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The General Idea

e idea: transform planning problem into other
problem for which efficient solvers are known

e approach here:
¢ transform planning problem into propositional
satisfiability problem (SAT)
¢ solve transformed problem using (efficient) SAT
solver, e.g. GSAT
® extract a solution to the planning problem from the
solution to transformed problem
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The General Idea

sidea: transform planning problem into other problem for
which efficient solvers are known

«approach here:

transform planning problem into propositional
satisfiability problem (SAT)

*SAT: problem of determining whether a propositional
formula is satisfiable (theorem proving)

*solve transformed problem using (efficient) SAT solver,
e.g. GSAT

~extract a solution to the planning problem from the
solution to transformed problem

*main advantage: exploit recent results in SAT solver for efficient
planning
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Overview

»Encoding Planning Problems as Satisfiability Problems
(SAT)

®»now: how to encode a planning problem into SAT problem
that has a model iff the planning problem has a solution

Efficient SAT Solving Algorithms



Encoding a Planning Problem

e aim: encode a propositional planning problem
#=(Z,s,,9) into a propositional formula ® such
that:

® 2 has a solution if and only if ® is satisfiable, and
® every model u of @ corresponds to a solution plan
of 2.
e key elements to encode:
® world states
® state-transitions (actions)
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Encoding a Planning Problem

-aim: encode a propositional planning problem 2=(Z,s;,g) into

a propositional formula ® such that:
2 has a solution if and only if @ is satisfiable, and
-every model uy of @ corresponds to a solution plan mr of
2.

*model: assignment of truth values to propositions
(atoms) in the formula such that formula evaluates to

true

«formula is satisfiable if it has a model (if such an
assignment exists)

*key elements to encode:
‘world states
state-transitions (actions)

*note: style of encoding determines length of formula and thus
difficulty of SAT problem



Example: Simplified DWR
Problem

robr robq

locl loc2

e robots can load and unload autonomously

e locations may contain unlimited number of
robots and containers

e problem: swap locations of containers
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Example: Simplified DWR Problem
*same problem as for Graphplan

*[figure]
sinitial state: as shown
‘robots can load and unload autonomously

‘locations may contain unlimited number of robots and
containers

*problem: swap locations of containers



Simplified DWR Problem: State
Proposition Symbols

e robots:
® r1and r2: at(robr,loc1) and at(robr,loc2)
® g1 and g2: at(robg,loc1) and at(robq,loc2)
® urand uq: unloaded(robr) and unloaded(robq)
e containers:
® a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2),
loaded(conta,robr), and loaded(conta,robq)
® b1, b2, br, and bq: in(contb,loc1), in(contb,loc2),
loaded(contb,robr), and loaded(contb,robq)

e initial state: {r1, q2, a1, b2, ur, uqg}
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Simplified DWR Problem: State Proposition Symbols
‘robots:

r1 and r2: at(robr,loc1) and at(robr,loc2)

-q1 and g2: at(robq,loc1) and at(robq,loc2)

«ur and uq: unloaded(robr) and unloaded(robq)
scontainers:

a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2),
loaded(conta,robr), and loaded(conta,robq)

b1, b2, br, and bq: in(contb,loc1), in(contb,loc2),
loaded(contb,robr), and loaded(contb,robq)

*14 state propositions
sinitial state: {r1, q2, a1, b2, ur, uq}



Encoding World States

e use conjunction of propositions that hold
in the state

e example:
¢ initial state: {r1, q2, a1, b2, ur, ug}
® encoding: r1 Ag2Aal Ab2AurAuq

® model: {r1<true, g2<true, at<true,
b2<true, ur<true, ug<true}
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Encoding World States
suse conjunction of propositions that hold in the state
example:

initial state: {r1, q2, a1, b2, ur, uq}

encoding: r1AqQ2A a1 Ab2A urAuq

'model: {r1<true, g2<true, a1<true, b2<true,
ur<true, uq<true}



Intended vs. Unintended Models

e possible models:

