
1

The Situation Calculus 
and the Frame Problem

Using Theorem Proving to 
Generate Plans

The Situation Calculus and the Frame Problem
•Using Theorem Proving to Generate Plans



2

The Situation Calculus and the Frame Problem 2

Literature
Malik Ghallab, Dana Nau, and Paolo Traverso. 
Automated Planning – Theory and Practice, 
section 12.2. Elsevier/Morgan Kaufmann, 
2004.
Murray Shanahan. Solving the Frame Problem, 
chapter 1. The MIT Press, 1997.

Chin-Liang Chang and Richard Char-Tung 
Lee. Symbolic Logic and Mechanical Theorem 
Proving, chapters 2 and 3. Academic Press, 
1973.

Literature
•Malik Ghallab, Dana Nau, and Paolo Traverso. Automated 
Planning – Theory and Practice, section 12.2. 
Elsevier/Morgan Kaufmann, 2004.
•Murray Shanahan. Solving the Frame Problem, chapter 1. 
The MIT Press, 1997.
•Chin-Liang Chang and Richard Char-Tung Lee. Symbolic 
Logic and Mechanical Theorem Proving, chapters 2 and 3. 
Academic Press, 1973.

•for propositional and first-order logic



3

The Situation Calculus and the Frame Problem 3

Classical Planning
restricted state-transition system Σ=(S,A,γ)
planning problem P=(Σ,si,Sg)

Why study classical planning?
• good for illustration purposes
• algorithms that scale up reasonably well are known
• extensions to more realistic models known

What are the main issues?
• how to represent states and actions
• how to perform the solution search

Classical Planning
•restricted state-transition system Σ=(S,A,γ)

•finite, fully observable, deterministic, and static with 
restricted goals and implicit time

•planning problem P=(Σ,si,Sg)
•task of planning: synthesize (offline) the sequence of 
actions that is a solution

•Why study classical planning?
•good for illustration purposes
•algorithms that scale up reasonably well are known
•extensions to more realistic models known

•What are the main issues?
•how to represent states and actions

•domain-independence, avoid enumerating S and γ, 
avoiding the frame problem

•how to perform the solution search
•efficient search



4

The Situation Calculus and the Frame Problem 4

Planning as Theorem Proving

idea:
• represent states and actions in first-order 

predicate logic
• prove that there is a state s

• that is reachable from the initial state and 
• in which the goal is satisfied.

• extract plan from proof

Planning as Theorem Proving
•idea:

•represent states and actions in first-order predicate 
logic
•prove that there is a state s

•that is reachable from the initial state and 
•in which the goal is satisfied.
•proof must be constructive

•extract plan from proof
•all reasoning done by theorem prover, only problem is 
representation



5

The Situation Calculus and the Frame Problem 5

Overview

Propositional Logic
First-Order Predicate Logic
Representing Actions
The Frame Problem
Solving the Frame Problem

Overview
Propositional Logic

now: a very simple formal logic
•First-Order Predicate Logic
•Representing States and Actions
•The Frame Problem
•Solving the Frame Problem



6

The Situation Calculus and the Frame Problem 6

Propositions

proposition: a declarative sentence (or 
statement) that can either true or false
examples:
• the robot is at location1
• the crane is holding a container

atomic propositions (atoms): 
• have no internal structure
• notation: capital letters, e.g. P, Q, R, …

Propositions
•proposition: a declarative sentence (or statement) that can 
either true or false
•examples:

•the robot is at location1
•the crane is holding a container

•atomic propositions (atoms): 
•have no internal structure – “robot is at location1”
unrelated to “robot is at location2”
•notation: capital letters, e.g. P, Q, R, …



7

The Situation Calculus and the Frame Problem 7

Well-Formed Formulas

an atom is a formula
if G is a formula, then (¬G) is a formula
if G and H are formulas, then (G⋀H), 
(G⋁H), (G→H), (G↔H) are formulas.
all formulas are generated by applying 
the above rules

logical connectives: ¬, ⋀, ⋁, →, ↔

Well-Formed Formulas
•an atom is a formula
•if G is a formula, then (¬G) is a formula
•if G and H are formulas, then (G⋀H), (G⋁H), (G→H), (G↔H) 
are formulas.
•all formulas are generated by applying the above rules
•logical connectives: 

•¬: “not”, negation 
•⋀: “and”, conjunction
•⋁: “or”, disjunction
•→: “implies”, implication
•↔: “if and only if”, co-implication, equivalence



8

The Situation Calculus and the Frame Problem 8

Truth Tables

truetruefalsefalsetruefalsefalse

falsetruetruefalsetruetruefalse

falsefalsetruefalsefalsefalsetrue

truetruetruetruefalsetruetrue

G↔HG→HG⋁HG⋀H¬GHG

Truth Tables
•¬G: true if and only if G is false
•G⋀H: true if and only if both, G and H are true
•G⋁H: true if and only if one or both of G or H is true (not 
exclusive)
•G→H: true if and only if G is false or H is true (or both)
•G↔H: true if and only if G and H have the same truth vlaue



9

The Situation Calculus and the Frame Problem 9

Interpretations

Let G be a propositional formula containing 
atoms A1,…,An.
An interpretation I is an assignment of truth 
values to these atoms, i.e. 
I: {A1,…,An} {true, false}
example:
• formula G: (P⋀Q)→(R↔(¬S))
• interpretation I: P false, Q true, R true, S true
• G evaluates to true under I: I(G) = true

