SAT-Based Planning

Using Propositional SAT-Solvers to Search for Plans

Literature

The General Idea

- idea: transform planning problem into other problem for which efficient solvers are known
- approach here:
 - transform planning problem into propositional satisfiability problem (SAT)
 - solve transformed problem using (efficient) SAT solver, e.g. GSAT
 - extract a solution to the planning problem from the solution to transformed problem

Overview

- Encoding Planning Problems as Satisfiability Problems (SAT)
- Efficient SAT Solving Algorithms
Encoding a Planning Problem

- aim: encode a propositional planning problem $\mathcal{P}=(\Sigma,s,g)$ into a propositional formula Φ such that:
 - \mathcal{P} has a solution if and only if Φ is satisfiable, and
 - every model μ of Φ corresponds to a solution plan π of \mathcal{P}.
- key elements to encode:
 - world states
 - state-transitions (actions)

Example: Simplified DWR Problem

- robots can load and unload autonomously
- locations may contain unlimited number of robots and containers
- problem: swap locations of containers
Simplified DWR Problem: State Proposition Symbols

- robots:
 - \(r1 \) and \(r2 \): \(\text{at}(\text{robr},\text{loc}1) \) and \(\text{at}(\text{robr},\text{loc}2) \)
 - \(q1 \) and \(q2 \): \(\text{at}(\text{robq},\text{loc}1) \) and \(\text{at}(\text{robq},\text{loc}2) \)
 - \(ur \) and \(uq \): \(\text{unloaded}(\text{robr}) \) and \(\text{unloaded}(\text{robq}) \)

- containers:
 - \(a1, a2, ar, \) and \(aq \): \(\text{in}(\text{conta},\text{loc}1) \), \(\text{in}(\text{conta},\text{loc}2) \), \(\text{loaded}(\text{conta},\text{robr}) \), and \(\text{loaded}(\text{conta},\text{robq}) \)
 - \(b1, b2, br, \) and \(bq \): \(\text{in}(\text{contb},\text{loc}1) \), \(\text{in}(\text{contb},\text{loc}2) \), \(\text{loaded}(\text{contb},\text{robr}) \), and \(\text{loaded}(\text{contb},\text{robq}) \)

- initial state: \(\{r1, q2, a1, b2, ur, uq\} \)

Encoding World States

- use conjunction of propositions that hold in the state
- example:
 - initial state: \(\{r1, q2, a1, b2, ur, uq\} \)
 - encoding: \(r1 \land q2 \land a1 \land b2 \land ur \land uq \)
 - model: \(\{r1 \iff \text{true}, q2 \iff \text{true}, a1 \iff \text{true}, b2 \iff \text{true}, ur \iff \text{true}, uq \iff \text{true}\} \)
Intended vs. Unintended Models

- possible models:
 - intended model: $\{r_1 \leftarrow \text{true}, r_2 \leftarrow \text{false}, q_1 \leftarrow \text{false}, q_2 \leftarrow \text{true}, u_r \leftarrow \text{true}, u_q \leftarrow \text{true}, a_1 \leftarrow \text{true}, a_2 \leftarrow \text{false}, a_r \leftarrow \text{false}, a_q \leftarrow \text{false}, b_1 \leftarrow \text{false}, b_2 \leftarrow \text{true}, b_r \leftarrow \text{false}, b_q \leftarrow \text{false}\}$
 - unintended model: $\{r_1 \leftarrow \text{true}, r_2 \leftarrow \text{true}, q_1 \leftarrow \text{false}, q_2 \leftarrow \text{true}, u_r \leftarrow \text{true}, u_q \leftarrow \text{true}, a_1 \leftarrow \text{true}, a_2 \leftarrow \text{false}, a_r \leftarrow \text{true}, a_q \leftarrow \text{false}, b_1 \leftarrow \text{false}, b_2 \leftarrow \text{true}, b_r \leftarrow \text{false}, b_q \leftarrow \text{false}\}$
- encoding: add negated propositions not in state
 - example:
 - $r_1 \land \neg r_2 \land \neg q_1 \land q_2 \land u_r \land u_q \land a_1 \land \neg a_2 \land \neg a_r \land \neg a_q \land \neg b_1 \land b_2 \land \neg b_r \land \neg b_q$