® intended model: {r1<true, r2<false, q1<false,
g2<true, ur<true, ug<true, af<true, a2<false,
ar<false, ag<false, b1<false, b2<true, br&false, bg
<&false}

® unintended model: {r1<true, r2<true, q1<false,
g2<true, ur<true, ug<true, af<true, a2<false,
ar<true, ag€-false, b1<false, b2<true, bré&false, bg
<&false}

e encoding: add negated propositions not in state

® example: r1 A r2A"q1TAQ2AurAugAal A-a2n
-ar A mag A b1 A b2 A mbr A bg
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Intended vs. Unintended Models
*possible models:

sintended model: {r1<true, r2<&false, g71<false, g2<true,
ur<-true, ug<true, a1<true, a2<false, ar<false,
aq<false, b1<false, b2<true, br&false, bg <false}

sunintended model: {r1<true, r2<true, g1<false, q2<true,
ur<true, ug<true, at1<true, a2<false, ar<true,
aq<false, b1<false, b2<true, br&false, bg <false}

*encoding: add negated propositions not in state

cexample: rI A r2A-q1Aq2AurnuqAalA"a2A"arA
“aq A b1 A b2 A -brA-bqg

*both models make formula from previous slide true
«differences are underlined

sunintended model has container a in location 1 and on robot
r (may be possible, but unintended)

*unintended model has robot r in location 1 and 2 at the
same time



Encoding the Set of Goal States

e goal: defined as set of states

® example:
® swap the containers
¢ all states in which a2 and b1 are true

e propositional formula can encode
multiple states:
® example: a2 A b1 (22 possible models)
¢ use disjunctions for other types of goals
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Encoding the Set of Goal States
-goal: defined as set of states

example:
swap the containers
-all states in which a2 and b7 are true
spropositional formula can encode multiple states:
-example: a2 A b1 (212 possible models)
-use disjunctions for other types of goals

«other types: set not defined through propositions that must
hold, e.g. both containers must be in the same location

*note: every state can be described in this way, allowing for
ambiguity

10



Simplified DWR Problem: Action
Symbols

e move actions:
® Mr12: move(robr,loc1,loc2), Mr21:
move(robr,loc2,loc1), Mq12: move(robg,loc1,loc2),
Mqg21: move(robq,loc2,loc1)
e |oad actions:
® Lar1: load(conta,robr,loc1); Lar2, Laq1, Lag2, Lar1,
Lbr2, Lbq1, and Lbg2 correspondingly
e unload actions:

® Uar1: unload(conta,robr,loc1); Uar2, Uag1, Uaq2,
Uar1, Ubr2, Ubqg1, and Ubqg2 correspondingly
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Simplified DWR Problem: Action Symbols
‘move actions:

*Mr12: move(robr,loc1,loc2), Mr21: move(robr,loc2,loc1),
Mq12: move(robq,loc1,loc2), Mg21: move(robq,loc2,loc1)

*Joad actions:

-Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1,
Lbr2, Lbq1, and Lbq2 correspondingly

unload actions:

‘Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, Uar1,
Ubr2, Ubqg1, and Ubq2 correspondingly

20 action symbols

11



Extended State Propositions

r1A-r2 riAr2

o state transition: y(s;,Mr12) = s, where:
® s, described by r1 A 7r2 and
® s, described by 7r1 A r2
e problem: r1 A=r2 A= r1 A r2 has no model
e idea: extend propositions with state index
® example: ri_1A=r2_1A-r1_2Ar2_2
® model: {r1_1<true, r2_1<false, r1_2<false, r2_2<true}
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Extended State Propositions
*[figure]
«formulas describe state transition when applying Mr12 in
state s,, resulting in s,
-state transition: y(s,,Mr12) = s, where:
s, described by r1 A 7r2 and
*s, described by r1 A r2
sproblem: r1 A r2 A= r1 A r2 has no model
*idea: extend propositions with state index
example: r1_1Ar2 1A r1_2Ar2_2
*meaning: r1_1—robot ris at location 1 in state 1
'model: {r1_1<true, r2_1<false, r1_2<false, r2_2<true}

