
12 PEPA Case Study: Rap Genius on Heroku

As an example of a realistic case study, we consider a Platform as a service (PaaS) system,
Heroku, and study its behaviour under different policies for assigning client jobs to leased
servers. This case study has been developed by Dimitrios Milios.

12.1 Heroku

Cloud computing is a term that describes the access to distributed hardware or software
resources that are available as a service on demand, typically over the Internet. There
are different service models but one of the most popular is PaaS, which provides clients
with a customised solution stack including operating systems, programming languages,
libraries, web servers, databases and software tools.

Heroku is a PaaS provider which offers an integrated framework enabling developers
to deploy and support web-based applications. Several programming languages are sup-
ported. Clients upload the source code for their application, together with a file that
describes the software dependencies. The Heroku platform then builds the application,
which will be executed on one or more virtualised machines, which are known as dynos.

According to the on-line Heroku specification documents1, a dyno is a lightweight en-
vironment running a single command at a time. This functionality is implemented by
an isolated virtualised server. Dynos are claimed to provide a secure and performance-
consistent environment to run an application. There are two kinds of dynos available: web
dynos which respond to HTTP requests, and worker dynos which execute background
jobs.

Commands are non-interruptable; thus concurrency is achieved by employing more
than one dyno. Increasing the number of web dynos will increase the concurrency of
HTTP requests, while more worker dynos provide more capacity for processes running in
the background. Therefore, all the client has to do is to upload the source code of the
application and scale it to a number of dynos. The idea is that once a service request
appears, Heroku will be responsible for assigning that request to one of the dynos that
have been leased by the client, by following a routing policy as outlined in Figure 31.

The routing policy is the key component that we shall investigate in this case study.
These two routing policies have historically been used by Heroku:

Random Routing: a new request is directed to a randomly-selected web dyno. The
premise of random routing is that the load is balanced across the dynos in the long
term.

Smart Routing: the availability of each dyno is tracked and the load is directed accord-
ingly, thus minimising the number of idle dynos.

Although explicit information on the implementation of these policies is not available,
it is straightforward to model the desired behaviour for each policy at a high-level.

1https://devcenter.heroku.com/
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Figure 6.2: The basic structure of Heroku

client. Such an outcome is not improbable at all; in fact, we shall report a particular

incident which has inspired the current case study.

Rap Genius2 is a website that aims to provide a critical and artistic insight into the

lyrics of rap songs. The cultural contribution of Rap Genius is remarkable, however, in

terms of the current poetically sterile thesis, we shall focus on some technical aspects

only. The website users have access to content via HTTP requests, and they are able to

add annotations to content. Rap Genius makes this service available via the cloud, and

Heroku in particular.

In the beginning of 2013, Rap Genius reported unusually long average response

times, despite the large number of dynos leased by the website3. The average response

time reported by the Heroku platform was as low as 40 ms, while the response time

experienced by the users has been 6330 ms. This difference has been attributed to the

fact that the requests are waiting in the local queues of the dynos. Therefore, given that

the actual service has not been any slower than usual, this could suggest that the system

has simply been overloaded. Nevertheless, according to Rap genius, there has not been

2http://rapgenius.com/
3http://rapgenius.com/James-somers-herokus-ugly-secret-lyrics

Figure 30: The basic structure of Heroku

12.1.1 Detecting and investigating performance problems

Each client must determine how many dynos should be leased. Of course, this depends
on the workload. Naturally, the heavier the workload is, the more dynos will be needed.
In the ideal case, every service should be tailed to the needs of the corresponding client.
Typically, clients may have a rough idea of the expected workload. However, they may
find it difficult to accurately estimate the number of the machines needed. Performance
modelling is a natural way to produce such estimates in a rigorous manner. Despite
the fact that modelling relies on rather strong assumptions, if done appropriately it can
provide us with useful insight into the behaviour of a system. Even just having some
expectations about the system can help the client to detect when something has gone
wrong.

Genius2 (formerly Rap Genius3) is a website that aims to provide a critical and artistic
insight into the lyrics of rap songs. The website users have access to content via HTTP
requests, and they are able to add annotations to content. Rap Genius makes this service
available via Heroku.

