Scheduling

• Planning with Actions that Require Resources
Literature

Planning and Scheduling

- **solution to planning problem:**
 - plan: partially ordered set of actions
 - actions: fully instantiated operators
 - require resources
- **resources:**
 - can be modelled as parameters of an action
 - problem: planning algorithms tries out all possibilities (inefficient)
 - alternative approach:
 - allow unbound resource variables in plan (planning)
 - find assignment of resources to actions (scheduling)

<table>
<thead>
<tr>
<th>Planning and Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• solution to planning problem:</td>
</tr>
<tr>
<td>• plan: partially ordered set of actions</td>
</tr>
<tr>
<td>• actions: fully instantiated operators</td>
</tr>
<tr>
<td>• require resources</td>
</tr>
<tr>
<td>• resources:</td>
</tr>
<tr>
<td>• can be modelled as parameters of an action</td>
</tr>
<tr>
<td>• problem: planning algorithms tries out all possibilities (inefficient)</td>
</tr>
<tr>
<td>• alternative approach:</td>
</tr>
<tr>
<td>• allow unbound resource variables in plan (planning)</td>
</tr>
<tr>
<td>• find assignment of resources to actions (scheduling)</td>
</tr>
</tbody>
</table>

| planning focuses on causal reasoning (what to do) |
| find assignment of resources to actions (scheduling) |
| scheduling: resource and time allocation (how and when to do it) |
| planning before scheduling (not optimal approach) |
Overview

• Scheduling Problems and Schedules
 • now: an overview of different types of scheduling problems

Searching for Schedules
Actions and Resources

- **resources**: an entity needed to perform an action
 - state variables: modified by actions in absolute ways
 - example: move\((r,l,l')\):
 - location changes from \(l\) to \(l'\)
 - resource variables: modified by actions in relative ways
 - example: move\((r,l,l')\):
 - fuel level changes from \(f\) to \(f-f'\)
Actions with Time Constraints

- Let \(a \) be an action in a planning domain:
 - attached time constraints:
 - earliest start time: \(s_{min}(a) \) – actual start time: \(s(a) \)
 - latest end time: \(s_{max}(a) \) – actual end time: \(e(a) \)
 - duration: \(d(a) \)
 - action types:
 - preemptive actions: cannot be interrupted
 - \(d(a) = e(a) - s(a) \)
 - non-preemptive actions: can be interrupted
 - resources available to other actions during interruption
 - cost: interruption usually has cost associated
 - further constraints: examples:
 - action must be performed at night
 - interruptions must be at least 30 minutes long
Actions with Resource Constraints

Let a be an action in a planning domain:

- **attached resource constraints:**
 - **required resource:** r
 - **quantity of resource required:** q

- **reusable:** resource will be available to other actions after this action is completed

- **consumable:** resource will be consumed when action is complete

<table>
<thead>
<tr>
<th>Tools, machines, HD space, helicopters, docks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrol, electricity, CPU time, credit</td>
</tr>
</tbody>
</table>

Time is usually treated differently, as a special case.
Reusable Resources

• resource availability:
 ▪ total capacity: Q_r
 ▪ current level at time t: $z_r(t)$

• resource requirements:
 ▪ $\text{require}(a,r,q)$: action a requires q units of resource r while it is active

• resource profile:

Reactive Resources
• resource availability:
 ▪ total capacity: Q_r
 ▪ current level at time t: $z_r(t)$

• resource requirements:
 ▪ $\text{require}(a,r,q)$: action a requires q units of resource r while it is active

• resource profile:
 ▪ actions are overlapping (temporally)
 ▪ profile shows availability of resource to other actions
 ▪ returns to full capacity when all actions are completed
Consumable Resources

- resource availability:
 - total reservoir at t_0: Q_r
 - current level at time t: $z_r(t)$
- resource consumption/production:
 - consume(a, r, q): action a requires q units of resource r
 - produce(a, r, q): action a produces q units of resource r
- resource profile:
 - actions are overlapping (temporally)
 - profile shows availability of resource to other actions
 - availability at end usually different from beginning
 - resource profile as step function: usually not accurate
Other Resource Features

- discrete vs. continuous
 - countable number of units: cranes, bolts
 - real-valued amount: bandwidth, electricity
- unary
 - $Q_r=1$; exactly one resource of this type available
- sharable
 - can be used by several actions at the same time
- resources with states
 - actions may require resources in specific state

Other Resource Features

- discrete vs. continuous
 - countable number of units: cranes, bolts
 - real-valued amount: bandwidth, electricity
- unary
 - $Q_r=1$; exactly one resource of this type available
- sharable
 - can be used by several actions at the same time
- resources with states
 - actions may require resources in specific state

- example: freezer with temperature setting
Combining Resource Constraints

• conjunction:
 • action uses multiple resources while being performed

• disjunction:
 • action requires resources as alternatives
 • cost/time may depend on resource used