Interpretations
•Let G be a propositional formula containing atoms 
A1,…,An.
•An interpretation I is an assignment of truth values to 
these atoms, i.e. 
I: {A1,…,An} {true, false}
•example:

•formula G: (P⋀Q)→(R↔(¬S))
•interpretation I: P false, Q true, R true, S true
•G evaluates to true under I: I(G) = true (use truth tables 
on previous slide to evaluate)
•see also http://www.aiai.ed.ac.uk/~gwickler/truth-
table.html



10

The Situation Calculus and the Frame Problem 10

Validity and Inconsistency
A formula is valid if and only if it evaluates to true under 
all possible interpretations.
A formula that is not valid is invalid.
A formula is inconsistent (or unsatisfiable) if and only if it 
evaluates to false under all possible interpretations.
A formula that is not inconsistent is consistent (or 
satisfiable).
examples:
• valid: P ⋁ ¬P, P ⋀ (P → Q) → Q
• satisfiable: (P⋀Q)→(R↔(¬S))
• inconsistent: P ⋀ ¬P

Validity and Inconsistency
•A formula is valid if and only if it evaluates to true under 
all possible interpretations.
•A formula that is not valid is invalid. - false under at least 
one interpretation, but may be true under others
•A formula is inconsistent (or unsatisfiable) if and only if it 
evaluates to false under all possible interpretations.
•A formula that is not inconsistent is consistent (or 
satisfiable). - true under at least one interpretation, but may be 
false under others or may be valid
•examples:

•valid: P ⋁ ¬P (excluded third), P ⋀ (P → Q) → Q 
(modus ponens)
•satisfiable: (P⋀Q)→(R↔(¬S))
•inconsistent: P ⋀ ¬P



11

The Situation Calculus and the Frame Problem 11

Propositional Theorem Proving

Problem: Given a set of propositional formulas 
F1…Fn, decide whether
• their conjunction F1⋀…⋀Fn is valid or satisfiable or 

inconsistent or
• a formula G follows from (axioms) F1⋀…⋀Fn, denoted 

F1⋀…⋀Fn ⊨ G

decidable
NP-complete, but relatively efficient algorithms 
known (for propositional logic)

Propositional Theorem Proving
•Problem: Given a set of propositional formulas F1…Fn, 
decide whether

•their conjunction F1⋀…⋀Fn is valid or satisfiable or 
inconsistent or
•a formula G follows from (axioms) F1⋀…⋀Fn, denoted 
F1⋀…⋀Fn ⊨ G

•decidable – there are algorithms that can solve the above 
problems (and always terminate)
•NP-complete, but relatively efficient algorithms known (for 
propositional logic)



12

The Situation Calculus and the Frame Problem 12

Overview

Propositional Logic
First-Order Predicate Logic
Representing Actions
The Frame Problem
Solving the Frame Problem

Overview
•Propositional Logic

First-Order Predicate Logic
now: a more complex logic (sufficient for situation 

calculus)
•Representing States and Actions
•The Frame Problem
•Solving the Frame Problem



13

The Situation Calculus and the Frame Problem 13

First-Order Atoms

objects are denoted by terms
• constant terms: symbols denoting specific individuals

• examples: loc1, loc2, …, robot1, robot2, …
• variable terms: symbols denoting undefined individuals

• examples: l,l’
• function terms: expressions denoting individuals

• examples: 1+3, father(john), father(mother(x))

first-order propositions (atoms) state a relation 
between some objects
• examples: adjacent(l,l’), occupied(l), at(r,l), …

First-Order Atoms – like propositions but with internal structure
•objects are denoted by terms

•constant terms: symbols denoting specific 
individuals or concepts (intangible objects)

•examples: loc1, loc2, …, robot1, robot2, …
•variable terms: symbols denoting undefined 
individuals usually bound by quantifiers

•examples: l,l’
•function terms: expressions denoting individuals 
without introducing individual names: infinite domains!

•examples: 1+3, father(john), father(mother(x))
•first-order propositions (atoms) state a relation between 
some objects

•examples: adjacent(l,l’), occupied(l), at(r,l), …



14

The Situation Calculus and the Frame Problem 14

l1 l2

DWR Example State

k1

ca

k2

cb

cc

cd

ce

cf

robot

crane

location

pile (p1 and q1)

container

pile (p2 and q2, both empty)

container pallet

r1



15

The Situation Calculus and the Frame Problem 15

Objects in the DWR Domain
locations {loc1, loc2, …}: 
• storage area, dock, docked ship, or parking or passing area

robots {robot1, robot2, …}: 
• container carrier carts for one container
• can move between adjacent locations

cranes {crane1, crane2, …}: 
• belongs to a single location
• can move containers between robots and piles at same location

piles {pile1, pile2, …}: 
• attached to a single location
• pallet at the bottom, possibly with containers stacked on top of it

containers {cont1, cont2, …}: 
• stacked in some pile on some pallet, loaded onto robot, or held by crane
pallet: 
• at the bottom of a pile

Objects in the DWR Domain (1)
•locations {loc1, loc2, …}: 

•storage area, dock, docked ship, or parking or 
passing area
•do not necessarily have piles, e.g. parking or passing 
areas

