢),t € T'} can be regarded as a path of
a particle moving randomly in a state space, S, its position at time ¢ being X (¢). These
paths are called sample paths. Using the analytic approach of Markov processes we char-
acterised all possible sample paths by the global balance equations. Using simulation we
investigate the sample paths directly. In other words, we allow the model to trace out a
sample path over the state space. Each run of the simulation model will generate another,
usually distinct, sample path.

There are many reasons why simulation may be preferable to analytic modelling.

Level of Abstraction As we have seen, Markovian modelling relies on many assump-
tions and abstractions—these may not be appropriate for the system being studied.
For example, it may be unrealistic to assume that only one event can happen at
any time, or that the inter-event times are all exponentially distributed. Simulation
models, in general, allow us to represent a system at arbitrary levels of detail, al-
though you should remember that there is always a trade-off between how elaborate
the model is and how long it takes to produce a statistically significant run.

Transient Analysis In some cases we are not interested in the steady state behaviour of
a system, but in its transient behaviour. Some systems never reach a steady state.
Even those that do will usually have a “warm-up” period while the behaviour settles
into the regular pattern which characterises steady state. The analytic solutions we
have considered earlier in the course ignore this period since the global balance
equations only capture the behaviour after steady state has been reached. However
it is not always possible to extract all the information we want about a system from
its steady state behaviour. A sample path derived from a simulation model will
clearly represent transient behaviour in addition to steady state!.

Size of State Space In most cases solving a model analytically involves constructing
and storing the complete state space of the model. For example, for a Markov
process with N states solving the global balance equations involves (at least) an
N x N matrix (the generator matrix) and a vector with N elements (the steady

For Markov processes transient behaviour can be derived analytically but this generally requires more
mathematically sophisticated analysis techniques than those we have considered in this course.



Performance Modelling LN-13

state distribution). When N becomes very large this becomes infeasible. In contrast,
in a simulation model the state space is generated “on-the-fly” by the model itself
during execution so it does not need to be all stored at once.

13.1 Constructing simulation models

As explained earlier in the course, we are focussing on discrete event systems, and therefore
we consider only discrete event simulation. In this approach the system is considered to
consist of a number of objects or entities. These entities may interact in certain specified
ways to produce the behaviour of the system. Each such interaction is an event.

Simulation models are complex computer programs. They can be developed in any
programming language but there are distinct advantages to using a language or package
specifically designed for simulation. Languages with simulation features built-in provide
facilities for many of the routine features of a simulation model. These features are
common to all models, regardless of the system being represented. This allows the per-
formance analyst to concentrate on the issues specific to the system being modelled and
to not worry about issues which are general to all simulations. Using a general language
the modeller might be able to write a more efficient program. However, this is likely to
take much longer to develop because the program will be responsible for the simulation
management, as well as the representational aspects of the model itself.

Some of the common features of simulation management are listed below.

Event scheduler The events in the system change the state and therefore drive the
simulation. An event scheduler keeps track of the events which are waiting to
happen, usually as a linked list, and allows them to be manipulated in various ways.
For example,

schedule event E at time T

hold event E for a time interval Ot;
e cancel a previously scheduled event E;

hold event E indefinitely (until it is scheduled by another event);

schedule an indefinitely held event.

In most simulation engines the event scheduler is one of the most frequently executed
components of a simulation model. It is called before every event, and it may be
called several times during one event to schedule other new events. Therefore it is
very important that it is implemented efficiently.

Simulation clock and time management Every simulation model must have a global
variable representing the simulated time. The event scheduler is usually responsible
for advancing this time, either one unit at a time or, more commonly, directly to
the time of the next scheduled event. This latter approach is called event-driven
time management.

System state variables Since a simulation model generates a random walk over the
state space of the system it is essential that the model has variables to capture the
state of the system at each step. If a simulation run is stopped in the middle, it can
be restarted later if, and only if, the values of all state variables are known.