In the beginning of 2013, Rap Genius reported unusually long average response times,
despite the large number of dynos leased by the website4. The average response time
reported by the Heroku platform was as low as 40 ms, while the response time experienced
by the users had been 6330 ms. This difference was attributed to requests waiting in the
local queues at the dynos. Therefore, given that the actual service had not been any slower
than usual, this suggested that the system had simply been overloaded. Nevertheless,
according to Rap Genius, there had not been any significant change in the workload, which
had been as high as 9000 requests per minute. Eventually, this considerable increase in the
response time was blamed on the fact that the Heroku routing policy has been changed
from smart to random5.

Here, our objective is not to assess the quality of service provided by Heroku, or recreate

2http://genius.com/
3http://rapgenius.com/
4http://rapgenius.com/James-somers-herokus-ugly-secret-lyrics
5http://www.wired.com/2013/03/hieroku
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Figure 6.3: The Heroku configuration considered

Table 6.1: The rate values used in the examples

Variable Name Value (sec�1)

rrequest [40, 60, 150]

rweb 8

rmigrate 1

rworker 4

rresponse 20

rassign 500

both cases, we assume that service is broken down in two parts: the actual service and

the response. The actual service part covers the amount of work that a dyno needs to

produce a result. The service time depends on the type of the job. While both types of

dynos are identical with respect to their computational capabilities, the worker dynos

deal with more demanding tasks, which is reflected in a lower service rate. Therefore

the average web service time is 1/rweb = 0.125 sec, while for the worker dyno services

we have an average time of 1/rworker = 0.25 sec. The response part represents the time

needed by a dyno to transmit the results to the user. It is considered to be identical

in both cases, as it only depends on the network. Moreover, response takes place at a

considerably higher rate than the actual service, so it has rate rresponse = 20.

Figure 31: The Heroku configuration considered

the situation experienced by Rap Genius. Instead, we demonstrate how modelling with
Markov chains, via a high-level modelling language, can capture the effect of different
routing policies.

12.2 Modelling Heroku Routing with PEPA

Before modelling the routing policies, we describe the basic components and the interac-
tions between them in an abstract way. As illustrated in Figure 32, the model we consider
involves two classes of dynos, web and worker, and a router component.

We assume the web requests arrive at the router in a Poisson stream. The router
component is responsible for forwarding each request to a web dyno. When a web dyno
receives a request, there are two possibilities: it can either service the request directly
or create a new request to be serviced by a worker dyno. In the latter case, the current
job will migrate from a web dyno to a worker dyno, and the router is responsible for
redirecting the request accordingly. This is the only way a worker dyno may be accessed,
as the users are assumed to produce HTTP requests only. The generation of a worker
request captures the possibility that a job may require some background computation. It
is assumed that the fraction of requests that are migrated is small; more specifically, we
consider a migration probability equal to 1/9.

We can identify some activity types representing behaviour in our model, regardless of
the routing policy. These activities are request , assign,web,migrate,worker and response
and each will be associated with an exponentially distributed duration. Table 6 sum-
marises the rates of the events considered. The request arrival rate rrequest will control the
assumed workload in the system. It is actually the variable we are going to experiment
with, so it will take values within a range from 40 to 150 sec−1, which corresponds to 9000
requests per minute.

The service rate is dependent on the type of dyno. In both cases, we assume that
service is broken down in two parts: the actual service and the response. The actual
service part covers the amount of work that a dyno needs to do to produce a result — the
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Variable Name Value (sec−1)

rrequest [40, 60, 150]
rweb 8
rmigrate 1
rworker 4
rresponse 20
rassign 500

Table 4: The rate values used in the examples

service time depends on the type of the job. While both types of dynos are identical with
respect to their computational capabilities, the worker dynos deal with more demanding
tasks, which is reflected in a lower service rate. Therefore the average web service time
is 1/rweb = 0.125 sec, while for the worker dyno services we have an average time of
1/rworker = 0.25 sec. The response part represents the time needed by a dyno to transmit
the results to the user. It is considered to be identical in both cases, as it only depends
on the network. Moreover, response takes place at a considerably higher rate than the
actual service, so it has rate rresponse = 20.