•robots {robot1, robot2, …}: 
•container carrier carts for one container
•can move between adjacent locations
•can be loaded/unloaded by cranes at the same location
•at most one robot at one location at any one time

•cranes {crane1, crane2, …}: 
•belongs to a single location
•can move containers between robots and piles at 
same location
•can load/unload containers onto/from robots, or take/put 
containers from/onto top of piles, all at the same location
•possibly multiple cranes per location

•piles {pile1, pile2, …}: 
•attached to a single location
•locations with piles must also have cranes
•pallet at the bottom, possibly with containers stacked 
on top of it
•zero or more (unlimited number of) containers in a pile

ibl lti l il l ti



16

The Situation Calculus and the Frame Problem 16

Topology in the DWR Domain

adjacent(l,l′): 
location l is adjacent to location l′
attached(p,l):
pile p is attached to location l
belong(k,l):
crane k belongs to location l

topology does not change over time!

Topology in the DWR Domain
•adjacent(l,l’): location l is adjacent to location l’

•robots can move between adjacent locations
•attached(p,l): pile p is attached to location l

•each pile is at exactly one location
•belong(k,l): crane k belongs to location l

•cranes only have access to piles/robot at same location
•topology does not change over time!

•predicates denote fixed relationships (as opposed to 
fluents)



17

The Situation Calculus and the Frame Problem 17

Relations in the DWR Domain (1)

occupied(l):
location l is currently occupied by a robot
at(r,l):
robot r is currently at location l
loaded(r,c):
robot r is currently loaded with container c
unloaded(r):
robot r is currently not loaded with a container

Relations in the DWR Domain (1)
•occupied(l): location l is currently occupied by a robot
•at(r,l): robot r is currently at location l

•note: at(r,l) implies occupied(l)
•loaded(r,c): robot r is currently loaded with container c
•unloaded(r): robot r is currently not loaded with a 
container

•note: loaded(r,c) implies not unloaded(r)



18

The Situation Calculus and the Frame Problem 18

Relations in the DWR Domain (2)
holding(k,c):
crane k is currently holding container c
empty(k):
crane k is currently not holding a container
in(c,p):
container c is currently in pile p
on(c,c′):
container c is currently on container/pallet c′
top(c,p):
container/pallet c is currently at the top of pile p

Relations in the DWR Domain (2)
•holding(k,c): crane k is currently holding container c
•empty(k): crane k is currently not holding a container

•note: holding(k,c) implies not empty(k)
•in(c,p): container c is currently in pile p
•on(c,c’): container c is currently on container/pallet c’

•note: c’ may be a container or the pallet
•top(c,p): container/pallet c is currently at the top of pile p

•note: c may be a container or the pallet if there are no 
containers in the pile

•note: fluents are not independent!



19

The Situation Calculus and the Frame Problem 19

Well-Formed Formulas

an atom (relation over terms) is a formula
if G and H are formulas, then (¬G) (G⋀H), 
(G⋁H), (G→H), (G↔H) are formulas

if F is a formula and x is a variable then 
(∃x F(x)) and (∀x F(x)) are formulas

all formulas are generated by applying the 
above rules

Well-Formed Formulas
•an atom (relation over terms) is a formula
•if G and H are formulas, then (¬G) (G⋀H), (G⋁H), (G→H), 
(G↔H) are formulas

•new for first-order logic:
•if F is a formula and x is a variable then 
(∃x F(x)) and (∀x F(x)) are formulas

•existential and universal quantifiers over variable x and 
formula F containing variable x

•all formulas are generated by applying the above rules



20

The Situation Calculus and the Frame Problem 20

Formulas: DWR Examples

adjacency is symmetric: 
∀l,l′ adjacent(l,l′) ↔ adjacent(l′,l)

objects (robots) can only be in one place:
∀r,l,l′ at(r,l) ⋀ at(r,l′) → l=l′

cranes are empty or they hold a container:
∀k empty(k) ⋁ ∃c holding(k,c)

Formulas: DWR Examples
•adjacency is symmetric: ∀l,l′ adjacent(l,l′) ↔
adjacent(l′,l)

•other possible properties of relations: 
reflexive, transitive

•objects (robots) can only be in one place: ∀r,l,l′
at(r,l) ⋀ at(r,l′) → l=l′

•special relation: equality (assumed to be 
defined)

•cranes are empty or they hold a container: ∀k empty(k) 
⋁ ∃c holding(k,c)



21

The Situation Calculus and the Frame Problem 21

Semantics of First-Order Logic
an interpretation I over a domain D maps:
• each constant c to an element in the domain: I(c)∈D
• each n-place function symbol f to a mapping: I(f)∈Dn D
• each n-place relation symbol R to a mapping: 

I(R)∈Dn {true, false}

truth tables for connectives (¬, ⋀, ⋁, →, ↔) as for 
propositional logic

I((∃x F(x))) = true if and only if 
for at least one object c∈D: I(F(c)) = true. 
I((∀x F(x))) = true if and only if 
for every object c∈D: I(F(c)) = true.

Semantics of First-Order Logic
•an interpretation I over a domain D maps: domain is just a 
set

•each constant c to an element in the domain: 
I(c)∈D
•each n-place function symbol f to a mapping: 
I(f)∈Dn D
•each n-place relation symbol R to a mapping: 
I(R)∈Dn {true, false}
•so far: interpretation assigns truth values to atoms

•truth tables for connectives (¬, ⋀, ⋁, →, ↔) as for 
propositional logic
•I((∃x F(x))) = true if and only if for at least one object c∈D: 
I(F(c)) = true. 