Encoding the Set of Goal States

- goal: defined as set of states
 - example:
 - swap the containers
 - all states in which a_2 and b_1 are true
- propositional formula can encode multiple states:
 - example: $a_2 \land b_1$ (2^{12} possible models)
 - use disjunctions for other types of goals
Simplified DWR Problem: Action Symbols

- **move actions:**
 - Mr12: move(robr,loc1,loc2), Mr21: move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2), Mq21: move(robq,loc2,loc1)

- **load actions:**
 - Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1, Lbr2, Lbq1, and Lbq2 correspondingly

- **unload actions:**
 - Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, Uar1, Ubr2, Ubq1, and Ubq2 correspondingly

Extended State Propositions

- state transition: $\gamma(s_1,\text{Mr12}) = s_2$ where:
 - s_1 described by $r_1 \land \neg r_2$
 - s_2 described by $\neg r_1 \land r_2$
- problem: $r_1 \land \neg r_2 \land \neg r_1 \land r_2$ has no model
- idea: extend propositions with state index
 - example: $r_{1_1} \land \neg r_{2_1} \land \neg r_{1_2} \land r_{2_2}$
 - model: $\{r_{1_1}\leftarrow\text{true}, r_{2_1}\leftarrow\text{false}, r_{1_2}\leftarrow\text{false}, r_{2_2}\leftarrow\text{true}\}$
Extended Action Propositions

- use same mechanism to describe actions applied in different states:
 - example: Mr12_1: move robot r from location 1 to location 2 in state s_2
 - action encoding: $\text{Mr12}_1 \Rightarrow (r_{1_1} \land \neg r_{2_1} \land \neg r_{1_2} \land r_{2_2})$

Bounded Planning Problems

- encoding in two steps:
 - bounded planning problem: for a given planning problem $\mathcal{P}=(\Sigma, s, g)$ find a solution plan of a fixed length n
 - encode the bounded planning problem into a satisfiability problem
 - state propositions with index 0 … n
 - action propositions with index 0 … $n-1$
Encoding Bounded Planning Problems

- conjunction of formulas describing:
 - the initial state
 - the goal states
 - actions (applicability and effects)
 - frame axioms
 - one action at a time

Encoding Initial and Goal States

- Let F be the set of state propositions (fluents). Let $f \in F$.

- initial state:
 - $\land_{f \in si} f_0 \land \land_{f \in si} \neg f_0$

- goal states:
 - $\land_{f \in g^+} f_n \land \land_{f \in g^-} \neg f_n$
Encoding Actions

- Let A be the set of action propositions. Let $a \in A$.

For $0 \leq i \leq n-1$:
- $a_i \Rightarrow (\land_{f \in \text{precond}(a)} f_i \land \land_{f \in \text{effects}^+(a)} f_{i+1} \land \land_{f \in \text{effects}^-(a)} \neg f_{i+1})$

Encoding Frame Axioms

- Use explanation closure axioms for more compact SAT problem

For $0 \leq i \leq n-1$:
- $(f_i \land \neg f_{i+1}) \Rightarrow (\lor_{a \in A \land f \in \text{effects}^-(a)} a_i) \land$
- $(\neg f_i \land f_{i+1}) \Rightarrow (\lor_{a \in A \land f \in \text{effects}^+(a)} a_i)$
Encoding Exclusion Axioms

- allow only exactly one action at each step

- for 0 ≤ i ≤ n-1 and a≠a’, a,a’∈A:
 - ¬ a_i v ¬ a’_i

Overview

- Encoding Planning Problems as Satisfiability Problems (SAT)
 - Efficient SAT Solving Algorithms
Generic SAT Problem

