Planning as Heuristic Search
(Invited Lecture)

Héctor Geffner
ICREA and Universitat Pompeu Fabra
Barcelona, Spain
Most basic approach to planning: reduces the search for plans to a search for a path in a directed graph.

In progression or forward search, the nodes in the graph are sets of atoms representing states in \(S(P) \), and

- root node is \(I \) (the initial state)
- goal nodes are the sets of atoms \(\sigma \) such that \(G \subseteq \sigma \) (goal states)
- edges \(s \rightarrow s' \) iff \(s' = s - \text{Del}(a) + \text{Add}(a) \) and \(\text{Pre}(a) \subseteq s \)
- edge costs \(c(s, s') = c(a, s) \)

This graph also called the forward or progression search space is the simplest search space (isomorphic to \(S'(P) \)) but not the only one.

Other search spaces also used: regression space, plan space, etc.
In regression or backwards search, the nodes in the graph are still sets of atoms but they represent sets of states in $S(P)$, and

- **root node** σ_0 is the goal G
- **goal nodes** are the sets of atoms σ such that $\sigma \subseteq I$
- **edge** $\sigma \rightarrow \sigma'$ iff $\sigma' = \sigma - \text{Add}(a) + \text{Pre}(a)$, provided $\text{Add}(a) \cap \sigma \neq \emptyset$, and $\text{Del}(a) \cap \sigma' = \emptyset$
- **edge costs** $c(\sigma, \sigma') = 1$

Correctness/Completeness: The paths connecting the initial node to a goal node in this graph (regression space) encode the plans for P that map the initial state into a goal state (in reverse)
Computation: How to search for paths in these graphs?

- **Blind search/Brute force algorithms**
 - Goal plays **passive** role in the search
 - e.g., *Depth First Search (DFS)*, *Breadth-first search (BrFS)*, *Uniform Cost (Dijkstra)*, *Iterative Deepening (ID)*

- **Informed/Heuristic Search Algorithms**
 - Search uses a function $h(s)$ that estimates ‘distance’ (cost) from state s to S_G to guide search
 - e.g., *A*\(^*\), *IDA*\(^*\), *Hill Climbing*, *Best First Search (BFS)*, *Branch & Bound*

The latter can be much more effective: the question is **how to get informed heuristic functions $h(s)$ quickly and automatically** . . .
Heuristics for Classical Planning: the Delete Relaxation

- **Heuristics functions** derived as optimal cost function of relaxed problems (Pearl 83)

- A common relaxation \(P^+ \) obtained from Strips P by dropping the delete-lists

- If \(c^*(P) \) is the optimal cost of \(P \), then heuristic \(h^+(P) \) defined as

\[
h^+(P) \overset{\text{def}}{=} c^*(P^+)
\]

- Heuristic \(h^+ \) intractable but easy to approximate
 - computing optimal plan for \(P^+ \) is intractable
 - computing a non-optimal plan for \(P^+ \) (relaxed plan) easy (FF)

- Approximations of \(h^+ \) yield heuristics as used in modern planners HSP, FF, . . .
Additive Heuristic in HSP

• For all atoms p:

$$g(p; s) \overset{\text{def}}{=} \begin{cases} 0 & \text{if } p \in s, \text{ else} \\ \min_{a \in O(p)} [1 + g(Prec(a); s)] & \end{cases}$$

• For sets of atoms C, assume also independence:

$$g(C; s) \overset{\text{def}}{=} \sum_{r \in C} g(r; s)$$

• Resulting heuristic function $h_{\text{add}}(s)$:

$$h_{\text{add}}(s) \overset{\text{def}}{=} g(\text{Goals}; s)$$

Heuristic not admissible but informative and fast
Max Heuristic

- For all atoms p:

$$g(p; s) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } p \in s, \text{ else} \\ \min_{a \in O(p)} [1 + g(Precedes(a); s)] & \end{cases}$$

- For sets of atoms C, replace sum by max

$$g(C; s) \stackrel{\text{def}}{=} \max_{r \in C} g(r; s)$$

- Resulting heuristic function $h_{\text{max}}(s)$:

$$h_{\text{max}}(s) \stackrel{\text{def}}{=} g(\text{Goals}; s)$$

Heuristic admissible but not very informative . . .
Max Heuristic, Planning Graphs, and FF

- Build reachability graph P_0, A_0, P_1, A_1, …

 $P_0 = \{p \in s\}$

 $A_i = \{a \in O \mid \text{Prec}(a) \subseteq P_i\}$

 $P_{i+1} = P_i \cup \{p \in \text{Add}(a) \mid a \in A_i\}$

- **Theorem:** $h_{\text{max}}(s) = \min i$ such that $G \subseteq P_i$

- More informed but inadmissible h if recursively collect actions that add the goals in graph and their preconditions (not in s) and count them (FF)

- Collected actions π form a plan for relaxation P^+; called **relaxed plan**, so $h_{\text{FF}}(s) = |\pi|$
Example

• Initial Situation $I = \{q\} = s_0$

• Actions:
 - $a: Pre(a) = \{q\} ; \ Add(a) = \{p\} ; \ Del(a) = \{q\}$
 - $b: Pre(a) = \{q\} ; \ Add(a) = \{r\} ; \ Del(a) = \{\}$
 - $c: Pre(a) = \{r\} ; \ Add(a) = \{q\} ; \ Del(a) = \{r\}$

• Goal: $G = \{p, q\}$

Exercise: determine optimal $h^*(s_0), h_{max}(s_0), h_{FF}(s_0), h_{add}(s_0)$
A more informed but admissible h: Graphplan's h_G

- More informed but admissible h_G computed in Graphplan by keeping track of mutex pairs; pairs that cannot be simultaneously achieved in i steps:
 - action pair mutex at i if actions interfere or preconds mutex at i
 - atom pair mutex at $i+1$ if supporting action pairs mutex at i

- A set of atoms S is mutex at i if it contains a mutex pair at i

- Graphplan also adds ‘dummy actions’ NO-OP(p) for each p with $Prec = Add = \{p\}$ that ‘carry’ p from layer to layer

- Result: build layered graph as below while identifying mutexes as above

\[
\begin{align*}
P_0 &= \{p \in s\} \\
A_i &= \{a \in O \mid Prec(a) \subseteq P_i \text{ and not mutex at } i\} \\
P_{i+1} &= \{p \in Add(a) \mid a \in A_i\}
\end{align*}
\]

Define: $h_G(s) \overset{\text{def}}{=} \min i \text{ s.t. } G \subseteq P_i \text{ and } G \text{ not mutex at } i$
Some Heuristic Search Planners

- **Graphplan, 1995:** makes plan graph heuristic h_G more informed by keeping track of **mutex** relations among pairs of atoms and actions in layered graph. It uses this heuristic in a IDA* **regression search** from the goal.

- **HSP, 1998:** it does a **WA*** **progression search** guided by **additive heuristic** computed from scratch for every visited state s.

- **FF: 2000** it does a hill-climbing **progression search** guided by heuristic given by the number of actions in ’relaxed plan’ (set of actions responsible for presence of goals in lowest layer).

