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Classical Planning
restricted state-transition system Σ=(S,A,γ)
planning problem P=(Σ,si,Sg)

Why study classical planning?
• good for illustration purposes
• algorithms that scale up reasonably well are known
• extensions to more realistic models known

What are the main issues?
• how to represent states and actions
• how to perform the solution search
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Planning as Theorem Proving

idea:
• represent states and actions in first-order 

predicate logic
• prove that there is a state s

• that is reachable from the initial state and 
• in which the goal is satisfied.

• extract plan from proof
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Overview

Propositional Logic
First-Order Predicate Logic
Representing Actions
The Frame Problem
Solving the Frame Problem
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Propositions

proposition: a declarative sentence (or 
statement) that can either true or false
examples:
• the robot is at location1
• the crane is holding a container

atomic propositions (atoms): 
• have no internal structure
• notation: capital letters, e.g. P, Q, R, …
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Well-Formed Formulas

an atom is a formula
if G is a formula, then (¬G) is a formula
if G and H are formulas, then (G⋀H), 
(G⋁H), (G→H), (G↔H) are formulas.
all formulas are generated by applying 
the above rules

logical connectives: ¬, ⋀, ⋁, →, ↔
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Truth Tables

truetruefalsefalsetruefalsefalse

falsetruetruefalsetruetruefalse

falsefalsetruefalsefalsefalsetrue

truetruetruetruefalsetruetrue

G↔HG→HG⋁HG⋀H¬GHG
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Interpretations

Let G be a propositional formula containing 
atoms A1,…,An.
An interpretation I is an assignment of truth 
values to these atoms, i.e. 
I: {A1,…,An} {true, false}
example:
• formula G: (P⋀Q)→(R↔(¬S))
• interpretation I: P false, Q true, R true, S true
• G evaluates to true under I: I(G) = true
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Validity and Inconsistency
A formula is valid if and only if it evaluates to true under 
all possible interpretations.
A formula that is not valid is invalid.
A formula is inconsistent (or unsatisfiable) if and only if it 
evaluates to false under all possible interpretations.
A formula that is not inconsistent is consistent (or 
satisfiable).
examples:
• valid: P ⋁ ¬P, P ⋀ (P → Q) → Q
• satisfiable: (P⋀Q)→(R↔(¬S))
• inconsistent: P ⋀ ¬P
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Propositional Theorem Proving

Problem: Given a set of propositional formulas 
F1…Fn, decide whether
• their conjunction F1⋀…⋀Fn is valid or satisfiable or 

inconsistent or
• a formula G follows from (axioms) F1⋀…⋀Fn, denoted 

F1⋀…⋀Fn ⊨ G

decidable
NP-complete, but relatively efficient algorithms 
known (for propositional logic)
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Overview

Propositional Logic
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First-Order Atoms

objects are denoted by terms
• constant terms: symbols denoting specific individuals

• examples: loc1, loc2, …, robot1, robot2, …
• variable terms: symbols denoting undefined individuals

• examples: l,l’
• function terms: expressions denoting individuals

• examples: 1+3, father(john), father(mother(x))

first-order propositions (atoms) state a relation 
between some objects
• examples: adjacent(l,l’), occupied(l), at(r,l), …
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l1 l2

DWR Example State

k1

ca

k2

cb

cc

cd

ce

cf

robot

crane

location

pile (p1 and q1)

container

pile (p2 and q2, both empty)

container pallet

r1
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Objects in the DWR Domain
locations {loc1, loc2, …}: 
• storage area, dock, docked ship, or parking or passing area

robots {robot1, robot2, …}: 
• container carrier carts for one container
• can move between adjacent locations

cranes {crane1, crane2, …}: 
• belongs to a single location
• can move containers between robots and piles at same location

piles {pile1, pile2, …}: 
• attached to a single location
• pallet at the bottom, possibly with containers stacked on top of it

containers {cont1, cont2, …}: 
• stacked in some pile on some pallet, loaded onto robot, or held by crane
pallet: 
• at the bottom of a pile
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Topology in the DWR Domain