•existential quantifier: true if there exists an object that 
satisfies the formula

•I((∀x F(x))) = true if and only if for every object c∈D: I(F(c)) 
= true.

•universal quantifier: true if every object satisfies the 
formula



22

The Situation Calculus and the Frame Problem 22

Theorem Proving in 
First-Order Logic

F is valid: F is true under all interpretations
F is inconsistent: F is false under all 
interpretations
theorem proving problem (as before): 
• F1⋀…⋀Fn is valid / satisfiable / inconsistent or 
• F1⋀…⋀Fn ⊨ G

semi-decidable
resolution constitutes significant progress in 
mid-60s

Theorem Proving in First-Order Logic
•F is valid: F is true under all interpretations
•F is inconsistent: F is false under all interpretations

•essentially same as propositional logic
•theorem proving problem (as before): 

•F1⋀…⋀Fn is valid / satisfiable / inconsistent or 
• F1⋀…⋀Fn ⊨ G

•semi-decidable: if F is inconsistent an algorithm can find a 
proof
•resolution constitutes significant progress in mid-60s

•hence the idea: use theorem prover as planner



23

The Situation Calculus and the Frame Problem 23

Substitutions

replace a variable in an atom by a term
example:
• substitution: σ = {x 4, y f(5)}
• atom A: greater(x, y)
• σ(F) = greater(4, f(5))

simple inference rule:
• if σ = {x c} and (∀x F(x)) ⊨ F(c)
• example: ∀x mortal(x) ⊨ mortal(Confucius)

Substitutions
•replace a variable in an atom by a term

•variable must be free; complexity: replacement term may 
contain (other) variable

•example:
•substitution: σ = {x 4, y f(5)}
•atom A: greater(x, y)
•σ(F) = greater(4, f(5))

•simple inference rule: instantiation
•if σ = {x c} and (∀x F(x)) ⊨ F(c)
•example: ∀x mortal(x) ⊨ mortal(Confucius)



24

The Situation Calculus and the Frame Problem 24

Unification

Let A(t1,…,tn) and A(t’1,…,t’n) be atoms.
A substitution σ is a unifier for A(t1,…,tn) and 
A(t’1,…,t’n) if and only if:
σ(A(t1,…,tn)) = σ(A(t’1,…,t’n))
examples:
• P(x, 2) and P(3, y) – unifier: {x 3, y 2}
• P(x, f(x)) and P(y, f(y)) – unifiers: {x 3, y 3}, {x y}
• P(x, 2) and P(x, 3) – no unifier exists

Unification
•Let A(t1,…,tn) and A(t’1,…,t’n) be atoms.

•predicate/relation: A; terms t1,…,tn,t’1,…,t’n
•A substitution σ is a unifier for A(t1,…,tn) and A(t’1,…,t’n) if 
and only if:
σ(A(t1,…,tn)) = σ(A(t’1,…,t’n))

•replace variables such that atoms are equal
•examples:

•P(x, 2) and P(3, y) – unifier: {x 3, y 2}
•P(x, f(x)) and P(y, f(y)) – unifiers: {x 3, y 3}, {x y} 
latter is more general
•P(x, 2) and P(x, 3) – no unifier exists

•efficient algorithm for finding most general unifier is known



25

The Situation Calculus and the Frame Problem 25

Overview

Propositional Logic
First-Order Predicate Logic
Representing States and Actions
The Frame Problem
Solving the Frame Problem

Overview
•Propositional Logic
•First-Order Predicate Logic
•Representing States and Actions

•now: an approach to representing and solving planning 
problems in first-order logic

•The Frame Problem
•Solving the Frame Problem



26

The Situation Calculus and the Frame Problem 26

Representing States

represent domain objects as constants
• examples: loc1, loc2, …, robot1, robot2, …

represent relations as predicates
• examples: adjacent(l,l’), occupied(l), at(r,l), …

problem: truth value of some relations 
changes from state to state
• examples: occupied(loc1), at(robot1,loc1)

Representing States
•represent domain objects as constants

•examples: loc1, loc2, …, robot1, robot2, …
•represented by constant symbols

•represent relations as predicates
•examples: adjacent(l,l’), occupied(l), at(r,l), …

•problem: truth value of some relations changes from state 
to state

•each state corresponds to a different logical theory
•examples: occupied(loc1), at(robot1,loc1)
•application of actions changes the truth values



27

The Situation Calculus and the Frame Problem 27

Situations and Fluents
solution: make state explicit in representation through 
situation term
• add situation parameter to changing relations:

• occupied(loc1,s): location1 is occupied in situation s
• at(robot1,loc1,s): robot1 is at location1 in situation s

• or introduce predicate holds(f,s):
• holds(occupied(loc1),s): location1 is occupied holds in 

situation s
• holds(at(robot1,loc1),s): robot1 is at location1 holds in 

situation s

fluent: a term or formula containing a situation term

Situations and Fluents
•solution: make state explicit in representation through 
situation term

•sentences in FOPL are usually assumed to implicitly refer 
to the same state
•situation term allows the naming of a state in which a 
relation may hold
•add situation parameter to changing relations:

•occupied(loc1,s): location1 is occupied in 
situation s
•at(robot1,loc1,s): robot1 is at location1 in 
situation s