It is assumed that there is a race condition between migration and web service. Thus,
the rate of migration will control the migration probability. By considering rmigrate = 1
and given that we have rweb = 8, we impose a migration probability equal to 1/9.

Finally, it is assumed that assignment happens almost instantaneously, since it depends
only on the resources allocated to the routing component. It is fair to expect that any
decision will take place very quickly based on the current state of the system. This is
reflected by the high rate rassign = 500, or 2 milliseconds average duration.

In the following, we present two PEPA models that implement the two routing policies.
We assume that each dyno has its own queue, thus we are interested in observing how the
local dyno queues are affected by each policy. In the PEPA models we have components
for the web dynos, the worker dynos, the system router which keeps queues for requests
coming from the web and migration requests from the web dynos for the worker dynos.

12.2.1 Random Routing Policy

A dyno can be idle, occupied or with one or more requests in its local queue. According to
the random routing policy, the router randomly assign jobs to dynos, regardless of their
state.

Web dynos are represented by components WebDynoi, where the subscript i denotes the
number of requests in the local dyno queue. For WebDynoi, three activities are possible;
service realises the main web service part, whose completion proceeds to the response
stage, carried out by WebDynoia. Since a response cannot be interrupted, no new job
can be assigned or enqueued at this point. Given that the response rate is significantly
higher than the web service rate (see Table 6), this has limited impact on the availability
of the dyno. The migrate activity generates a migration request and decreases the queue
length at this web dyno. Finally, the assignweb activity adds a request to the queue from
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the client.

WebDyno
def
= (assignweb ,>).WebDyno0

WebDynoi
def
= (service, rweb).WebDynoia

+ (migrate, rmigrate).WebDynoi−1

+ (assignweb ,>).WebDynoi+1

WebDynoia
def
= (response, rresponse).WebDynoi−1

WebDynoi and WebDynoia represent the two stages of a web service. In both cases,
the web dyno is considered to be occupied. The idle state is denoted by WebDyno.

The worker dynos have a similar but simpler structure, as in this case there is no job
migration option.

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDynoi
def
= (service, rworker).WorkerDynoia + (assignworker ,>).WorkerDynoi+1

WorkerDynoia
def
= (response, rresponse).WorkerDynoi−1

The routing component is characterised by a set of states that denote the number of
requests in the router queue. In any state, the router can accept a web request or a
migration request, and add it to the router queue. If one or more jobs are in the queue,
the router will attempt to direct them to any of the web or worker dynos, depending on
the type of the request. It is convenient to model the router as two queues, one for each
type of dyno. So for the web requests we have:

WebRouter 0
def
= (request , rrequest).WebRouter 1

WebRouteri
def
= (request , rrequest).WebRouter i+1 + (assignweb , rassign).WebRouter i−1

WebRoutern
def
= (request , rrequest).WebRoutern + (assignweb , rassign).WebRoutern−1

where n denotes the maximum size for the corresponding queue. If the maximum size is
reached, it is assumed that any new requests will be discarded until the queue is not full.
Analogously, for migration requests we have:

WorkerRouter 0
def
= (migrate,>).WorkerRouter 1

WorkerRouteri
def
= (migrate,>).WorkerRouter i+1

+ (assignworker , rassign).WorkerRouter i−1

WorkerRoutern
def
= (migrate,>).WorkerRoutern
+ (assignworker , rassign).WorkerRoutern−1

Finally, the router will be the parallel composition of the components above.

