
1

Plan-Space Search

Searching for a Solution
Plan in a Graph of Partial

Plans

Plan-Space Search 2

Literature

Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice,
chapter 2 and 5. Elsevier/Morgan Kaufmann,
2004.
J. Penberthy and D. S. Weld. UCPOP: A
sound, complete, partial-order for ADL. In
Proceeding s of the International Conference
on Knowledge Representation and Reasoning,
pages 103-114, 1992.

2

Plan-Space Search 3

State-Space vs. Plan-Space
Search

state-space search: search through
graph of nodes representing world
states
plan-space search: search through
graph of partial plans
• nodes: partially specified plans
• arcs: plan refinement operations
• solutions: partial-order plans

Plan-Space Search 4

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

3

Plan-Space Search 5

Partial Plans

plan: set of actions organized into some
structure
partial plan:
• subset of the actions
• subset of the organizational structure

• temporal ordering of actions
• rationale: what the action achieves in the plan

• subset of variable bindings

Plan-Space Search 6

Adding Actions

partial plan contains actions
• initial state
• goal conditions
• set of operators with different variables

reason for adding new actions
• to achieve unsatisfied preconditions
• to achieve unsatisfied goal conditions

4

Plan-Space Search 7

Adding Actions: Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

Plan-Space Search 8

Adding Causal Links

partial plan contains causal links
• links from the provider

• an effect of an action or
• an atom that holds in the initial state

• to the consumer
• a precondition of an action or
• a goal condition

reasons for adding causal links
• prevent interference with other actions

5

Plan-Space Search 9

Adding Causal Links: Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

at(robot,loc2)
¬unloaded(robot)

adjacent(l1,m1)

causal link:

Plan-Space Search 10

Adding Variable Bindings

partial plan contains variable bindings
• new operators introduce new (copies of) variables into

the plan
• solution plan must contain actions
• variable binding constraints keep track of possible

values for variables and co-designation

reasons for adding variable bindings
• to turn operators into actions
• to unify and effect with the precondition it supports

6

Plan-Space Search 11

Adding Variable Bindings:
Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

r1 robot

m1 loc2

variable = ≠

l1 loc1 loc2

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)
adjacent(l1,m1)

variable bindings:

Plan-Space Search 12

Adding Ordering Constraints

partial plan contains ordering constraints
• binary relation specifying the temporal order

between actions in the plan

reasons for adding ordering constraints
• all actions after initial state
• all actions before goal
• causal link implies ordering constraint
• to avoid possible interference

7

Plan-Space Search 13

Adding Ordering Constraints:
Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

at(robot,loc2)
¬unloaded(robot)

adjacent(l1,m1)

ordering constraint:

Plan-Space Search 14

Definition of Partial Plans
A partial plan is a tuple π = (A,≺,B,L), where:
• A = {a1,…,ak} is a set of partially instantiated planning

operators;
• ≺ is a set of ordering constraints on A of the form (ai≺aj);
• B is a set of binding constraints on the variables of actions

in A of the form x=y, x≠y, or x∈Dx;
• L is a set of causal links of the form 〈ai −[p] aj〉 such that:

• ai and aj are actions in A;
• the constraint (ai≺aj) is in ≺;
• proposition p is an effect of ai and a precondition of aj; and
• the binding constraints for variables in ai and aj appearing in

p are in B.

8

Plan-Space Search 15

Plan-Space Search: Initial
Search State

represent initial state and goal as dummy
actions
• init: no preconditions, initial state as effects
• goal: goal conditions as preconditions, no effects

empty plan π0 = ({init, goal},{(init≺goal)},{},{}):
• two dummy actions init and goal;
• one ordering constraint: init before goal;
• no variable bindings; and
• no causal links.

