Scheduling

Planning with Actions that Require Resources

Literature

Planning and Scheduling

- solution to planning problem:
 - plan: partially ordered set of actions
 - actions: fully instantiated operators
 - require resources
- resources:
 - can be modelled as parameters of an action
 - problem: planning algorithms tries out all possibilities (inefficient)
 - alternative approach:
 - allow unbound resource variables in plan (planning)
 - find assignment of resources to actions (scheduling)

Overview

- Scheduling Problems and Schedules
 - Searching for Schedules
Actions and Resources

- resources: an entity needed to perform an action
 - state variables: modified by actions in absolute ways
 - example: move(r,l,l'):
 - location changes from l to l'
 - resource variables: modified by actions in relative ways
 - example: move(r,l,l'):
 - fuel level changes from f to f-f'

Actions with Time Constraints

- Let a be an action in a planning domain:
 - attached time constraints:
 - earliest start time: $s_{min}(a)$ – actual start time: $s(a)$
 - latest end time: $s_{max}(a)$ – actual end time: $e(a)$
 - duration: $d(a)$
 - action types:
 - preemptive actions: cannot be interrupted
 - $d(a) = e(a) - s(a)$
 - non-preemptive actions: can be interrupted
 - resources available to other actions during interruption
Actions with Resource Constraints

- Let a be an action in a planning domain:
 - attached resource constraints:
 - required resource: r
 - quantity of resource required: q
 - reusable: resource will be available to other actions after this action is completed
 - consumable: resource will be consumed when action is complete

Reusable Resources

- resource availability:
 - total capacity: Q_r
 - current level at time t: $z_r(t)$
- resource requirements:
 - $\text{require}(a, r, q)$: action a requires q units of resource r while it is active
- resource profile:

\[
\begin{align*}
Q_r & \quad q_1 \quad q_2 \\
\text{a}_1: \text{require}(a_1, r, q_1) \quad \text{a}_2: \text{require}(a_2, r, q_2)
\end{align*}
\]
Consumable Resources

- resource availability:
 - total reservoir at t_0: Q_r
 - current level at time t: $z_r(t)$
- resource consumption/production:
 - consume(a, r, q): action a requires q units of resource r
 - produce(a, r, q): action a produces q units of resource r
- resource profile:

```
Q_r: \[ a_1: \text{consume}(a_1, r, q_1) \]
    \[ a_2: \text{consume}(a_2, r, q_2) \]
    \[ a_3: \text{produce}(a_3, r, q_3) \]
```

Other Resource Features

- discrete vs. continuous
 - countable number of units: cranes, bolts
 - real-valued amount: bandwidth, electricity
- unary
 - $Q_r = 1$; exactly one resource of this type available
- sharable
 - can be used by several actions at the same time
- resources with states
 - actions may require resources in specific state
Combining Resource Constraints

- **conjunction:**
 - action uses multiple resources while being performed

- **disjunction:**
 - action requires resources as alternatives
 - cost/time may depend on resource used

- **resource types:**
 - resource-class(s) = \{r_1, \ldots, r_m\}: require(a, s, q)
 - equivalent to disjunction over identical resources

Cost Functions and Optimization Criteria

- **cost function parameters**
 - quantity of resource required
 - duration of requirement

- **optimization criteria:**
 - total schedule cost
 - makespan (end time of last action)
 - weighted completion time
 - (weighted) number of late actions
 - (weighted) maximum tardiness
 - resource usage
Machine Scheduling

- machine: resource of unit capacity
 - either available or not available at time t
 - cannot process two actions at the same time
- job j: partially ordered set of actions a_{j1}, \ldots, a_{jk}
 - action a_j requires
 - one resource type
 - for a number of time units
 - actions in same job must be processed sequentially
 - actions in different jobs are independent (not ordered)
- machine scheduling problem:
 - given: n jobs and m machines
 - schedule: mapping from actions to machines + start times

Example: Scheduling Problem

- machines:
 - m_1 of resource type r_1
 - m_2, m_3 of resource type r_2
- jobs:
 - j_1: $\langle r_1(3), r_2(3), r_1(3) \rangle$
 - three actions, totally ordered
 - a_{11} requires 3 units of resource type 1, etc.
 - j_2: $\langle r_2(3), r_1(5) \rangle$
 - j_3: $\langle r_1(3), r_1(2), r_2(3), r_1(5) \rangle$
Example: Schedules by Job