96



Performance Modelling LN-13

Event routines Each event in the system brings about a state change; thus, in the
simulation model the effect of each event must be represented in a way which updates
the system state variables, and in some cases, schedules other events. How the event
routines are generated will depend on the simulation modelling paradigm used to
construct the model.

Random number/random variate generator Random numbers play a crucial role
in most discrete event simulations. For example the impact of the environment
on the system, e.g. inter-arrival times, is usually represented by random variables
of some specified distribution. A random number generator is used to generate a
sequence of random values between 0 and 1. These values are then transformed to
produce a sequence of random values which satisfy the desired distribution. This
second step is called random variate generation.

Report generator Performance measures are derived from a simulation run by observ-
ing the values of parameters of interest during the execution. Most simulation
modelling languages and packages contain built-in routines to calculate statistics
from these observations and generate a report when the run is completed.

Trace routines A trace of the system can be a useful tool for debugging (sometimes
called verifying) and validating a model. It is a time-ordered list of events, state
variable values or output parameter values. Most simulation languages provide
routines to generate traces which can be switched on or off in a particular run of
the model. Since trace generation is usually very inefficient it is generally only used
during model development.

Dynamic memory management The number of active entities during the execution
of a simulation model will vary continuously as new entities are created and old ones
become obsolete. Most simulation languages provide automatic garbage collection
to remove obsolete entities.

13.2 Simulation modelling paradigms

There are a number of approaches to discrete event simulation; the two most commonly
used are event based modelling and process based modelling. Each of these modelling styles
is briefly described below.

Note that all the high level modelling paradigms which we have already considered in the
course—SPN, GSPN, PEPA and queueing networks—can be used to generate simulation
models as well as Markov processes. In a later lecture we will look specifically at PEPA
used in this way.

13.2.1 Event Based Simulation

Event based simulation focusses the modeller’s attention on the individual events which
can occur within the system. An event within the system may generate several actions in
the model—these are grouped together in an event routine. The event scheduler maintains
a pointer to the appropriate event routine, and this is executed when the event reaches
the head of the event list.

97



Performance Modelling LN-13

A good example of a system suited to event based simulation would be a simple queue
with deterministic arrival rates, deterministic service times and customer defections after
a fixed time. The events are a customer arrives, A; a customer defects, D; a customer
begins service, B; and a customer ends service, F.

At each event time as well as the processing of the event to represent the behaviour
of the system some processing internal to the model might be done. This can be event
tracing or collection of statistics—whatever has been specified in the model description.
For example, if the queue above were being modelled to calculate the average queue length
and throughput the events would be implemented as follows.

An event A at time ¢ will result in the following actions

e add one to the state variable representing queue length, and record the time
at which the change occurred,

e schedule an event D at the time ¢+ d, where d is the length of time a customer
will wait without defecting,

e schedule an event B to occur as soon as possible, depending on the availability
of the server,

e schedule another event A at time ¢ 4+ a where a is the inter-arrival time.
An event D at time ¢t + d will

e decrease the queue length by one and the record the time at which the change
occurred,

e de-schedule event B on hold since time ¢.
An event B at time t + w (w < d) will

e decrease the queue length by one and record the time at which the change
occurred,

e de-schedule the event D at time ¢ + d,
e schedule an event E at time ¢ 4+ w + s, where s is the service time,

An event F at time ¢ +w + s will

e increment the busy time of the service centre by s,
e add one to the total number of customers served,

e activate the first event B waiting in the event list.

13.2.2 Process Based Simulation

The process based approach to simulation modelling collects events together into related
sequences which are ordered by time. These sequences are related in the sense that
they all involve the same entity within the system; they are termed processes. For the
example above, we could consider each customer to be a process within the system, since
it generates a sequence of related events, and track its progress through the queue until
service or defection.