Plan-Space Search 16

Plan-Space Search: Initial
Search State Example

init

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

9

Plan-Space Search 17

Plan-Space Search: Successor
Function

states are partial plans
generate successor through plan
refinement operators (one or more):
• adding an action to A
• adding an ordering constraint to ≺
• adding a binding constraint to B
• adding a causal link to L

Plan-Space Search 18

Total vs. Partial Order
Let P=(Σ,si,g) be a planning problem. A plan π
is a solution for P if γ(si,π) satisfies g.

problem: γ(si,π) only defined for sequence of
ground actions
• partial order corresponds to total order in which all

partial order constraints are respected
• partial instantiation corresponds to grounding in which

variables are assigned values consistent with binding
constraints

10

Plan-Space Search 19

Partial Order Solutions

Let P=(Σ,si,g) be a planning problem. A
plan π = (A,≺,B,L) is a (partial order)
solution for P if:
• its ordering constraints ≺ and binding

constraints B are consistent; and
• for every sequence 〈a1,…,ak〉 of all the actions

in A-{init, goal} that is
• totally ordered and grounded and respects ≺ and B
• γ(si, 〈a1,…,ak〉) must satisfy g.

Plan-Space Search 20

Threat: Example
1:move(robot,loc1,loc2)

effectspreconditions

adjacent(loc1,loc2)

at(robot,loc1)
¬occupied(loc2)

at(robot,loc2)
occupied(loc2)

¬occupied(loc1)
¬at(robot,loc1)

2:load(crane,loc1,cont,robot)
effectspreconditions

belong(crane,loc1)
holding(crane,cont)

at(robot,loc1)

empty(crane)
loaded(robot,cont)

¬holding(crane,cont)
¬unloaded(robot)unloaded(robot)

0:goal

at(robot,loc2)
¬unloaded(robot)

3:move(robot,loc2,loc1)
effectspreconditions

adjacent(loc2,loc1)

at(robot,loc2)
¬occupied(loc1)

at(robot,loc1)
occupied(loc1)

¬occupied(loc2)
¬at(robot,loc2)

at(robot,loc1)
at(robot,loc1)

¬unloaded(robot)

at(robot,loc2)

11

Plan-Space Search 21

Threats

An action ak in a partial plan π =
(A,≺,B,L) is a threat to a causal link
〈ai −[p] aj〉 iff:
• ak has an effect ¬q that is possibly

inconsistent with p, i.e. q and p are unifiable;
• the ordering constraints (ai≺ak) and (ak≺aj) are

consistent with ≺; and
• the binding constraints for the unification of q

and p are consistent with B.

Plan-Space Search 22

Flaws

A flaw in a plan π = (A,≺,B,L) is either:
• an unsatisfied sub-goal, i.e. a precondition of

an action in A without a causal link that
supports it; or

• a threat, i.e. an action that may interfere with
a causal link.

12

Plan-Space Search 23

Flawless Plans and Solutions

Proposition: A partial plan π = (A,≺,B,L) is a
solution to the planning problem P=(Σ,si,g) if:
• π has no flaw;
• the ordering constraints ≺ are not circular; and
• the variable bindings B are consistent.

Proof: by induction on number of actions in A
• base case: empty plan
• induction step: totally ordered plan minus first step is

solution implies plan including first step is a solution:
γ(si, 〈a1,…,ak〉) = γ(γ(si, a1), 〈a2,…,ak〉)

Plan-Space Search 24

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

13

Plan-Space Search 25

Plan-Space Planning as a
Search Problem

given: statement of a planning problem
P=(O,si,g)
define the search problem as follows:
• initial state: π0 = ({init, goal},{(init≺goal)},{},{})
• goal test for plan state p: p has no flaws
• path cost function for plan π: |π|
• successor function for plan state p:

refinements of p that maintain ≺ and B

Plan-Space Search 26

PSP Procedure: Basic
Operations

PSP: Plan-Space Planner
main principle: refine partial π plan while
maintaining ≺ and B consistent until π has no
more flaws
basic operations:
• find the flaws of π, i.e. its sub-goals and its threats
• select one of the flaws
• find ways to resolve the chosen flaw
• choose one of the resolvers for the flaw
• refine π according to the chosen resolver