- **machines:**
 - m_1 of type r_1
 - m_2 of type r_2

- **jobs:**
 - j_1: $\langle r_1(1), r_2(2) \rangle$
 - j_2: $\langle r_1(3), r_2(1) \rangle$

Example: Schedules by Machine

- **machines:**
 - m_1 of type r_1
 - m_2 of type r_2

- **jobs:**
 - j_1: $\langle r_1(1), r_2(2) \rangle$
 - j_2: $\langle r_1(3), r_2(1) \rangle$
Overview

- Scheduling Problems and Schedules
- Searching for Schedules

Assignable Actions

- Let P be a machine scheduling problem. Let S be a partially defined schedule.
- An action a_{ji} of some job j_i in P is unassigned if it does not appear in S.
- An action a_{ji} of some job j_i in P is assignable if it has no unassigned predecessors in S.
Example: Assignable Actions

- problem P:
 - machines:
 - m_1 of type r_1
 - m_2 of type r_2
 - jobs:
 - j_1: $\langle r_1(1), r_2(2) \rangle$
 - j_2: $\langle r_1(3), r_2(1) \rangle$
 - j_3: $\langle r_1(3), r_2(1), r_1(3) \rangle$
- partial schedule S:
 - assignable:
 - a_{22}, a_{31}
 - unassigned:
 - $a_{22}, a_{31}, a_{32}, a_{33}$

Earliest Assignable Time

- Let a_{ji} be an assignable action in S. The earliest assignable time for a_{ji} on machine m in S is:
 - the end of the last action currently scheduled on m in S, or
 - the end of the last predecessor ($a_{j0} \ldots a_{ji-1}$) in S,
whichever comes later.
Example: Earliest Assignable Time

- problem P:
 - machines:
 - m_1 of type r_1
 - m_2 of type r_2
 - jobs:
 - j_1: $(r_1(1), r_2(2))$
 - j_2: $(r_1(3), r_2(1))$
 - j_3: $(r_1(3), r_2(1), r_1(3))$

- partial schedule S:

```
<table>
<thead>
<tr>
<th>m1</th>
<th>0 2 4 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a11</td>
<td></td>
</tr>
<tr>
<td>a21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m2</th>
<th>0 2 4 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a12</td>
<td></td>
</tr>
</tbody>
</table>
```

- earliest assignable time for a_{22} on m_2: 4
- earliest assignable time for a_{31} on m_1: 4

Heuristic Search

```python
def heuristicScheduler(P, S):
    assignables ← P.getAssignables(S)
    if assignables.isEmpty() then return S
    action ← assignables.selectOne()
    machines ← P.getMachines(action)
    machine ← machines.selectOne()
    time ← S.getEarliestAssignableTime(action, machine)
    S ← S + assign(action, machine, time)
    return heuristicScheduler(P, S)
```
Using Local Search

• issues:
 • representing schedules
 • generating a random initial schedule
 • generating neighbours
 • evaluating neighbours (schedules)

Schedule Representation

• representation:
 • totally ordered list of all actions with assigned machines
 • example: \(\langle (a_{11}, m_1), (a_{21}, m_1), (a_{12}, m_2), (a_{22}, m_2) \rangle \)

• schedule:
 • assign actions in sequence to given machines at earliest assignable times
 • example:

\[
\begin{align*}
m_1 & \quad a_{11} & \quad a_{21} \\
m_2 & \quad a_{12} & \quad a_{22}
\end{align*}
\]
Initial Schedule and Evaluation

- generating random schedules:
 - randomly choose an assignable action
 - randomly choose a machine of the right resource type for that action
 - append the action-machine pair to the list of assignments
 - do this until all actions are assigned
- evaluating schedules:
 - generate schedule from list
 - apply optimization criterion

Generating Neighbours

- machine neighbours:
 - change the machine assigned to an action to any other machine
- position neighbours:
 - change the position of an action a in the list:
 - a_{min}: the latest predecessor of a in the current list
 - a_{max}: the earliest successor of a in the current list
 - move a anywhere between a_{min} and a_{max}
LocalSearchScheduler: Pseudo Code

function LocalSearchScheduler(P)
 best ← randomSchedule(P)
 loop MAXLOOP times
 S ← randomSchedule(P)
 do
 succs ← S.getBestNeighbours(P)
 next ← succs.selectOne()
 if S.evaluate() < next.evaluate() then
 S ← next
 while S = next
 if S.evaluate() > best.evaluate() then
 best ← S
 return best

Overview

- Scheduling Problems and Schedules
- Searching for Schedules