adjacent(l,l′): 
location l is adjacent to location l′
attached(p,l):
pile p is attached to location l
belong(k,l):
crane k belongs to location l

topology does not change over time!
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Relations in the DWR Domain (1)

occupied(l):
location l is currently occupied by a robot
at(r,l):
robot r is currently at location l
loaded(r,c):
robot r is currently loaded with container c
unloaded(r):
robot r is currently not loaded with a container
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Relations in the DWR Domain (2)
holding(k,c):
crane k is currently holding container c
empty(k):
crane k is currently not holding a container
in(c,p):
container c is currently in pile p
on(c,c′):
container c is currently on container/pallet c′
top(c,p):
container/pallet c is currently at the top of pile p
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Well-Formed Formulas

an atom (relation over terms) is a formula
if G and H are formulas, then (¬G) (G⋀H), 
(G⋁H), (G→H), (G↔H) are formulas

if F is a formula and x is a variable then 
(∃x F(x)) and (∀x F(x)) are formulas

all formulas are generated by applying the 
above rules
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Formulas: DWR Examples

adjacency is symmetric: 
∀l,l′ adjacent(l,l′) ↔ adjacent(l′,l)

objects (robots) can only be in one place:
∀r,l,l′ at(r,l) ⋀ at(r,l′) → l=l′

cranes are empty or they hold a container:
∀k empty(k) ⋁ ∃c holding(k,c)
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Semantics of First-Order Logic
an interpretation I over a domain D maps:
• each constant c to an element in the domain: I(c)∈D
• each n-place function symbol f to a mapping: I(f)∈Dn D
• each n-place relation symbol R to a mapping: 

I(R)∈Dn {true, false}

truth tables for connectives (¬, ⋀, ⋁, →, ↔) as for 
propositional logic

I((∃x F(x))) = true if and only if 
for at least one object c∈D: I(F(c)) = true. 
I((∀x F(x))) = true if and only if 
for every object c∈D: I(F(c)) = true.
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Theorem Proving in 
First-Order Logic

F is valid: F is true under all interpretations
F is inconsistent: F is false under all 
interpretations
theorem proving problem (as before): 
• F1⋀…⋀Fn is valid / satisfiable / inconsistent or 
• F1⋀…⋀Fn ⊨ G

semi-decidable
resolution constitutes significant progress in 
mid-60s
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Substitutions

replace a variable in an atom by a term
example:
• substitution: σ = {x 4, y f(5)}
• atom A: greater(x, y)
• σ(F) = greater(4, f(5))

simple inference rule:
• if σ = {x c} and (∀x F(x)) ⊨ F(c)
• example: ∀x mortal(x) ⊨ mortal(Confucius)
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Unification

Let A(t1,…,tn) and A(t’1,…,t’n) be atoms.
A substitution σ is a unifier for A(t1,…,tn) and 
A(t’1,…,t’n) if and only if:
σ(A(t1,…,tn)) = σ(A(t’1,…,t’n))
examples:
• P(x, 2) and P(3, y) – unifier: {x 3, y 2}
• P(x, f(x)) and P(y, f(y)) – unifiers: {x 3, y 3}, {x y}
• P(x, 2) and P(x, 3) – no unifier exists
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Overview

Propositional Logic
First-Order Predicate Logic
Representing States and Actions
The Frame Problem
Solving the Frame Problem
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Representing States

represent domain objects as constants
• examples: loc1, loc2, …, robot1, robot2, …

represent relations as predicates
• examples: adjacent(l,l’), occupied(l), at(r,l), …

problem: truth value of some relations 
changes from state to state
• examples: occupied(loc1), at(robot1,loc1)
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Situations and Fluents
solution: make state explicit in representation through 
situation term
• add situation parameter to changing relations:

• occupied(loc1,s): location1 is occupied in situation s
• at(robot1,loc1,s): robot1 is at location1 in situation s

