Plan-Space Search

Searching for a Solution Plan in a Graph of Partial Plans

Literature

State-Space vs. Plan-Space Search

- state-space search: search through graph of nodes representing world states
- plan-space search: search through graph of partial plans
 - nodes: partially specified plans
 - arcs: plan refinement operations
 - solutions: partial-order plans

Overview

- The Search Space of Partial Plans
- Plan-Space Search Algorithms
- Extensions of the STRIPS Representation
Partial Plans

- plan: set of actions organized into some structure
- partial plan:
 - subset of the actions
 - subset of the organizational structure
 - temporal ordering of actions
 - rationale: what the action achieves in the plan
 - subset of variable bindings

Adding Actions

- partial plan contains actions
 - initial state
 - goal conditions
 - set of operators with different variables

- reason for adding new actions
 - to achieve unsatisfied preconditions
 - to achieve unsatisfied goal conditions
Adding Actions: Example

initial state
- attached(pile,loc1)
- in(cont,pile)
- top(cont,pile)
- on(cont,pallet)
- belong(crane,loc1)
- empty(crane)
- adjacent(loc1,loc2)
- adjacent(loc2,loc1)
- at(robot,loc2)
- occupied(loc2)
- unloaded(robot)

1: move(r1,l1,m1)

preconditions
- all(r1,m1)
- occupied(m1)
- adjacent(m1)
- occupied(l1)

effects
- at(r1,l1)
- ¬occupied(m1)
- ¬occupied(l1)
- ¬at(r1,l1)

goal
- at(robot,loc2)
- unloaded(robot)

2: load(k2,l2,c2,r2)

preconditions
- belong(k2,l2)
- holding(k2,c2)
- at(robot,loc2)
- occupied(loc2)

effects
- empty(k2)
- loaded(r2,c2)
- ¬holding(k2,c2)
- ¬unloaded(r2)
- unloaded(r2)

Adding Causal Links

- partial plan contains causal links
 - links from the provider
 - an effect of an action or
 - an atom that holds in the initial state
 - to the consumer
 - a precondition of an action or
 - a goal condition
- reasons for adding causal links
 - prevent interference with other actions
Adding Causal Links: Example

Initial State
- attached(pile,loc)
- in(cont,pile)
- top(cont,pile)
- on(cont,pallet)
- belong(crane,loc1)
- empty(crane)
- adjacent(loc1,loc2)
- at(robot,loc2)
- occupied(loc2)
- unloaded(robot)

Goals
- at(robot,loc2)
- unloaded(robot)

1: move(r1,l1,m1)

Preconditions
- all(r1)
- occupied(m1)
- adjacent(l1,m1)

Effects
- all(r1, m1)
- occupied(m1)
- at(r1, l1)
- empty(m1)
- loaded(r1, cont)

2: load(k2,l2,c2,r2)

Preconditions
- belong(k2, l1)
- holding(k2, c2)
- at(r2, l2)

Effects
- empty(k2)
- loaded(r2, c2)
- holding(k2, c2)
- unloaded(r2)

Causal Link:

Adding Variable Bindings

- partial plan contains variable bindings
 - new operators introduce new (copies of) variables into the plan
 - solution plan must contain actions
 - variable binding constraints keep track of possible values for variables and co-designation
- reasons for adding variable bindings
 - to turn operators into actions
 - to unify and effect with the precondition it supports
Adding Variable Bindings: Example

```
initial state
- attached(pile,loc1)
- in(cont,pile)
- top(cont,pile)
- on(cont,pallet)
- belong(crane,loc1)
- empty(crane)
- adjacent(loc1,loc2)
- adjacent(loc2,loc1)
- at(robot,loc2)
- occupied(loc2)
- unloaded(robot)
```