•or introduce predicate holds(f,s):
•holds(occupied(loc1),s): location1 is occupied 
holds in situation s
•holds(at(robot1,loc1),s): robot1 is at location1 
holds in situation s

•both approaches are equivalent, but second approach 
turns relation into function term

•fluent: a term or formula containing a situation term

•truth value changes between situations
•note: relations that do not change do not need to be related to 
situations



28

The Situation Calculus and the Frame Problem 28

The Blocks World: Initial 
Situation

Σsi=
on(C,Table,si) ⋀
on(B,C,si) ⋀
on(A,B,si) ⋀
on(D,Table,si) ⋀
clear(A,si) ⋀
clear(D,si) ⋀
clear(Table,si)

Table

A

D

B

C

The Blocks World: Initial Situation
•[figure]

•domain objects: blocks A, B, C, and D; the Table
•Σsi=

•si: the initial situation depicted here
•fluents:

•on(x,y,s): denotes that block x is on block y in 
situation s
•clear(x,s): there is room on top of x for a block in s; x
being a block or the Table which is always clear

•on(C,Table,si) ⋀
•on(B,C,si) ⋀
•on(A,B,si) ⋀
•on(D,Table,si) ⋀
•clear(A,si) ⋀
•clear(D,si) ⋀
•clear(Table,si)

•note: cannot draw negative conclusions, as in ¬on(x,y,si) or 
¬clear(x,si)



29

The Situation Calculus and the Frame Problem 29

Actions

actions are non-tangible objects in the 
domain denoted by function terms
• example: move(robot1,loc1,loc2): move 

robot1 from location loc1 to location loc2
definition of an action through
• a set of formulas defining applicability 

conditions
• a set of formulas defining changes in the state 

brought about by the action

Actions
•actions are non-tangible objects in the domain denoted by 
function terms

•example: move(robot1,loc1,loc2): move robot1 from 
location loc1 to location loc2
•function symbol is action name or type, arguments are 
objects involved or manipulated

•definition of an action through
•a set of formulas defining applicability conditions
•a set of formulas defining changes in the state 
brought about by the action
•actions are described in the same first-order language as 
states



30

The Situation Calculus and the Frame Problem 30

Blocks World: Applicability

Δa=
∀x,y,z,s: applicable(move(x,y,z),s) ↔

clear(x,s) ⋀
clear(z,s) ⋀
on(x,y,s) ⋀
x≠Table ⋀
x≠z ⋀
y≠z

Blocks World: Applicability
•Δa=

•defined here for later reference to this formula
•∀x,y,z,s: applicable(move(x,y,z),s) ↔

•clear(x,s) ⋀
•the block to be moved must be clear

•clear(z,s) ⋀
•the place where we move it must be clear

•on(x,y,s) ⋀
•condition used to bind y

•x≠Table ⋀
•cannot move the table

•x≠z ⋀
•cannot move the block onto itself

•y≠z
•origin and destination should be different



31

The Situation Calculus and the Frame Problem 31

Blocks World: move Action

single action move(x,y,z): moving block x
from y (where it currently is) onto z

Table

A

D

B

C

Table

A

D

B

C

move(A,B,D)

Blocks World: move Action
•[figure]

•left: situation before the action is performed
•action: move block A from block B onto block D
•right: situation after the action has been performed

•single action move(x,y,z): moving block x from y (where it 
currently is) onto z

•either y or z may be the Table, but not x



32

The Situation Calculus and the Frame Problem 32

Applicability of Actions
for each action specify applicability axioms of the form: 
∀params,s: applicable(action(params),s) ↔
preconds(params,s)
where:
• “applicable” is a new predicate relating actions to states
• params is a set of variables denoting objects
• action(params) is a function term denoting an action over 

some objects
• preconds(params) is a formula that is true iff action(params) 

can be performed in s

Applicability of Actions
•for each action specify applicability axioms of the form:

•∀params,s: applicable(action(params),s) ↔
preconds(params,s)

•similar for version based on holds-predicate
•where:

•“applicable” is a new predicate relating actions to 
states

•true iff action is applicable in state
•params is a set of variables denoting objects

•the objects manipulated by the action in some way
•action(params) is a function term denoting an action 
over some objects
•preconds(params) is a formula that is true iff
action(params) can be performed in s

•can be any first-order formula involving quantifiers 
and connectives



33

The Situation Calculus and the Frame Problem 33

Effects of Actions
for each action specify effect axioms of the form:
∀params,s: applicable(action(params),s) →

effects(params,result(action(params),s))
where:
• “result” is a new function that denotes the state 

that is the result of applying action(params) in s
• effects(params,result(action(params),s)) is a 

formula that is true in the state denoted by 
result(action(params),s)

Effects of Actions
•for each action specify effect axioms of the form:

•∀params,s: applicable(action(params),s) →
effects(params,result(action(params),s))

•similar for version based on holds-predicate
•where:

•“result” is a new function that denotes the state that 
is the result of applying action(params) in s

•function that maps an action and a situation into a 
situation

•effects(params,result(action(params),s)) is a formula 
that is true in the state denoted by 
result(action(params),s)