98



Performance Modelling LN-13

The process based approach views a system as a web of concurrent, interacting entities—
the processes. All the actions associated with an entity’s behaviour are grouped together
to form a life-cycle for entities of that type. The event scheduler still maintains a list of
scheduled events centrally but this will now generally be in the form of a pointer to a
process/object. The process will maintain a record of its current state and which action
it should perform when next scheduled. This style of modelling maps very well onto
object-oriented programming where a class is associated with each type of entity; objects
belonging to the class then represent instances of the entity.

When a process based model is running it is generally the case that control is passed
between different processes, so it is sometimes termed psuedo-concurrency because al-
though there are many concurrent entities in the system only one will be active at a time.
In other words, the approach to concurrency is via interleaving, just as we have seen with
Markov processes, SPN and SPA. Note that the advent of multicore processes has made
implementing process based simulation engines more difficult, since the hardware now
make true-concurrency possible.

For the example of a queue with deterministic inter-arrival and service times (but no
defections), we would define a class to represent the arrival process. This class (Source)
would generate the event representing a customer entering the queue and then delay
until the arrival time of the next customer. A second class would represent the server
(Server). It is passive in the sense that it first waits to be notified of an event (the arrival
of a customer) and then represents the service of the customer as a delay.

13.2.3 Residual times

As remarked above, one of the motivations for using simulation models may be that the
assumptions necessary for other modelling approaches cannot be met. In particular the
exponential distribution may be unrealistic for the application which is being considered.
Of course, once we assume a distribution other than the exponential distribution for the
timing of events we lose the memoryless property and so time-keeping in simulation models
is generally more complex. Remember that for each duration governed by a random
variable we have two representations — the mean or parameter of the distribution, and
the sample corresponding to this instance of the distribution. Whilst in the numerical
solutions of Markov processes we have focussed on the mean of the distribution, in the
simulation model we are concerned with the sample.

When one delay is completed, simulation time, represented by the global clock in the
model, is updated to reflect the elapsed time based on the sample. If there were other
event scheduled concurrently there are three possibilities:

1. If the completed delay corresponded to an event which was truly concurrent the
event will be left in the event list at the time scheduled.

2. If the completed delay corresponded to an event which was in competition for some
resource with some other event which is now no longer possible, that event will be
deleted from the event list.

3. If the completed delay corresponded to an event which was in competition with some
other event which can be re-enabled immediately, then that event will be deleted

99



Performance Modelling LN-13

from the event list, a fresh sample will be drawn and the event will be rescheduled
in the event list.

13.3 Common mistakes in simulation studies

Inappropriate level of detail Because simulation modelling allows the modeller to in-
corporate arbitrary levels of detail it is sometimes tempting to represent too much in
the model. This will have a cost in terms of execution time. The best strategy is to
start with the simplest possible model and only add detail as it becomes necessary.

Unverified models As already mentioned, simulation models are complex programs and
as such are prone to bugs in the same way that any complex program is. Verification
is intended to make sure that the model behaves as it was intended to.

Invalid models Validation is intended to make sure that the model is a good represen-
tation of the system. A model may behave correctly in the sense that it contains
no bugs, but if the assumptions which have been made during its construction are
inappropriate the results obtained from the model will still be invalid.

Too short simulation runs Especially when a model has a large state space, the model
must be executed for a long (simulated) time to ensure that the sample path which
is generated is statistically valid. Trace analysis tools can help to identify when this
is a problem.

Single simulation runs Each run of the simulation represents only one sample path
through the state space of the model, corresponding to a particular sequence of
random numbers. In order for results to be statistically valid they should be based
on several sample paths obtained using different sequences of random numbers.

Poor random-number generators Random number generators are used extensively in
simulation models to produce values for random variables modelling the environment
or internal working of the system. A poor random-number generator may introduce
correlation and/or bias into the value of those random variables.

Jane Hillston (Jane.Hillston@ed.ac.uk). March 2, 2017.

100