14

Plan-Space Search 27

PSP: Pseudo Code

function PSP(plan)
allFlaws plan.openGoals() + plan.threats()
if allFlaws.empty() then return plan
flaw allFlaws.selectOne()
allResolvers flaw.getResolvers(plan)
if allResolvers.empty() then return failure
resolver allResolvers.chooseOne()
newPlan plan.refine(resolver)
return PSP(newPlan)

Plan-Space Search 28

PSP: Choice Points

resolver allResolvers.chooseOne()
• non-deterministic choice

flaw allFlaws.selectOne()
• deterministic selection
• all flaws need to be resolved before a plan

becomes a solution
• order not important for completeness
• order is important for efficiency

15

Plan-Space Search 29

Implementing plan.openGoals()

finding unachieved sub-goals
(incrementally):
• in π0: goal conditions
• when adding an action: all preconditions are

unachieved sub-goals
• when adding a causal link: protected

proposition is no longer unachieved

Plan-Space Search 30

Implementing plan.threats()
finding threats (incrementally):
• in π0: no threats
• when adding an action anew to π = (A,≺,B,L):

• for every causal link 〈ai −[p] aj〉 ∈ L
if (anew≺ai) or (aj≺anew) then next link
else for every effect q of anew

if (∃σ: σ(p)=σ(¬q)) then q of anew threatens 〈ai −[p] aj〉
• when adding a causal link 〈ai −[p] aj〉 to π = (A,≺,B,L):

• for every action aold∈A
if (aold≺ai) or (aj=aold) or (aj≺aold) then next action
else for every effect q of aold

if (∃σ: σ(p)=σ(¬q)) then q of aold threatens 〈ai −[p] aj〉

16

Plan-Space Search 31

Implementing
flaw.getResolvers(plan)

for unachieved precondition p of ag:
• add causal links to an existing action:

• for every action aold∈A
if (ag=aold) or (ag≺aold) then next action
else for every effect q of aold

if (∃σ: σ(p)=σ(q)) then adding
〈aold−[σ(p)] ag〉 is a resolver

• add a new action and a causal link:
• for every effect q of every operator o

if (∃σ: σ(p)=σ(q)) then adding
anew=o.newInstance() and
〈anew−[σ(p)] ag〉 is a resolver

Plan-Space Search 32

Implementing
flaw.getResolvers(plan)

for effect q of action at threatening 〈ai −[p] aj〉:
• order action before threatened link:

• if (at=ai) or (aj≺at) then not a resolver
else adding (at≺ai) is a resolver

• order threatened link before action:
• if (at=ai) or (at≺ai) then not a resolver

else adding (aj≺at) is a resolver
• extend variable bindings such that unification fails:

• for every variable v in p or q
if v≠σ(v) is consistent with B then

adding v≠σ(v) is a resolver

17

Plan-Space Search 33

Implementing
plan.refine(resolver)

refines partial plan with elements in resolver by
adding:
• an ordering constraint;
• one or more binding constraints;
• a causal link; and/or
• a new action.

no testing required
must update flaws:
• unachieved preconditions (see: plan.openGoals())
• threats (see: plan.threats())

Plan-Space Search 34

Maintaining Ordering
Constraints

required operations:
• query whether (ai≺aj)
• adding (ai≺aj)

possible internal representations:
• maintain set of predecessors/successors for

each action as given
• maintain only direct predecessors/successors

for each action
• maintain transitive closure of ≺ relation

18

Plan-Space Search 35

Maintaining Variable Binding
Constraints

types of constraints:
• unary constraints: x ∈ Dx

• equality constraints: x = y
• inequalities: x ≠ y

note: general CSP problem is NP-
complete

Plan-Space Search 36

PSP: Data Flow
plan = (A,≺,B,L)