- given: set of m propositional formulas:
 \[\{F_1 \ldots F_m\} \]
 - containing n proposition symbols: $P_1 \ldots P_n$
- find: an interpretation I
 - that assigns truth values (T, F) to $P_1 \ldots P_n$, i.e. $l(F_j) = T$ or $l(F_j) = F$, and
 - under which all the formulas evaluate to T, i.e. $l(F_1 \land \ldots \land F_m) = T$

Conjunctive Normal Form

- formula F is in conjunctive normal form (CNF) iff:
 - F has the form $F_1 \land \ldots \land F_n$ and
 - each F_i, $i \in 1\ldots n$, is a disjunction of literals

- Proposition: Let F be a propositional formula. Then there exists a propositional formula F' in CNF such that:
 - F and F' are equivalent, i.e.
 - for every interpretation I, $l(F) = l(F')$
Transformation into CNF

- eliminate implications:
 - \(F \leftrightarrow G = F \rightarrow G \land G \rightarrow F \)
 - \(F \rightarrow G = \neg F \lor G \)

- bring negations before atoms:
 - \(\neg (F \lor G) = \neg F \land \neg G \)
 - \(\neg (F \land G) = \neg F \lor \neg G \)
 - \(\neg (\neg F) = F \)

- apply distributive laws:
 - \(F \land (G \lor H) = (F \land G) \lor (F \land H) \)
 - \(F \lor (G \land H) = (F \lor G) \land (F \lor H) \)

SAT Solving Procedures

- systematic:
 - Davis-Putnam algorithm
 - extend partial assignment into complete assignment
 - sound and complete

- stochastic:
 - local search algorithms (GSAT, WalkSAT)
 - modify randomly chosen total assignment
 - sound, not complete, very fast
Local Search Algorithms

- **basic principles:**
 - keep only a single (complete) state in memory
 - generate only the neighbours of that state
 - keep one of the neighbours and discard others
- **key features:**
 - no search paths
 - neither systematic nor incremental
- **key advantages:**
 - use very little memory (constant amount)
 - find solutions in search spaces too large for systematic algorithms

Random- Restart Hill- Climbing

- **method:**
 - conduct a series of hill-climbing searches from randomly generated initial states
 - stop when a goal is found
- **analysis:**
 - complete with probability approaching 1
 - requires $1/p$ restarts where p is the probability of success
 - $(1 \text{ success} + 1/p-1 \text{ failures})$
Hill Climbing:
getBestSuccessors

getBestSuccessors(i, clauses)

\[tc \leftarrow -1; \ succs \leftarrow \{} \]

for every proposition \(p \) in \(i \)

\[i' \leftarrow i.\text{flipValueOf}(p) \]

\[n \leftarrow \text{number of clauses true under } i' \]

if \(n > tc \) then \(tc \leftarrow n; \ succs \leftarrow \{} \)

if \(n = tc \) then \(succs \leftarrow succs + i' \)

return \(succs \)

GSAT: Pseudo Code

function GSAT(clauses)

\[props \leftarrow clauses.\text{getPropositions()} \]

loop at most MAXLOOP times

\[i \leftarrow \text{randomInterpretation}(props) \]

while not \(clauses.\text{evaluate}(i) \) do

\[succs \leftarrow \text{getBestSuccessors}(i, clauses) \]

\[i \leftarrow succs.\text{selectOne()} \]

if \(clauses.\text{evaluate}(i) \) return \(i \)

return unknown
GSAT Evaluation

- experimental results:
 - solved every problem correctly that Davis-Putnam could solve, only much faster
 - begins to return “unknown” on problems orders of magnitude larger than Davis-Putnam can solve

- analysis:
 - problems with many local maxima are difficult for GSAT

WalkSAT

- idea:
 - start with random interpretation
 - choose a random proposition to flip
 - accept if it represents an uphill or level move
 - otherwise accept it with probability $e^{-\delta/T(s)}$
 - where:
 - δ = decrease in number of true clauses under i'
 - $T(s)$ = monotonically decreasing function from number of steps taken to temperature value
Overview

- Encoding Planning Problems as Satisfiability Problems (SAT)
 - Efficient SAT Solving Algorithms