1: move(r₁,l₁,m₁)

```
preconditions
- at(r₁,loc1)
- occupied(m₁)
- adjacent(l₁,m₁)

effects
- at(r₁,loc1)
- ¬occupied(m₁)
- at(r₁,m₁)
- occupied(m₁)
- ¬occupied(l₁)
- ¬at(r₁,loc1)
```

```
goal
- at(robot,loc2)
- unloaded(robot)
```

variable bindings:
```
<table>
<thead>
<tr>
<th>variable</th>
<th>=</th>
<th>≠</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁</td>
<td>robot</td>
<td></td>
</tr>
<tr>
<td>l₁</td>
<td>loc1</td>
<td>loc2</td>
</tr>
<tr>
<td>m₁</td>
<td>loc2</td>
<td></td>
</tr>
</tbody>
</table>
```

Adding Ordering Constraints

- partial plan contains ordering constraints
 - binary relation specifying the temporal order between actions in the plan
- reasons for adding ordering constraints
 - all actions after initial state
 - all actions before goal
 - causal link implies ordering constraint
 - to avoid possible interference
Adding Ordering Constraints: Example

Definition of Partial Plans

- A partial plan is a tuple \(\pi = (A, \prec, B, L) \), where:
 - \(A = \{a_1, \ldots, a_k\} \) is a set of partially instantiated planning operators;
 - \(\prec \) is a set of ordering constraints on \(A \) of the form \((a_i \prec a_j) \);
 - \(B \) is a set of binding constraints on the variables of actions in \(A \) of the form \(x = y \), \(x \neq y \), or \(x \in D_x \);
 - \(L \) is a set of causal links of the form \(\langle a_i \leftarrow [p] \rightarrow a_j \rangle \) such that:
 - \(a_i \) and \(a_j \) are actions in \(A \);
 - the constraint \((a_i \prec a_j) \) is in \(\prec \);
 - proposition \(p \) is an effect of \(a_i \) and a precondition of \(a_j \); and
 - the binding constraints for variables in \(a_i \) and \(a_j \) appearing in \(p \) are in \(B \).
Plan-Space Search: Initial Search State

- represent initial state and goal as dummy actions
 - init: no preconditions, initial state as effects
 - goal: goal conditions as preconditions, no effects
- empty plan $\pi_0 = (\{\text{init}, \text{goal}\}, \{\text{init}<\text{goal}\}, \{\}, \{\})$:
 - two dummy actions init and goal;
 - one ordering constraint: init before goal;
 - no variable bindings; and
 - no causal links.

Plan-Space Search: Initial Search State Example

![Diagram showing initial and goal states with variables and their conditions]
Plan-Space Search: Successor Function

- states are partial plans
- generate successor through plan refinement operators (one or more):
 - adding an action to A
 - adding an ordering constraint to \prec
 - adding a binding constraint to B
 - adding a causal link to L

Total vs. Partial Order

- Let $\mathcal{P}=(\Sigma, s_0, g)$ be a planning problem. A plan π is a solution for \mathcal{P} if $\gamma(s_i, \pi)$ satisfies g.
- problem: $\gamma(s_i, \pi)$ only defined for sequence of ground actions
 - partial order corresponds to total order in which all partial order constraints are respected
 - partial instantiation corresponds to grounding in which variables are assigned values consistent with binding constraints
Partial Order Solutions

- Let $\mathcal{P}=(\Sigma, s, g)$ be a planning problem. A plan $\pi = (A, \prec, B, L)$ is a (partial order) solution for \mathcal{P} if:
 - its ordering constraints \prec and binding constraints B are consistent; and
 - for every sequence $\langle a_1, \ldots, a_k \rangle$ of all the actions in $A \setminus \{\text{init}, \text{goal}\}$ that is
 - totally ordered and grounded and respects \prec and B
 - $\gamma(s_{\pi}, \langle a_1, \ldots, a_k \rangle)$ must satisfy g.