compute open goalscompute threats

has flaw? select flaw

compute resolvers

has resolver? choose resolver

maintain
ordering

constraints

maintain
binding

constraints

apply resolversreturn failure

return plan

π0

19

Plan-Space Search 37

PSP: Sound and Complete

Proposition: The PSP procedure is
sound and complete: whenever π0 can
be refined into a solution plan, PSP(π0)
returns such a plan.
Proof:
• soundness: ≺ and B are consistent at every

stage of the refinement
• completeness: induction on the number of

actions in the solution plan

Plan-Space Search 38

PSP Implementation: PoP

extended input:
• partial plan (as before)
• agenda: set of pairs (a,p) where a is an action

an p is one of its preconditions

search control by flaw type
• unachieved sub-goal (on agenda): as before
• threats: resolved as part of the successor

generation process

20

Plan-Space Search 39

PoP: Pseudo Code (1)
function PoP(plan, agenda)

if agenda.empty() then return plan
(ag,pg) agenda.selectOne()
agenda agenda - (ag,pg)
relevant plan.getProviders(pg)
if relevant.empty() then return failure
(ap,pp,σ) relevant.chooseOne()
plan.L plan.L ∪ 〈ap −[p] ag〉
plan.B plan.B ∪ σ

Plan-Space Search 40

PoP: Pseudo Code (2)
if ap ∉ plan.A then

plan.add(ap)
agenda agenda + ap.preconditions

newPlan plan
for each threat on 〈ap −[p] ag〉 or due to ap do

allResolvers threat.getResolvers(newPlan)
if allResolvers.empty() then return failure
resolver allResolvers.chooseOne()
newPlan newPlan.refine(resolver)

return PSP(newPlan,agenda)

21

Plan-Space Search 41

State-Space vs. Plan-Space
Planning

state-space planning
• finite search space
• explicit representation of

intermediate states
• action ordering reflects

control strategy
• causal structure only

implicit
• search nodes relatively

simple and successors
easy to compute

plan-space planning
• finite search space
• no intermediate states
• choice of actions and

organization
independent

• explicit representation of
rationale

• search nodes are
complex and successors
expensive to compute

Plan-Space Search 42

Using Partial-Order Plans: Main
Advantages

more flexible during execution
using constraint managers facilitates
extensions such as:
• temporal constraints
• resource constraints

distributed and multi-agent planning fit
naturally into the framework

22

Plan-Space Search 43

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

Plan-Space Search 44

Existential Quantification in
Goals

allow existentially quantified conjunction
of literals as goal:
• g = ∃x1,…,xn: l1 ⋀ … ⋀ lm

rewrite into equivalent planning problem:
• new goal g’ = {p} where p is an unused

proposition symbol
• introduce additional operator

o = (op-g(x1,…,xn),{l1,…,lm},{p})
in plan-space search: no change needed

23

Plan-Space Search 45

DWR Example: Existential
Quantification in Goals

goal: ∃x,y: on(x,c1) ⋀ on(y,c2)

rewritten goal: p
new operator:
o = (op-g(x,y),{on(x,c1),on(y,c2)},{p})

plan-space search goal:
on(x,c1) ⋀ on(y,c2)

Plan-Space Search 46

Typed Variables

allow typed variables in operators:
• name(o) = n(x1:t1,…,xk:tk) where ti is the type

of variable xi

rewrite into equivalent planning problem:
• add preconditions {t1(x1),…,tk(xk)} to o
• if constant ci is of type tj, add rigid relation tj(ci)

to the initial state
• remove types from operator names

24

Plan-Space Search 47

DWR Example: Typed Variables

operator: move(r:robot,l:location,m:location)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

rewritten operator:move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m), robot(r),

loaction(l), location(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

rewritten initial state:
• si ∪ {robot(r1),container(c1),container(c2),…}

Plan-Space Search 48

Conditional Operators
conditional planning operators:
• o = (n,(precond0,effects0),…,(precondn,effectsn))

where:
• n = o(x1,…,xn) as before,
• (precond0,effects0) are the unconditional preconditions

and effects of the operator, and
• (precondi,effectsi) for i≥1 are the conditional

preconditions and effects of the operator.
• a ground instance a of o is applicable in state s if s

satisfies precond0• let I={i∈[0,n] | s satisfies precondi(a)}; then:
• γ(s,a)=(s - ∪(i∈I)effects-(a)) ∪ (∪(i∈I)effects+(a))