• or introduce predicate holds(f,s):
• holds(occupied(loc1),s): location1 is occupied holds in 

situation s
• holds(at(robot1,loc1),s): robot1 is at location1 holds in 

situation s

fluent: a term or formula containing a situation term
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The Blocks World: Initial 
Situation

Σsi=
on(C,Table,si) ⋀
on(B,C,si) ⋀
on(A,B,si) ⋀
on(D,Table,si) ⋀
clear(A,si) ⋀
clear(D,si) ⋀
clear(Table,si)

Table

A

D

B

C
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Actions

actions are non-tangible objects in the 
domain denoted by function terms
• example: move(robot1,loc1,loc2): move 

robot1 from location loc1 to location loc2
definition of an action through
• a set of formulas defining applicability 

conditions
• a set of formulas defining changes in the state 

brought about by the action
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Blocks World: Applicability

Δa=
∀x,y,z,s: applicable(move(x,y,z),s) ↔

clear(x,s) ⋀
clear(z,s) ⋀
on(x,y,s) ⋀
x≠Table ⋀
x≠z ⋀
y≠z
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Blocks World: move Action

single action move(x,y,z): moving block x
from y (where it currently is) onto z

Table

A

D

B

C

Table

A

D

B

C

move(A,B,D)
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Applicability of Actions
for each action specify applicability axioms of the form: 
∀params,s: applicable(action(params),s) ↔
preconds(params,s)
where:
• “applicable” is a new predicate relating actions to states
• params is a set of variables denoting objects
• action(params) is a function term denoting an action over 

some objects
• preconds(params) is a formula that is true iff action(params) 

can be performed in s
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Effects of Actions
for each action specify effect axioms of the form:
∀params,s: applicable(action(params),s) →

effects(params,result(action(params),s))
where:
• “result” is a new function that denotes the state 

that is the result of applying action(params) in s
• effects(params,result(action(params),s)) is a 

formula that is true in the state denoted by 
result(action(params),s)
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Blocks World: Effect Axioms

Δe=
∀x,y,z,s: applicable(move(x,y,z),s) →

on(x,z,result(move(x,y,z),s)) ⋀
∀x,y,z,s: applicable(move(x,y,z),s) →

clear(y,result(move(x,y,z),s))
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Blocks World: Derivable Facts

Σsi⋀Δa⋀Δe ⊨ on(A,D,result(move(A,B,D),si))
Σsi⋀Δa⋀Δe ⊨ clear(B,result(move(A,B,D),si))

Table

A

D

B

C

result(move(A,B,D),si):
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Overview

Propositional Logic
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Representing States and Actions
The Frame Problem
Solving the Frame Problem
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Blocks World: Non-Derivable 
Fact

not derivable:
Σsi⋀Δa⋀Δe ⊨
on(B,C,result(move(A,B,D),si))

Table

A

D

B

C

result(move(A,B,D),si):
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The Non-Effects of Actions

effect axioms describe what changes when an 
action is applied, but not what does not change
example: move robot
• does not change the colour of the robot
• does not change the size of the robot
• does not change the political system in the UK
• does not change the laws of physics
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Frame Axioms

for each action and each fluent specify a frame 
axiom of the form:
∀params,vars,s: fluent(vars,s) ⋀ params≠vars →

fluent(vars,result(action(params),s))
where:
• fluent(vars,s) is a relation that is not affected by 

the application of the action
• params≠vars is a conjunction of inequalities that 

must hold for the action to not effect the fluent
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Blocks World: Frame Axioms

Δf=
∀v,w,x,y,z,s: on(v,w,s) ⋀ v≠x →

on(v,w,result(move(x,y,z),s)) ⋀
∀v,w,x,y,z,s: clear(v,s) ⋀ v≠z →

clear(v,result(move(x,y,z),s))
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Blocks World: Derivable Fact 
with Frame Axioms

now derivable:
Σsi⋀Δa ⋀Δe⋀Δf ⊨
on(B,C,result(move(A,B,D),si))