• resource types:
 • resource-class(s) = \{r_1, \ldots, r_m\}: require(a, s, q)
 • equivalent to disjunction over identical resources
Cost Functions and Optimization Criteria

- **cost function parameters**
 - quantity of resource required
 - duration of requirement
- **optimization criteria:**
 - total schedule cost
 - makespan (end time of last action)
 - weighted completion time
 - (weighted) number of late actions
 - (weighted) maximum tardiness
 - resource usage

<table>
<thead>
<tr>
<th>Cost Functions and Optimization Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>- cost function parameters</td>
</tr>
<tr>
<td>- quantity of resource required</td>
</tr>
<tr>
<td>- duration of requirement</td>
</tr>
<tr>
<td>- optimization criteria:</td>
</tr>
<tr>
<td>- total schedule cost</td>
</tr>
<tr>
<td>- makespan (end time of last action)</td>
</tr>
<tr>
<td>- weighted completion time</td>
</tr>
<tr>
<td>- (weighted) number of late actions</td>
</tr>
<tr>
<td>- (weighted) maximum tardiness</td>
</tr>
<tr>
<td>- resource usage</td>
</tr>
</tbody>
</table>
Machine Scheduling

- class of problems
 - machine: resource of unit capacity
 - either available or not available at time t
 - cannot process two actions at the same time
 - job j: partially ordered set of actions a_{j1}, \ldots, a_{jk}
 - action a_j requires
 - one resource type
 - for a number of time units
 - actions in same job must be processed sequentially
 - actions in different jobs are independent (not ordered)
 - machine scheduling problem:
 - given: n jobs and m machines
 - schedule: mapping from actions to machines + start times

Machine Scheduling

- class of problems
 - machine: resource of unit capacity
 - either available or not available at time t
 - cannot process two actions at the same time
 - job j: partially ordered set of actions a_{j1}, \ldots, a_{jk}
 - in general, jobs can have different numbers of activities
 - action a_{ji} requires
 - one resource type
 - for a number of time units
 - actions in same job must be processed sequentially
 - even if they are only partially ordered: object that is being worked on
 - actions in different jobs are independent (not ordered)
 - machine scheduling problem:
 - given: n jobs and m machines
 - schedule: mapping from actions to machines + start times
Example: Scheduling Problem

• machines:
 • m_1 of resource type r_1
 • m_2, m_3 of resource type r_2

• jobs:
 • $j_1: \langle r_1(3), r_2(3), r_3(3) \rangle$
 • three actions, totally ordered
 • a_{11} requires 3 units of resource type 1, etc.
 • $j_2: \langle r_2(3), r_1(5) \rangle$
 • $j_3: \langle r_1(3), r_1(2), r_2(3), r_1(5) \rangle$
Example: Schedules by Job

- **machines:**
 - \(m_1 \) of type \(r_1 \)
 - \(m_2 \) of type \(r_2 \)

- **jobs:**
 - \(j_1: \langle r_1(1), r_2(2) \rangle \)
 - \(j_2: \langle r_1(3), r_2(1) \rangle \)

[figures]

- schedules showing machines assigned to actions in jobs
Example: Schedules by Machine

• machines:
 • \(m_1 \) of type \(r_1 \)
 • \(m_2 \) of type \(r_2 \)

• jobs:
 • \(j_1: \langle r_1(1), r_2(2) \rangle \)
 • \(j_2: \langle r_1(3), r_2(1) \rangle \)

[figures]

• schedules showing actions assigned to machines
Overview

• Scheduling Problems and Schedules
 • just done: an overview of different types of scheduling problems

• Searching for Schedules
 • now: search algorithms that generate schedules
Assignable Actions

• Let P be a machine scheduling problem. Let S be a partially defined schedule.
• An action a_{ji} of some job j_i in P is unassigned if it does not appear in S.
• An action a_{ji} of some job j_i in P is assignable if it has no unassigned predecessors in S.

Assignable Actions

• Let P be a machine scheduling problem. Let S be a partially defined schedule.
• An action a_{ji} of some job j_i in P is **unassigned** if it does not appear in S.
• An action a_{ji} of some job j_i in P is **assignable** if it has no unassigned predecessors in S.
 • all predecessors in schedule; action is ready to be executed
Example: Assignable Actions

• problem P:
 • machines:
 • m_1 of type r_1
 • m_2 of type r_2
 • jobs:
 • j_1: $\langle r_1(1), r_2(2) \rangle$
 • j_2: $\langle r_1(3), r_2(1) \rangle$
 • j_3: $\langle r_1(3), r_2(1), r_1(3) \rangle$

• partial schedule S:
 • m_1
 • m_2

• unassigned:
 • a_{22}, a_{31}, a_{32}, a_{33}

• assignable:
 • a_{22}, a_{31}

[figure]
Earliest Assignable Time

Let a_{ji} be an assignable action in S. The earliest assignable time for a_j on machine m in S is:

- the end of the last action currently scheduled on m in S, or
- the end of the last predecessor ($a_{j0} \ldots a_{ji-1}$) in S,
whichever comes later.