Figure 33 gives the complete model of the random routing policy. Note that the model
imposes a maximum dyno queue length of 1. The main reason behind this modelling choice
is to keep the component state-space at relatively low levels, in order to avoid excessive
state-space explosion. As we shall see later in Section 6.3, this model is adequate to
observe the qualitative difference between a random and a smart routing policy.
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WebDyno
def
= (assignweb ,>).WebDyno0

WebDyno0
def
= (service, rweb).WebDyno0a + (migrate, rmigrate).WebDyno
+ (assignweb ,>).WebDyno1

WebDyno0a
def
= (response, rresponse).WebDyno

WebDyno1
def
= (service, rweb).WebDyno1a + (migrate, rmigrate).WebDyno0

WebDyno1a
def
= (response, rresponse).WebDyno0

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDyno0
def
= (service, rworker).WorkerDyno0a + (assignworker ,>).WorkerDyno1

WorkerDyno0a
def
= (response, rresponse).WorkerDyno

WorkerDyno1
def
= (service, rworker).WorkerDyno1a

WorkerDyno1a
def
= (response, rresponse).WorkerDyno0

WebRouter 0
def
= (request , rrequest).WebRouter 1

WebRouter 1
def
= (request , rrequest).WebRouter 2 + (assignweb , rassign).WebRouter 0

WebRouter 2
def
= (request , rrequest).WebRouter 3 + (assignweb , rassign).WebRouter 1

WebRouter 3
def
= (request , rrequest).WebRouter 3 + (assignweb , rassign).WebRouter 2

WorkerRouter 0
def
= (migrate,>).WorkerRouter 1

WorkerRouter 1
def
= (migrate,>).WorkerRouter 2 + (assignworker , rassign).WorkerRouter 0

WorkerRouter 2
def
= (migrate,>).WorkerRouter 3 + (assignworker , rassign).WorkerRouter 1

WorkerRouter 3
def
= (migrate,>).WorkerRouter 3 + (assignworker , rassign).WorkerRouter 2

RandomN :M
def
= WebDyno[N ] ‖WorkerDyno[M ] ��

Lrandom
(WebRouter 0 ‖WorkerRouter 0)

where Lrandom = { assignweb , assignworker ,migrate }

Figure 32: PEPA model for random Heroku routing with N web dynos and M worker
dynos.
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12.2.2 Smart Routing Policy

In the smart routing case the dyno components are not substantially different from those
in the random routing case, as both web and worker dynos are characterised by the same
states and the same rates. The only difference is that we now have two distinct action
types for assigning a job to a dyno. We want to capture the fact that a job may be either
assigned to an idle dyno, or enqueued to an occupied dyno. For the web dynos, only a
WebDyno component will now be able to perform an assignweb activity, as it denotes that
the dyno is idle. For a WebDynoi component, which denotes an occupied web dyno with
i requests in its local queue, jobs can only be enqueued as follows:

WebDyno
def
= (assignweb ,>).WebDyno0

WebDynoi
def
= (service, rweb).WebDynoia

+ (migrate, rmigrate).WebDynoi−1

+ (enqueueweb ,>).WebDynoi+1

Similarly, an assignworker activity can only be performed by WorkerDyno, while for the
WorkerDynoi component we have only service and enqueueworker

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDynoi
def
= (service, rworker).WorkerDynoia + (enqueueworker ,>).WorkerDynoi+1

The choice between assignment or placement in the local queue is not under the dyno’s
control; it is responsibility of the routing policy.

The WebDynoia and WorkerDynoia remain unchanged.

The smart routing policy consists of directing a request to a dyno that is available. If
more than one dyno is available, then the router will randomly select a dyno. If there
are no dynos available, the request will be randomly enqueued to any dyno. The routing
algorithm involves a deterministic step, which is the dyno availability check. Such a
deterministic behaviour cannot be directly modelled in PEPA. What we can do instead is
to probabilistically favour assigning jobs to free dynos rather than placing them in queues.
The idea is that the router will delay directing a request until a dyno is available. This
delay should not be infinite however; if too many requests arrive, then the router will
decrease its queue length by directing the requests to random dynos.

We assume that the WebRouter component has a maximum queue length of n. Then
for any queue length i < n, the requests are assigned to web dynos that can perform an
assignweb activity; i.e. the dyno is currently idle.