•can be any first-order formula involving quantifiers 
and connectives



34

The Situation Calculus and the Frame Problem 34

Blocks World: Effect Axioms

Δe=
∀x,y,z,s: applicable(move(x,y,z),s) →

on(x,z,result(move(x,y,z),s)) ⋀
∀x,y,z,s: applicable(move(x,y,z),s) →

clear(y,result(move(x,y,z),s))

Blocks World: Effect Axioms
•Δe=

•∀x,y,z,s: applicable(move(x,y,z),s) →
•on(x,z,result(move(x,y,z),s)) ⋀

•x will now be on z
•∀x,y,z,s: applicable(move(x,y,z),s) →

•clear(y,result(move(x,y,z),s))
•y will be clear as a result of the move

•note: no negative effects specified, e.g. x is no longer 
on y



35

The Situation Calculus and the Frame Problem 35

Blocks World: Derivable Facts

Σsi⋀Δa⋀Δe ⊨ on(A,D,result(move(A,B,D),si))
Σsi⋀Δa⋀Δe ⊨ clear(B,result(move(A,B,D),si))

Table

A

D

B

C

result(move(A,B,D),si):

Blocks World: Derivable Facts
•[figure] shows the result of moving A from B onto D
•Σsi⋀Δa⋀Δe ⊨ on(A,D,result(move(A,B,D),si))

•it follows that A is now on D and
•Σsi⋀Δa⋀Δe ⊨ clear(B,result(move(A,B,D),si))

•it follows that B is now clear
•these facts can be derived by any sound and complete theorem 
proving algorithm



36

The Situation Calculus and the Frame Problem 36

Overview

Propositional Logic
First-Order Predicate Logic
Representing States and Actions
The Frame Problem
Solving the Frame Problem

Overview
•Propositional Logic
•First-Order Predicate Logic
•Representing States and Actions

•just done: an approach to representing and solving 
planning problems in first-order logic

•The Frame Problem
•now: defining the frame problem

•Solving the Frame Problem



37

The Situation Calculus and the Frame Problem 37

Blocks World: Non-Derivable 
Fact

not derivable:
Σsi⋀Δa⋀Δe ⊨
on(B,C,result(move(A,B,D),si))

Table

A

D

B

C

result(move(A,B,D),si):

Blocks World: Non-Derivable Fact
•[figure] as before
•not derivable: Σsi⋀Δa⋀Δe ⊨ on(B,C,result(move(A,B,D),si))

•the fact that B is still on C does not logically follow from 
the theory
•effect axioms list only what is true as a direct result of an 
action, not what stays true



38

The Situation Calculus and the Frame Problem 38

The Non-Effects of Actions

effect axioms describe what changes when an 
action is applied, but not what does not change
example: move robot
• does not change the colour of the robot
• does not change the size of the robot
• does not change the political system in the UK
• does not change the laws of physics

The Non-Effects of Actions
•effect axioms describe what changes when an action is 
applied, but not what does not change

•frame problem: need to explicitly describe what does not 
change when an action is performed

•example: move robot
•does not change the colour of the robot
•does not change the size of the robot
•does not change the political system in the UK
•does not change the laws of physics

•there is an infinite number of facts that do not change
•but also: butterfly effect – everything affects everything



39

The Situation Calculus and the Frame Problem 39

Frame Axioms

for each action and each fluent specify a frame 
axiom of the form:
∀params,vars,s: fluent(vars,s) ⋀ params≠vars →

fluent(vars,result(action(params),s))
where:
• fluent(vars,s) is a relation that is not affected by 

the application of the action
• params≠vars is a conjunction of inequalities that 

must hold for the action to not effect the fluent

Frame Axioms
•frame axioms capture persistence of fluents that are 
unaffected by actions

•for each action and each fluent specify a frame axiom of the form:
•∀params,vars,s: fluent(vars,s) ⋀ params≠vars →
fluent(vars,result(action(params),s))

•inequality needed if fluent is unaffected depending on 
parameters

•where:
•fluent(vars,s) is a relation that is not affected by the 
application of the action

•generally, vars are different from params
•params≠vars is a conjunction of inequalities that must 
hold for the action to not effect the fluent

•see examples that follow



40

The Situation Calculus and the Frame Problem 40

Blocks World: Frame Axioms

Δf=
∀v,w,x,y,z,s: on(v,w,s) ⋀ v≠x →

on(v,w,result(move(x,y,z),s)) ⋀
∀v,w,x,y,z,s: clear(v,s) ⋀ v≠z →

clear(v,result(move(x,y,z),s))

Blocks World: Frame Axioms
•Δf=

•∀v,w,x,y,z,s: on(v,w,s) ⋀ v≠x →
•on(v,w,result(move(x,y,z),s)) ⋀

•if v is not the block that is being moved 
(inequality) then “v on w” persists

•∀v,w,x,y,z,s: clear(v,s) ⋀ v≠z →
•clear(v,result(move(x,y,z),s))

•if v is not the place the block x is moved onto 
(inequality) then “v is clear” persists



41

The Situation Calculus and the Frame Problem 41

Blocks World: Derivable Fact 
with Frame Axioms

now derivable:
Σsi⋀Δa ⋀Δe⋀Δf ⊨
on(B,C,result(move(A,B,D),si))

Table

A

D

B

C

result(move(A,B,D),si):

Blocks World: Derivable Fact with Frame Axioms
•[figure] as before
•now derivable: Σsi⋀Δa ⋀Δe⋀Δf ⊨ on(B,C,result(move(A,B,D),si))

