

Using Theorem Proving to Generate Plans

Literature

- Malik Ghallab, Dana Nau, and Paolo Traverso. *Automated Planning – Theory and Practice*, section 12.2. Elsevier/Morgan Kaufmann, 2004.
- Murray Shanahan. *Solving the Frame Problem*, chapter 1. The MIT Press, 1997.
- Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving, chapters 2 and 3. Academic Press, 1973.

1

- restricted state-transition system $\Sigma = (S, A, \gamma)$
- planning problem $\mathcal{P}=(\Sigma, s_i, S_g)$
- Why study classical planning?
 - good for illustration purposes
 - algorithms that scale up reasonably well are known
 - extensions to more realistic models known
- What are the main issues?
 - how to represent states and actions
 - how to perform the solution search

3

Description Description Description

- if G and H are formulas, then (G∧H), (G∨H), (G→H), (G↔H) are formulas.
- all formulas are generated by applying the above rules
- logical connectives: ¬, ∧, ∨, →, ↔

G	н	٦G	G∧H	G∨H	G→H	G↔H
true	true	false	true	true	true	true
true	false	false	false	true	false	false
false	true	true	false	true	true	false
false	false	true	false	false	true	true

The Situation Calculus and the Frame Problem

8

- Let G be a propositional formula containing atoms A₁,...,A_n.
- An interpretation *I* is an assignment of truth values to these atoms, i.e.
 - *I*: {A₁,...,A_n}→{true, false}
- example:
 - formula G: (P∧Q)→(R↔(¬S))
 - interpretation *I*: P→false, Q→true, R→true, S→true
 - G evaluates to true under I: I(G) = true

Validity and InconsistencyA formula is valid if and only if it evaluates to *true* under all possible interpretations.
A formula that is not valid is invalid.
A formula is inconsistent (or unsatisfiable) if and only if it evaluates to *false* under all possible interpretations.
A formula that is not inconsistent is consistent (or satisfiable).
examples:

valid: P ∨ ¬P, P ∧ (P → Q) → Q
satisfiable: (P∧Q)→(R↔(¬S))
inconsistent: P ∧ ¬P

The Situation Calculus and the Frame Problem

10

DWR Example State crane CC cf pallet container container • cb ce cd сa pile (p1 and q1) pile (p2 and q2, both empty) robot location The Situation Calculus and the Frame Problem 14

The Situation Calculus and the Frame Problem

- solution: make state explicit in representation through situation term
 - add situation parameter to changing relations:
 - occupied(loc1,s): location1 is occupied in situation s
 - at(robot1,loc1,s): robot1 is at location1 in situation s
 - or introduce predicate holds(*f*,*s*):
 - holds(occupied(loc1),s): location1 is occupied holds in situation s
 - holds(at(robot1,loc1),s): robot1 is at location1 holds in situation s
- <u>fluent</u>: a term or formula containing a situation term

The Blocks World: Initial Situation • Σ_{si}= on(C,Table,si) ∧ A on(B,C,si) ∧ on(A,B,si) A В on(D,Table,si) ∧ С D clear(A,si) ∧ Table clear(D,si) ∧ clear(Table,si) 28

The Situation Calculus and the Frame Problem

 for each action and each fluent specify a <u>frame</u> <u>axiom</u> of the form:

∀params,vars,s: fluent(vars,s) ∧ params≠vars →
fluent(vars,result(action(params),s))

- where:
 - fluent(vars,s) is a relation that is not affected by the application of the action
 - *params≠vars* is a conjunction of inequalities that must hold for the action to not effect the fluent

The Situation Calculus and the Frame Problem

- problem: need to represent a long list of facts that are not changed by an action
- the frame problem:
 - construct a formal framework
 - for reasoning about actions and change
 - in which the non-effects of actions do not have to be enumerated explicitly

- <u>representational parsimony</u>: representation of the effects of actions should be compact
- <u>expressive flexibility</u>: representation suitable for domains with more complex features
- <u>elaboration tolerance</u>: effort required to add new information is proportional to the complexity of that information

Coloured Blocks World Example Revisited

• coloured blocks world new frame axioms:

- $\forall v, w, x, y, z, s: x \neq v \rightarrow \neg affects(move(x, y, z), on(v, w), s)$
- $\forall v, w, x, y, s$: \neg affects(paint(x, y), on(v, w), s)
- $\forall v, x, y, z, s: y \neq v \land z \neq v \rightarrow \neg affects(move(x, y, z), clear(v), s)$
- $\forall v, x, y, s$: \neg affects(paint(x, y), clear(v), s)
- $\forall v, w, x, y, z, s$: \neg affects(move(x, y, z), colour(v, w), s)
- $\forall v, w, x, y, s: x \neq v \rightarrow \neg affects(paint(x, y), colour(v, w), s)$
- more compact, but not fewer frame axioms

The Limits of Classical Logic • monotonic consequence relation: $\Delta \models \phi$ implies $\Delta \land \delta \models \phi$ • problem: need to infer when a fluent is not affected by an action want to be able to add actions that affect existing fluents monotonicity: if ¬affects(a, f, s) holds in a theory it must also hold in any extension

- non-monotonic logics rely on default reasoning:
 - jumping to conclusions in the absence of information to the contrary
 - conclusions are assumed to be true by default
 - additional information may invalidate them
- application to frame problem:
 - explanation closure axioms are default knowledge
 - effect axioms are certain knowledge