WebRouter 0
def
= (request , rrequest).WebRouter 1

WebRouteri
def
= (request , rrequest).WebRouter i+1 + (assignweb , rassign).WebRouter i−1

If the queue length reaches its maximum size n, that probably means that no dyno has
been available for a long time; it is then acceptable to send the request to the queue of
any dyno. Thus WebRoutern will either assign or enqueue a request.

WebRoutern
def
= (request , rrequest).WebRoutern
+ (assignweb , rassign × 0.5).WebRoutern−1

+ (enqueueweb , rassign × 0.5).WebRoutern−1
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Analogously, the migration queue on the router side will be modified as follows:

WorkerRouter 0
def
= (migrate,>).WorkerRouter 1

WorkerRouteri
def
= (migrate,>).WorkerRouter i+1

+ (assignworker , rassign).WorkerRouter i−1

WorkerRoutern
def
= (migrate,>).WorkerRoutern
+ (assignworker , rassign × 0.5).WorkerRoutern−1

+ (enqueueworker , rassign × 0.5).WorkerRoutern−1

where n denotes the maximum queue length, and 0 < i < n.

To summarise, when the queue of the router is not full, then the router works according
to its “smart” mode of operation — it directs any requests to idle dynos only. Any new
requests will have to wait in the router queue before being assigned. However, if the
router queue reaches maximum capacity, this is an indication that the system is congested,
suggesting that there are no idle dynos available. The router will then enter its “random”
mode of operation, and will decrease its queue by randomly directing requests to any
dyno; enqueueweb and enqueueworker can only be performed if the corresponding router
queue is full. The complete model for the smart routing policy is shown in Figure 34.

12.3 Evaluation of Routing Policies

In this section, we present some experimental results in order to compare the two routing
policies, based on numerical analysis of the Markov process underlying the PEPA models.
These models would also be amenable to discrete event simulation (to be discussed in
subsequent lectures) and in that case the queue sizes could be increased.

12.3.1 Experimentation with the Workload

In this section, we experimentally evaluate how the routing policies considered respond
to different workloads. We consider a system featuring 8 web dynos and 8 worker dynos.
We have two models that implement the two routing policies; these are Random8:8 and
Smart8:8. The models have been solved for their transient and steady-state behaviour.
The Random8:8 model has 3, 920, 400 states and took 10, 250 seconds for steady state
solution and 39, 000 seconds for transient analysis. The Smart8:8 model has 3, 849, 444
states and took 11, 370 seconds for steady state solution and 43, 000 seconds for transient
solution.

We experimented with two different values for the request rate 40 and 60, in order
to observe how the two routing policies respond to different workloads. The effects of
each policy are reflected in the average dyno queue length and in the number of dynos
that remain idle. Figure 35 outlines the transient behaviour for request arrival rate equal
to 40 sec−1, or 2400 requests per minute. The data plotted depict how the average
population of idle dynos and average local queue lengths change during the first four
seconds of the system being online. We can see that after these four seconds, the system
appears to be in steady state. Figure 35 (a) depicts results for the random routing policy,
while the Figure 35 (b) depicts smart routing.
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WebDyno
def
= (assignweb ,>).WebDyno0

WebDyno0
def
= (service, rweb).WebDyno0a + (migrate, rmigrate).WebDyno
+ (enqueueweb ,>).WebDyno1

WebDyno0a
def
= (response, rresponse).WebDyno

WebDyno1
def
= (service, rweb).WebDyno1a + (migrate, rmigrate).WebDyno0

WebDyno1a
def
= (response, rresponse).WebDyno0

WorkerDyno
def
= (assignworker ,>).WorkerDyno0

WorkerDyno0
def
= (service, rworker).WorkerDyno0a + (enqueueworker ,>).WorkerDyno1

WorkerDyno0a
def
= (response, rresponse).WorkerDyno

WorkerDyno1
def
= (service, rworker).WorkerDyno1a

WorkerDyno1a
def
= (response, rresponse).WorkerDyno0

WebRouter 0
def
= (request , rrequest).WebRouter 1

WebRouter 1
def
= (request , rrequest).WebRouter 2 + (assignweb , rassign).WebRouter 0