12



Extended Action Propositions

e use same mechanism to describe
actions applied in different states:

® example: Mr12_1: move robot r from location
1 to location 2 in state s,

¢ action encoding:
Mr12_1= (ri_1A-r2_1A-r1_2Ar2_2)

Mr12_1
O—

ri_1A-r2_1 ari_2Ahr2_2
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Extended Action Propositions

‘use same mechanism to describe actions applied in
different states:

.example: Mr12_1: move robot r from location 1 to
location 2 in state s,

*Mr12_1: state index refers to state before that action
and has same number; different for planning graph

«action encoding: Mr12_1= (r1_1Ar2_1A-r1_2Ar2_2)
*model: action must be true; rest remains as before
*[figure]
*note:

*encoding based on same ideas as situation calculus, but
propositional

*encoding of actions as propositional formulas (propositional
representation: actions as set-theoretic operators)

13



Bounded Planning Problems

e encoding in two steps:
® bounded planning problem: for a given
planning problem 2=(Z,s;,g) find a solution
plan of a fixed length n
® encode the bounded planning problem into
a satisfiability problem
¢ state propositions with index 0 ... n
® action propositions with index O ... n-1

SAT-Based Planning 14

Bounded Planning Problems
encoding in two steps:

‘bounded planning problem: for a given planning
problem 2=(Z,s;,g) find a solution plan of a fixed

length n

idea: extend length of bounded planning problem until
a plan is found

*e.g. use binary search on plan length

encode the bounded planning problem into a
satisfiability problem

state propositions with index 0 ... n
«action propositions with index 0 ... n-1

*note: if a plan of length k<n exists then it can be extended to a
plan of length n with no-op actions

14



Encoding Bounded Planning
Problems

e conjunction of formulas describing:
¢ the initial state
® the goal states
¢ actions (applicability and effects)
¢ frame axioms
® one action at a time
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Encoding Bounded Planning Problems
sconjunction of formulas describing:
the initial state
the goal states
«actions (applicability and effects)
frame axioms
*one action at a time

«different types of encodings known: differ in resulting formula
length, roughly equivalent to complexity of SAT problem

15



Encoding Initial and Goal States

e Let F be the set of state propositions
(fluents). Let feF.

e initial state:
® Aegi T OAN,;f O
e goal states:

®NegeF NN, f 1
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Encoding Initial and Goal States
‘Let F be the set of state propositions (fluents). Let feF.
*initial state:
‘NesiF OANNg,;,F 0
-goal states:

Nege . NAN, N

16



Encoding Actions

e Let A be the set of action propositions.
Let acA.

e for0<i<n-1:
¢ a—i = (/\feprecond(a) f_l A
A/&effects+(a) f_i+1 A
A/%effects-(a} _'f_i+1 )
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Encoding Actions
‘Let A be the set of action propositions. Let acA.
for 0 < i< n-1:
*a_i > (Agprecondfe) F_i A Aeetrectss(a) 1 A Neetpects.(a) TF_i+1)
«if action a is performed in step i then:
«all preconditions must have held before and
«all positive effects will hold after and
«all negative effects will not hold after

17



Encoding Frame Axioms

e use explanation closure axioms for more
compact SAT problem

e for0<i<n-1:
° (f_’ A _'f_i+1) d (VasA/\ Feffects-(a) a_i) A

¢ (_'f_i A f_i+1) = (VaeA/\ FEeffects+(a) a_i)
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Encoding Frame Axioms

‘use explanation closure axioms for more compact SAT
problem

for 0 <i< n-1:

.(f—i A _'f—i+1) = (VaeAA Eeffects-(a) a_i) A

.(_'f_i A f_i+1) = (VaeAA Eeffects+(a) a_i)

18



Encoding Exclusion Axioms

e allow only exactly one action at each
step

e for 0 < /< n-1and a#a’, a,a’cA:
®-a_jiv-a_i

SAT-Based Planning

Encoding Exclusion Axioms
-allow only exactly one action at each step
for 0 </ < n-1 and a#a’, a,a’eA:
*m@_ivoa_i
unlike Graphplan: only one action in each step