25

Plan-Space Search 49

DWR Example: Conditional
Operators

relation at(o,l): object o is at location l
conditional move operator:
move(r,l,m,c)
• precond0: adjacent(l,m), at(r,l), ¬occupied(m)
• effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
• precond1: loaded(r,c)
• effects1: at(c,m), ¬at(c,l)

Plan-Space Search 50

Extending PoP to handle
Conditional Operators

modifying plan.getProviders(pg):
• new action with matching conditional effect
• add precondition of conditional effect to

agenda
managing conditional threats:
• new alternative resolver: add negated

precondition of threatening conditional
effect to agenda

26

Plan-Space Search 51

Quantified Expressions

allow universally quantified variables in
conditional preconditions and effects:
• for-all x1,…,xn: (precondi,effectsi)

a is applicable in state s if s satisfies precond0

Let ϭ be a substitution for x1,…,xn such that
ϭ(precondi(a)) and ϭ(effectsi(a)) are ground.
• If s satisfies ϭ(precondi(a)) then
• ϭ(effectsi(a)) are effects of the action.

Plan-Space Search 52

DWR Example: Quantified
Expressions

extension: robots can carry multiple
containers
extended move operator:
move(r,l,m)
• precond0: adjacent(l,m), at(r,l), ¬occupied(m)
• effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
• for-all x:

• precond1: loaded(r,x)
• effects1: at(x,m), ¬at(x,l))

27

Plan-Space Search 53

Disjunctive Preconditions

allow alternatives (disjunctions) in
preconditions:
• precond = precond1 ⋁…⋁ precondn

• a is applicable in state s if s satisfies at least one of
precond1 … precondn

• effects remain unchanged

rewrite:
• replace operator with n disjunctive preconditions by n

operators with precondi as precondition

Plan-Space Search 54

DWR Example: Disjunctive
Preconditions

robot can move between locations if
there is a road between them or the
robot has all-wheel drive
extended move operator:
move(r,l,m)
• precond: (road(l,m), at(r,l), ¬occupied(m)) ⋁

(all-wheel-drive(r), at(r,l), ¬occupied(m))
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

28

Plan-Space Search 55

Axiomatic Inference: Static
Case

axioms over rigid relations:
• example:

∀l1,l2: adjacent(l1,l2) ↔ adjacent(l2,l1)

state-specific axioms:
• example:

∀c: container(c) ↔ at(c,loc1) holds in si

approach: pre-compute

Plan-Space Search 56

Axiomatic Inference: Dynamic
Case

axioms over flexible relations:
• example: ∀k,x: ¬holding(k,x) ↔ empty(k)
• approach:

• divide relations into primary and secondary where
secondary relations do not appear in effects

• transform axioms into implications where primary
relations must not appear in right-hand side

• example:
• primary: holding / secondary: empty
• ∀k ¬∃x: holding(k,x) → empty(k)
• ∀k ∃x: holding(k,x) → ¬empty(k)

29

Plan-Space Search 57

Extended Goals

not part of classical planning formalisms
some problems can be translated into
equivalent classical problems, e.g.
• states to be avoided: add corresponding

preconditions to operators
• states to be visited twice: introduce visited

relation and maintain in operators
• constraints on solution length: introduce count

relation that is increased with each step

Plan-Space Search 58

Other Extensions

Function Symbols
• infinite domains, undecidable in general

Attached Procedures
• evaluate relations using special code rather

than general inference
• efficiency may be necessary in real-world domains
• variables must usually be bound to evaluate

relations
• semantics of such relations

30

Plan-Space Search 59

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