WebRouter 2
def
= (request , rrequest).WebRouter 3 + (assignweb , rassign).WebRouter 1

WebRouter 3
def
= (request , rrequest).WebRouter 3
+ (assignweb , rassign × 0.5).WebRouter 2
+ (enqueueweb , rassign × 0.5).WebRouter 2

WorkerRouter 0
def
= (migrate,>).WorkerRouter 1

WorkerRouter 1
def
= (migrate,>).WorkerRouter 2 + (assignworker , rassign).WorkerRouter 0

WorkerRouter 2
def
= (migrate,>).WorkerRouter 3 + (assignworker , rassign).WorkerRouter 1

WorkerRouter 3
def
= (migrate,>).WorkerRouter 3
+ (assignworker , rassign × 0.5).WorkerRouter 2
+ (enqueueworker , rassign × 0.5).WorkerRouter 2

SmartN :M
def
= WebDyno[N ] ‖WorkerDyno[M ] ��

Lsmart
(WebRouter 0 ‖WorkerRouter 0)

where Lsmart = { assignweb , enqueueweb , assignworker , enqueueworker ,migrate }

Figure 33: PEPA model for smart Heroku routing with N web dynos and M worker dynos
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(c) Random routing (Quasi-lumpability)
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(e) Random routing (NCD)
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(f) Smart routing (NCD)

Figure 6.6: Random8:8 and Smart8:8 results for rrequest = 40

To summarise, the smart routing policy results in better utilisation of the system

resources compared to random routing, judging by the number of requests that remain

in the queues at the dyno level. Smart routing results in a significantly shorter average

queue length, regardless of the workload.

Applying compositional aggregation, and the quasi-lumpability approach in partic-

(a) Random routing (b) Smart routing

Figure 34: Random8:8 and Smart8:8 results for rrequest = 40

The results show that part of the system is underused for both smart and random
routing, as there are a significant number of idle dynos in both cases. However, the
average dyno queue lengths are noticeably higher for random routing. This means that
some requests might be waiting in the queue while there are dynos available. That is
not the case for smart routing however, where the dyno queues are almost empty. In
other words, the smart routing fully exploits the capacity of the Heroku configuration, in
contrast with the random routing policy.

Figure 36 gives the results of the experiment in which we investigated how the routing
policies are affected by a higher workload, by increasing the request arrival rate to 60
sec−1, or 3600 requests per minute. Here, the system usage is similar for both random
and smart routing. For the smart system, the dyno queues have significantly shorter
length when compared to the random routing policy, implying that the requests wait less
time until they are serviced.
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Figure 6.7: Random8:8 and Smart8:8 results for rrequest = 60

ular, has led us to the same conclusion at a significantly lower cost. However, the NCD-

based approach has been considerably less accurate compared to the quasi-lumpability

approach for the Heroku example. In fact, both approaches rely on assumptions that

may or may not hold for a specific model. One assumption is that there is a partition of

the state-space with respect to which the model is either quasi-lumpable or nearly com-

(a) Random routing (b) Smart routing

Figure 35: Random8:8 and Smart8:8 results for rrequest = 60
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To summarise, the smart routing policy results in better utilisation of the system re-
sources compared to random routing, judging by the number of requests that remain in
the queues at the dyno level. Smart routing results in a significantly shorter average queue
length, regardless of the workload.

12.3.2 Experimentation with the System Size

The medium-sized system that we have examined in the previous section has shown that
there is a significant difference in terms of performance between the two routing policies
considered. Our objective now is to investigate how many dynos are required to service
9000 requests per minute, translated into a request arrival rate of 150 sec−1 which is the
reported workload for Rap Genius. In this experiment, we consider a fixed arrival rate
equal to 150, while we experiment with the size of the system, in order to determine how
many dynos have to be leased, to minimise both the number of idle dynos and the queue
length at the dynos.