19
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Overview

»Encoding Planning Problems as Satisfiability Problems

(SAT)

®just done: how to encode a planning problem into SAT
problem that has a model iff the planning problem has a

solution

*Efficient SAT Solving Algorithms

*now: efficient algorithms for SAT solving (very quick

overview)
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Generic SAT Problem

e given: set of m propositional formulas:
{Fy... F}
® containing n proposition symbols: P, ... P,
e find: an interpretation /
¢ that assigns truth values (T, F)to P, ... P, i.e.
I(F) =T or I(F) = F, and
® under which all the formulas evaluate to T, i.e.
FyA..AF)=T
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Generic SAT Problem
given: set of m propositional formulas: {F, ... F,}

«or one formula that is the conjunction of the formulas in the
set

-containing n proposition symbols: P, ... P,
find: an interpretation /

‘that assigns truth values (T,F)to P, ... P, i.e. (F) =T
or [(F) =F, and

‘under which all the formulas evaluate to T, i.e. I(F; A... A
Fo)=T

21



Conjunctive Normal Form

e formula F is in conjunctive normal form (CNF)
iff:
® F has the form F; A... A F, and
® each F, i€ 1...n, is a disjunction of literals

e Proposition: Let F be a propositional formula.
Then there exists a propositional formula F in
CNF such that:

® Fand F are equivalent, i.e.
® for every interpretation /, I(F) = I(F’)
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Conjunctive Normal Form
formula F is in conjunctive normal form (CNF) iff:
*F has the form F, A... A F, and
ceach F;,, i € 1...n, is a disjunction of literals
«disjunction of literals: clause

*Proposition: Let F be a propositional formula. Then there
exists a propositional formula F in CNF such that:

Fand F are equivalent, i.e.
for every interpretation /, I(F) = I(F)

22



Transformation into CNF

e eliminate implications:
®* FoG=F->GA G-F
* F5G=-FVG
e bring negations before atoms:
® 2(FVG) = "FAG
® (FAG) = "Fv-G
° —|(—|F) =F
e apply distributive laws:
® FA(GVH) = (FAG)V(FAH)
® FV(GAH) = (FVG)A(FVH)

SAT-Based Planning
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Transformation into CNF

-eliminate implications:
F>G=F—->GA G—F
F-G="FvG

*bring negations before atoms:
*(FVG) = "FAG
*(FAG) = "FvG
(") = F

«apply distributive laws:
*FA(GVH) = (FAG)V(FAH)
*Fv(GAH) = (FVG)A(FVH)

23



SAT Solving Procedures

e systematic:

¢ Davis-Putnam algorithm

® extend partial assignment into complete
assignment

¢ sound and complete
e stochastic:

¢ local search algorithms (GSAT, WalkSAT)
* modify randomly chosen total assignment
® sound, not complete, very fast
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SAT Solving Procedures
systematic:
*Davis-Putnam algorithm

-extend partial assignment into complete
assignment

sound and complete
stochastic:
‘local search algorithms (GSAT, WalkSAT)
‘modify randomly chosen total assignment
*sound, not complete, very fast

24



Local Search Algorithms

e basic principles:
® keep only a single (complete) state in memory
® generate only the neighbours of that state
® keep one of the neighbours and discard others
e key features:
® no search paths
® neither systematic nor incremental

e key advantages:
® use very little memory (constant amount)

® find solutions in search spaces too large for
systematic algorithms
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Local Search Algorithms
*basic principles:
*keep only a single (complete) state in memory
-generate only the neighbours of that state
*keep one of the neighbours and discard others
*key features:
*no search paths
*neither systematic nor incremental
*key advantages:
suse very little memory (constant amount)

find solutions in search spaces too large for
systematic algorithms

25



Random-Restart Hill-Climbing

e method:

® conduct a series of hill-climbing searches
from randomly generated initial states