• note: assignment not necessarily optimal!
Example: Earliest Assignable Time

- problem \(P \):
 - machines:
 - \(m_1 \) of type \(r_1 \)
 - \(m_2 \) of type \(r_2 \)
 - jobs:
 - \(j_1 \): \(\langle r_1(1), r_2(2) \rangle \)
 - \(j_2 \): \(\langle r_1(3), r_2(1) \rangle \)
 - \(j_3 \): \(\langle r_1(3), r_2(1), r_1(3) \rangle \)

- partial schedule \(S \):
 - earliest assignable time for \(a_{22} \) on \(m_2 \): 4
 - earliest assignable time for \(a_{31} \) on \(m_1 \): 4
Heuristic Search

heuristicScheduler(P,S)
assignables ← P.getAssignables(S)
if assignables.isEmpty() then return S
action ← assignables.selectOne()
machines ← P.getMachines(action)
machine ← machines.selectOne()
time ← S.getEarliestAssignableTime(action, machine)
S ← S + assign(action, machine, time)
return heuristicScheduler(P,S)

• Heuristic Search
• heuristicScheduler(P,S)
• assignables ← P.getAssignables(S)
• if assignables.isEmpty() then return S
• action ← assignables.selectOne()
• machines ← P.getMachines(action)
• machine ← machines.selectOne()
• time ← S.getEarliestAssignableTime(action, machine)
• S ← S + assign(action, machine, time)
• return heuristicScheduler(P,S)
Using Local Search

• issues:
 • representing schedules
 • generating a random initial schedule
 • generating neighbours
 • evaluating neighbours (schedules)
Schedule Representation

- representation:
 - totally ordered list of all actions with assigned machines
 - example: \(((a_{11}, m_1), (a_{21}, m_1), (a_{12}, m_2), (a_{22}, m_2)) \)

- schedule:
 - assign actions in sequence to given machines at earliest assignable times
 - example:

```
<table>
<thead>
<tr>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>a_2</td>
</tr>
<tr>
<td>a_3</td>
<td>a_4</td>
</tr>
</tbody>
</table>
```

Schedule Representation

- representation:
 - totally ordered list of all actions with assigned machines
 - example: \(((a_{11}, m_1), (a_{21}, m_1), (a_{12}, m_2), (a_{22}, m_2)) \)

- schedule:
 - assign actions in sequence to given machines at earliest assignable times
 - example:
 - [figure]
Initial Schedule and Evaluation

- **generating random schedules:**
 - randomly choose an assignable action
 - randomly choose a machine of the right resource type for that action
 - append the action-machine pair to the list of assignments
 - do this until all actions are assigned

- **evaluating schedules:**
 - generate schedule from list
 - apply optimization criterion

Initial Schedule and Evaluation

- generating random schedules:
 - randomly choose an assignable action
 - randomly choose a machine of the right resource type for that action
 - append the action-machine pair to the list of assignments
 - do this until all actions are assigned

- evaluating schedules:
 - generate schedule from list
 - apply optimization criterion
Generating Neighbours

machine neighbours:
- change the machine assigned to an action to any other machine

position neighbours:
- change the position of an action \(a \) in the list:
 - \(a_{\text{min}} \): the latest predecessor of \(a \) in the current list
 - \(a_{\text{max}} \): the earliest successor of \(a \) in the current list
 - move \(a \) anywhere between \(a_{\text{min}} \) and \(a_{\text{max}} \)
LocalSearchScheduler: Pseudo Code

function LocalSearchScheduler(P)
best ← randomSchedule(P)
loop MAXLOOP times
 S ← randomSchedule(P)
do
 succs ← S.getBestNeighbours(P)
 next ← succs.selectOne()
 if S.evaluate() < next.evaluate() then
 S ← next
 while S = next
 if S.evaluate() > best.evaluate() then
 best ← S
return best

• LocalSearchScheduler: Pseudo Code
• function LocalSearchScheduler(P)
 • best ← randomSchedule(P)
 • will contain best schedule found
• loop MAXLOOP times
 • S ← randomSchedule(P)
 • best schedule for local search
• do
 • succs ← S.getBestNeighbours(P)
 • returns set of neighbours with highest value for evaluation function
 • next ← succs.selectOne()
 • randomly select a (best) neighbour
• if S.evaluate() < next.evaluate() then
 • S ← next
 • remember best local neighbour
• while S = next
 • stop local search when no uphill move possible
• if S.evaluate() > best.evaluate() then
 • best ← S
 • remember best overall
• return best
Overview

• Scheduling Problems and Schedules

▶ Searching for Schedules
 ◀ just done: search algorithms that generate schedules