•fact that B remains on C can now be proven

•need for two frame axioms might be surprising but gives 
desired result



42

The Situation Calculus and the Frame Problem 42

Coloured Blocks World
like blocks world, but blocks have colour (new fluent) and 
can be painted (new action)
new information about si:
• ∀x: colour(x,Blue,si))

new effect axiom:
• ∀x,y,s: colour(x,y,result(paint(x,y),s))

new frame axioms:
• ∀v,w,x,y,z,s: colour(v,w,s) → colour(v,w,result(move(x,y,z),s)) 
• ∀v,w,x,y,s: colour(v,w,s) ⋀ v≠x → colour(v,w,result(paint(x,y),s))
• ∀v,w,x,y,s: on(v,w,s) → on(v,w,result(paint(x,y),s)) 
• ∀v,w,x,y,s: clear(v,w,s) → clear(v,w,result(paint(x,y),s)) 

Coloured Blocks World
•like blocks world, but blocks have colour (new fluent) and can be 
painted (new action)

•colour(x,y) denotes that block x has colour y
•paint(x,y) denotes the action of painting block x in colour y 
(no applicability conditions)

•new information about si:
•∀x: colour(x,Blue,si))

•new effect axiom:
•∀x,y,s: colour(x,y,result(paint(x,y),s))

•new frame axioms:
•∀v,w,x,y,z,s: colour(v,w,s) →
colour(v,w,result(move(x,y,z),s)) 

•moving a block does not change the colour of any 
block

•∀v,w,x,y,s: colour(v,w,s) ⋀ v≠x →
colour(v,w,result(paint(x,y),s))

•painting a block does not change the colour of any 
other block

•∀v,w,x,y,s: on(v,w,s) → on(v,w,result(paint(x,y),s)) 
•painting a block does not change which block is on 
which

•∀v,w,x,y,s: clear(v,w,s) → clear(v,w,result(paint(x,y),s))
•painting a block does not change which blocks a re 
clear



43

The Situation Calculus and the Frame Problem 43

The Frame Problem

problem: need to represent a long list of 
facts that are not changed by an action

the frame problem: 
• construct a formal framework
• for reasoning about actions and change
• in which the non-effects of actions do not 

have to be enumerated explicitly

The Frame Problem
•problem: need to represent a long list of facts that are not 
changed by an action

•description of what does not change is considerably larger 
than of what does change: number of frame axioms is 
number of actions times number of fluents

•add a new fluent: add (number of actions) new frame 
axioms
•add a new action: add (number of fluents) new frame 
axioms

•frame problem first described by McCarthy and Hayes 
(1969):

•the frame problem: 
•construct a formal framework
•for reasoning about actions and change
•in which the non-effects of actions do not have to be 
enumerated explicitly

•what does not change is felt to be common sense; 
there should be no need to write it down explicitly



44

The Situation Calculus and the Frame Problem 44

Overview

Propositional Logic
First-Order Predicate Logic
Representing States and Actions
The Frame Problem
Solving the Frame Problem

Overview
•Propositional Logic
•First-Order Predicate Logic
•Representing States and Actions
•The Frame Problem

•just done: defining the frame problem
•Solving the Frame Problem

•now: types of approaches to the frame problem



45

The Situation Calculus and the Frame Problem 45

Approaches to the Frame 
Problem

use a different style of representation in 
first-order logic (same formalism)
use a different logical formalism, e.g. 
non-monotonic logic
write a procedure that generates the 
right conclusions and forget about the 
frame problem

Approaches to the Frame Problem
•use a different style of representation in first-order logic 
(same formalism)

•various have been tried but the frame problem keeps 
showing up

•use a different logical formalism, e.g. non-monotonic logic
•write a procedure that generates the right conclusions and 
forget about the frame problem

•the STRIPS approach: is it a representation?
•logical vs. computational aspect of the frame problem
•rest of this course follows mostly this approach



46

The Situation Calculus and the Frame Problem 46

Criteria for a Solution

representational parsimony:
representation of the effects of actions should 
be compact
expressive flexibility:
representation suitable for domains with more 
complex features
elaboration tolerance:
effort required to add new information is 
proportional to the complexity of that 
information

Criteria for a Solution
•representational parsimony: representation of the effects 
of actions should be compact

•size of the representation should be roughly proportional 
to the complexity of the domain (number of actions + 
number of fluents)
•not true for situation calculus (so far)

•expressive flexibility: representation suitable for domains 
with more complex features

•complex features: ramifications (e.g. three blocks on top 
of each other form a stack), concurrent actions, non-
deterministic actions, continuous change

•elaboration tolerance: effort required to add new 
information is proportional to the complexity of that 
information

•ideally, new action or fluent should be added (appended) 
to existing theory and not require a complete 
reconstruction



47

The Situation Calculus and the Frame Problem 47

The Universal Frame Axiom

frame axiom for all actions, fluents, and 
situations:
∀a,f,s: holds(f,s) ⋀ ¬affects(a,f,s) →
holds(f,result(a,s))
where “affects” is a new predicate that 
relates actions, fluents, and situations
¬affects(a,f,s) is true if and only if the action 
a does not change the value of the fluent f
in situation s

The Universal Frame Axiom
•approach: different style of representation in first-order logic
•frame axiom for all actions, fluents, and situations: ∀a,f,s: 
holds(f,s) ⋀ ¬affects(a,f,s) → holds(f,result(a,s))