¢ stop when a goal is found
e analysis:
¢ complete with probability approaching 1

® requires 1/p restarts where p is the probability
of success
(1 success + 1/p-1 failures)
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Random-Restart Hill-Climbing
*method:

*must be able to generate random states; therefore
usually complete state formulation

sconduct a series of hill-climbing searches from
randomly generated initial states

stop when a goal is found
«analysis:
complete with probability approaching 1

‘requires 1/p restarts where p is the probability of
success (1 success + 1/p-1 failures)

*no guarantee that algorithm will terminate; hence no time
complexity

*space complexity: b, the branching factor

scompleteness: eventually, it will generate the global
maximum

coptimality: same as completeness

26



Hill Climbing:
getBestSuccessors

getBestSuccessors(i,clauses)
fc € -1; succs < {}
for every proposition pin i
i’ € i.flipValueOf(p)
n € number of clauses true under /’
if n > tc then fc < n; succs €< {}
if n = fc then succs < succs + 1’
return succs
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Hill Climbing: getBestSuccessors
~getBestSuccessors(i,clauses)

given an interpretation and a set of clauses, find best
“neighbours”

*tc € -1; succs € {}

«fc: number of true clauses under best neighbour
interpretation found so far

for every proposition pin i
i’ & i.flipValueOf(p)
«copy of given interpretation with value of p flipped
*n € number of clauses true under i’
*if n > tc then tc € n; succs < {}

*if this interpretation is better then previous interpretations,
remember how good it is and forget previous successors

*if n = tc then succs € succs + i’

*if this interpretation is as good as the best so far, add it to
the set of successors

return succs

27



GSAT: Pseudo Code

function GSAT(clauses)
props € clauses.getPropositions()
loop at most MAXLOOP times
i € randomlinterpretation(props)
while not clauses.evaluate(i) do
succs € getBestSuccessors(i,clauses)
i € succs.selectOne()
if clauses.evaluate(/) return i
return unknown
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GSAT: Pseudo Code
function GSAT(clauses)
sreturns a model or failure
*props < clauses.getPropositions()
‘loop at most MAXLOOP times
sensures that the algorithm terminates
*i € randomlinterpretation(props)
while not clauses.evaluate(i) do
*while the interpretation is not a model
*succs < getBestSuccessors(i,clauses)
*i € succs.selectOne()
srandom selection, no backtracking
*if clauses.evaluate(i) return /
found a model: clauses are satisfiable, return model
‘return unknown
there may be a model, but we didn’t find one

svariants:
*break inner loop when no improvement is made
«allow only a limited number of level steps



GSAT Evaluation

e experimental results:

® solved every problem correctly that Davis-
Putnam could solve, only much faster

® begins to return “unknown” on problems
orders of magnitude larger than Davis-
Putnam can solve

e analysis:

® problems with many local maxima are difficult
for GSAT
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GSAT Evaluation
sexperimental results:

*solved every problem correctly that Davis-Putnam
could solve, only much faster

*begins to return “unknown” on problems orders of
magnitude larger than Davis-Putnam can solve

«analysis:
sproblems with many local maxima are difficult for GSAT



WalkSAT

e idea:
¢ start with random interpretation
® choose a random proposition to flip
® accept if it represents an uphill or level move

® otherwise accept it with probability e9/T(s)
where:
® d = decrease in number of true clauses under i’

® T(s) = monotonically decreasing function from
number of steps taken to temperature value
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WalkSAT
sinspired by simulated annealing
sidea:
start with random interpretation
choose a random proposition to flip
~accept if it represents an uphill or level move
-otherwise accept it with probability e®/T(s) where:
0 = decrease in number of true clauses under i’

*T(s) = monotonically decreasing function from
number of steps taken to temperature value

30
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e Encoding Planning Problems as
Satisfiability Problems (SAT)

* Efficient SAT Solving Algorithms
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Overview

»Encoding Planning Problems as Satisfiability Problems
(SAT)

Efficient SAT Solving Algorithms

*just done: efficient algorithms for SAT solving (very quick
overview)