Table

A

D

B

C

result(move(A,B,D),si):
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Coloured Blocks World
like blocks world, but blocks have colour (new fluent) and 
can be painted (new action)
new information about si:
• ∀x: colour(x,Blue,si))

new effect axiom:
• ∀x,y,s: colour(x,y,result(paint(x,y),s))

new frame axioms:
• ∀v,w,x,y,z,s: colour(v,w,s) → colour(v,w,result(move(x,y,z),s)) 
• ∀v,w,x,y,s: colour(v,w,s) ⋀ v≠x → colour(v,w,result(paint(x,y),s))
• ∀v,w,x,y,s: on(v,w,s) → on(v,w,result(paint(x,y),s)) 
• ∀v,w,x,y,s: clear(v,w,s) → clear(v,w,result(paint(x,y),s)) 
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The Frame Problem

problem: need to represent a long list of 
facts that are not changed by an action

the frame problem: 
• construct a formal framework
• for reasoning about actions and change
• in which the non-effects of actions do not 

have to be enumerated explicitly
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Approaches to the Frame 
Problem

use a different style of representation in 
first-order logic (same formalism)
use a different logical formalism, e.g. 
non-monotonic logic
write a procedure that generates the 
right conclusions and forget about the 
frame problem
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Criteria for a Solution

representational parsimony:
representation of the effects of actions should 
be compact
expressive flexibility:
representation suitable for domains with more 
complex features
elaboration tolerance:
effort required to add new information is 
proportional to the complexity of that 
information
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The Universal Frame Axiom

frame axiom for all actions, fluents, and 
situations:
∀a,f,s: holds(f,s) ⋀ ¬affects(a,f,s) →
holds(f,result(a,s))
where “affects” is a new predicate that 
relates actions, fluents, and situations
¬affects(a,f,s) is true if and only if the action 
a does not change the value of the fluent f
in situation s
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Coloured Blocks World Example 
Revisited

coloured blocks world new frame axioms:
• ∀v,w,x,y,z,s: x≠v → ¬affects(move(x,y,z), on(v,w), s)
• ∀v,w,x,y,s: ¬affects(paint(x,y), on(v,w), s)
• ∀v,x,y,z,s: y≠v ⋀ z≠v → ¬affects(move(x,y,z), clear(v), s)
• ∀v,x,y,s: ¬affects(paint(x,y), clear(v), s)
• ∀v,w,x,y,z,s: ¬affects(move(x,y,z), colour(v,w), s)
• ∀v,w,x,y,s: x≠v → ¬affects(paint(x,y), colour(v,w), s)

more compact, but not fewer frame axioms
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Explanation Closure Axioms

idea: infer the action from the affected fluent:
• ∀a,v,w,s: affects(a, on(v,w), s) → ∃x,y: a=move(v,x,y)
• ∀a,v,s: affects(a, clear(v), s) →

(∃x,z: a=move(x,v,z)) ⋁ (∃x,y: a=move(x,y,v))
• ∀a,v,w,s: affects(a, colour(v,w), s) → ∃x: a=paint(v,x)

allows to draw all the desired conclusions
reduces the number of required frame axioms
also allows to the draw the conclusion:
• ∀a,v,w,x,y,s: a≠move(v,x,y) → ¬affects(a, on(v,w), s) 
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The Limits of Classical Logic

monotonic consequence relation:
Δ ⊨ ϕ implies Δ⋀δ ⊨ ϕ
problem:
• need to infer when a fluent is not affected by 

an action
• want to be able to add actions that affect 

existing fluents
monotonicity: if ¬affects(a, f, s) holds in a 
theory it must also hold in any extension
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Using Non-Monotonic Logics

non-monotonic logics rely on default 
reasoning:
• jumping to conclusions in the absence of information 

to the contrary
• conclusions are assumed to be true by default
• additional information may invalidate them

application to frame problem:
• explanation closure axioms are default knowledge
• effect axioms are certain knowledge
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