•requires different style of representation with fluent as 
function term

•where “affects” is a new predicate that relates actions, fluents, 
and situations
•¬affects(a,f,s) is true if and only if the action a does not 
change the value of the fluent f in situation s



48

The Situation Calculus and the Frame Problem 48

Coloured Blocks World Example 
Revisited

coloured blocks world new frame axioms:
• ∀v,w,x,y,z,s: x≠v → ¬affects(move(x,y,z), on(v,w), s)
• ∀v,w,x,y,s: ¬affects(paint(x,y), on(v,w), s)
• ∀v,x,y,z,s: y≠v ⋀ z≠v → ¬affects(move(x,y,z), clear(v), s)
• ∀v,x,y,s: ¬affects(paint(x,y), clear(v), s)
• ∀v,w,x,y,z,s: ¬affects(move(x,y,z), colour(v,w), s)
• ∀v,w,x,y,s: x≠v → ¬affects(paint(x,y), colour(v,w), s)

more compact, but not fewer frame axioms

Coloured Blocks World Example Revisited
•coloured blocks world new frame axioms:

•∀v,w,x,y,z,s: x≠v → ¬affects(move(x,y,z), on(v,w), s)
•∀v,w,x,y,s: ¬affects(paint(x,y), on(v,w), s)
•∀v,x,y,z,s: z≠v → ¬affects(move(x,y,z), clear(v), s)
•∀v,x,y,s: ¬affects(paint(x,y), clear(v), s)
•∀v,w,x,y,z,s: ¬affects(move(x,y,z), colour(v,w), s)
•∀v,w,x,y,s: x≠v → ¬affects(paint(x,y), colour(v,w), s)

•gives exactly the same conclusions as 
previous representation

•more compact, but not fewer frame axioms
•still (number of actions) times (number of fluents) 
frame axioms required



49

The Situation Calculus and the Frame Problem 49

Explanation Closure Axioms

idea: infer the action from the affected fluent:
• ∀a,v,w,s: affects(a, on(v,w), s) → ∃x,y: a=move(v,x,y)
• ∀a,v,s: affects(a, clear(v), s) →

(∃x,z: a=move(x,v,z)) ⋁ (∃x,y: a=move(x,y,v))
• ∀a,v,w,s: affects(a, colour(v,w), s) → ∃x: a=paint(v,x)

allows to draw all the desired conclusions
reduces the number of required frame axioms
also allows to the draw the conclusion:
• ∀a,v,w,x,y,s: a≠move(v,x,y) → ¬affects(a, on(v,w), s) 

Explanation Closure Axioms
•idea: infer the action from the affected fluent:

•∀a,v,w,x,y,z,s: affects(a, on(v,w), s) →
a=move(x,y,z)
•∀a,v,x,y,z,s: affects(a, clear(v), s) → a=move(x,y,z)
•∀a,v,w,x,y,s: affects(a, colour(v,w), s) →
a=paint(x,y)

•allows to draw all the desired conclusions
•reduces the number of required frame axioms
•also allows to the draw the conclusion:

•∀a,v,w,x,y,z,s: a≠move(x,y,z) → ¬affects(a, on(v,w), 
s) 

•representational parsimony: yes; expressive flexibility: 
?; elaboration tolerance: no



50

The Situation Calculus and the Frame Problem 50

The Limits of Classical Logic

monotonic consequence relation:
Δ ⊨ ϕ implies Δ⋀δ ⊨ ϕ
problem:
• need to infer when a fluent is not affected by 

an action
• want to be able to add actions that affect 

existing fluents
monotonicity: if ¬affects(a, f, s) holds in a 
theory it must also hold in any extension

The Limits of Classical Logic
•monotonic consequence relation: Δ ⊨ ϕ implies Δ⋀δ ⊨ ϕ

•adding a formula does not invalidate previous conclusions
•problem:

•need to infer when a fluent is not affected by an 
action

•need to infer the necessary condition under which 
the fluent is affected

•want to be able to add actions that affect existing 
fluents

•want to admit the possibility of new actions or effects
•elaboration tolerance: add these without modifying 
the existing theory
•hence: previous consequences still valid in extended 
theory

•monotonicity: if ¬affects(a, f, s) holds in a theory it must also 
hold in any extension

•hence: no new action can affect a pre-existing fluent



51

The Situation Calculus and the Frame Problem 51

Using Non-Monotonic Logics

non-monotonic logics rely on default 
reasoning:
• jumping to conclusions in the absence of information 

to the contrary
• conclusions are assumed to be true by default
• additional information may invalidate them

application to frame problem:
• explanation closure axioms are default knowledge
• effect axioms are certain knowledge

Using Non-Monotonic Logics
•non-monotonic logics rely on default reasoning:

•jumping to conclusions in the absence of information 
to the contrary
•conclusions are assumed to be true by default
•additional information may invalidate them

•application to frame problem:
•explanation closure axioms are default knowledge
•effect axioms are certain knowledge



52

The Situation Calculus and the Frame Problem 52

Overview

Propositional Logic
First-Order Predicate Logic
Representing States and Actions
The Frame Problem
Solving the Frame Problem

Overview
•Propositional Logic
•First-Order Predicate Logic
•Representing States and Actions
•The Frame Problem
•Solving the Frame Problem

•just done: types of approaches to the frame problem