Figure 37 outlines the transient behaviour for 20 web dynos and 20 worker dynos.
Each sub-figure describes how the average population of idle dynos and the average queue
lengths at the dyno level change through time. More specifically, in Figure 37 (b) we
see that we have only a small number of idle dynos, while the number of jobs queued
at the dyno-level remains small. Therefore, the system of this size has been found to be
adequate to service 9000 requests per minute using the smart routing policy. According
to Figure 37 (a) however, the queue lengths are considerably larger for the random policy.
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value of choice in Section 5.3.

Figure 6.8 outlines the transient behaviour for 20 web dynos and 20 worker dynos.

Each sub-figure describes how the average population of idle dynos and the average

queue lengths at the dyno-level change through time. More specifically, in Figure

6.8(d) we see that we have only a small number of idle dynos, while the number of

jobs queued at the dyno-level remains small. Therefore, the system of this size has

been found to be adequate to service 9000 requests per minute by using the smart

routing policy. According to Figure 6.8(c) however, the queue lengths are considerably

larger for the random policy. Simply, more dynos are needed to decrease the number

of requests waiting in the dyno queues.
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(a) Random routing (Direct Method)
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(c) Random routing (Trajectory Sampling)
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(d) Smart routing (Trajectory Sampling)

Figure 6.8: Random20:20 and Smart20:20 results for rrequest = 150 (105 simulation runs)

We have also considered a system with 60 web dynos and 60 worker dynos, whose

results are summarised in Figure 6.9. For the random routing policy in Figure 6.9(c),

we have relatively small but non-zero number of requests in the dyno queues. It ap-

pears that a random routing policy has a negative impact on the request waiting time,

(a) Random routing (b) Smart routing

Figure 36: Random20:20 and Smart20:20 results for rrequest = 150

We have also considered a system with 60 web dynos and 60 worker dynos, whose results
are summarised in Figure 38. For the random routing policy in Figure 38 (a), we have a
relatively small but non-zero number of requests in the dyno queues. It appears that a
random routing policy has a negative impact on the request waiting time, regardless of
the size of the system. The picture is quite different for the smart policy in Figure 38 (b),
where almost no requests are waiting. But note that, in both cases, a large part of the
system remains idle, meaning that the use of 60 dynos of each kind is a waste of resources
considering the given workload.
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Thus, a system of 20 web and 20 worker dynos featuring a smart routing policy should
be enough to service the typical workload of a website such as Rap Genius. Replacing the
smart policy with a random policy will increase the number of dynos required to service
the same workload at the same rate, and or will diminish the quality of service provided
to the clients if the number stays the same.
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regardless of the size of the system. The picture is quite different for the smart policy

in Figure 6.9(d), where the almost no request is waiting. In both cases though, a large

part of the system remains idle, meaning that the use of 60 dynos of each kind is simply

a waste of resources considering the given workload.

Apparently, a system of 20 web and 20 worker dynos featuring a smart routing

policy should be enough to service the typical workload of a website such as Rap

Genius. Replacing smart with a random policy will only increase the number of dynos

required to service the same workload at the same rate, and therefore diminish the

quality of service provided to the clients.
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(c) Random routing (Trajectory Sampling)
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(d) Smart routing (Trajectory Sampling)

Figure 6.9: Random60:60 and Smart60:60 results for rrequest = 150 (105 simulation runs)

Regarding the approximation quality of our trajectory sampling algorithm, its re-

sults are practically identical to the output of the direct method. In fact, this outcome

was anticipated, as it is compliant with the conclusions of Chapter 5. We have char-

acterised trajectory sampling simulation as an almost exact method, in the sense that

it can be arbitrarily precise. We have seen experimentally observed in Section 5.3 that

(a) Random routing (b) Smart routing

Figure 37: Random60:60 and Smart60:60 results for rrequest = 150

12.4 Summary

The example used has been motivated by a particular incident involving the Rap Genius
website, where a change in the routing policy has been reported to negatively affect the
quality of service experienced by clients. Our model does not aspire to be an accurate
representation of Rap Genius/Heroku. Nevertheless it provides a realistic representation
of a system of that scale. Our experimentation shows that a smart routing policy results
in a significantly smaller number of requests waiting to be serviced, compared to a random
policy.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. February 20, 2017.
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