Threat: Example

1. \texttt{move(robot,loc1,loc2)}
 - preconditions
 - at(robot,loc1)
 - \neg occupied(loc2)
 - adjacent(loc1,loc2)
 - effects
 - at(robot,loc2)
 - occupied(loc2)

2. \texttt{load(crane,loc1,cont,robot)}
 - preconditions
 - belong(crane,loc1)
 - holding(crane,cont)
 - at(robot,loc1)
 - empty(crane)
 - effects
 - at(robot,loc1)
 - loaded(robot,cont)
 - loaded(crane,cont)

3. \texttt{move(robot,loc2,loc1)}
 - preconditions
 - at(robot,loc2)
 - occupied(loc1)
 - at(robot,loc1)
 - effects
 - at(robot,loc1)
 - \neg unloaded(robot)

0. \texttt{goal}
 - preconditions
 - at(robot,loc2)
 - effects
 - at(robot,loc2)
 - \neg unloaded(robot)
Threats

- An action a_k in a partial plan $\pi = (A, <, B, L)$ is a threat to a causal link $\langle a_i - [p] \rightarrow a_j \rangle$ iff:
 - a_k has an effect $\neg q$ that is possibly inconsistent with p, i.e. q and p are unifiable;
 - the ordering constraints $(a_i < a_k)$ and $(a_k < a_j)$ are consistent with $<$; and
 - the binding constraints for the unification of q and p are consistent with B.

Flaws

- A flaw in a plan $\pi = (A, <, B, L)$ is either:
 - an unsatisfied sub-goal, i.e. a precondition of an action in A without a causal link that supports it; or
 - a threat, i.e. an action that may interfere with a causal link.
Flawless Plans and Solutions

- **Proposition**: A partial plan \(\pi = (A, \prec, B, L) \) is a solution to the planning problem \(P = (\Sigma, s_i, g) \) if:
 - \(\pi \) has no flaw;
 - the ordering constraints \(\prec \) are not circular; and
 - the variable bindings \(B \) are consistent.

- **Proof**: by induction on number of actions in \(A \)
 - base case: empty plan
 - induction step: totally ordered plan minus first step is solution implies plan including first step is a solution:
 \[
 \gamma(s_i, \langle a_1, \ldots, a_k \rangle) = \gamma(\gamma(s_i, a_1), \langle a_2, \ldots, a_k \rangle)
 \]

Overview

- The Search Space of Partial Plans
- **Plan-Space Search Algorithms**
- Extensions of the STRIPS Representation
Plan-Space Planning as a Search Problem

- given: statement of a planning problem \(P = (O, s_i, g) \)
- define the search problem as follows:
 - initial state: \(\pi_0 = (\{\text{init, goal}\}, \{\text{init} \prec \text{goal}\}, \emptyset, \emptyset) \)
 - goal test for plan state \(p \): \(p \) has no flaws
 - path cost function for plan \(\pi \): \(|\pi| \)
 - successor function for plan state \(p \): refinements of \(p \) that maintain \(\prec \) and \(B \)

PSP Procedure: Basic Operations

- PSP: Plan-Space Planner
- main principle: refine partial \(\pi \) plan while maintaining \(\prec \) and \(B \) consistent until \(\pi \) has no more flaws
- basic operations:
 - find the flaws of \(\pi \), i.e. its sub-goals and its threats
 - select one of the flaws
 - find ways to resolve the chosen flaw
 - choose one of the resolvers for the flaw
 - refine \(\pi \) according to the chosen resolver
PSP: Pseudo Code

```plaintext
function PSP(plan)
    allFlaws ← plan.openGoals() + plan.threats()
    if allFlaws.empty() then return plan
    flaw ← allFlaws.selectOne()
    allResolvers ← flaw.getResolvers(plan)
    if allResolvers.empty() then return failure
    resolver ← allResolvers.chooseOne()
    newPlan ← plan.refine(resolver)
    return PSP(newPlan)
```

PSP: Choice Points

- `resolver ← allResolvers.chooseOne()`
 - non-deterministic choice
- `flaw ← allFlaws.selectOne()`
 - deterministic selection
 - all flaws need to be resolved before a plan becomes a solution
 - order not important for completeness
 - order is important for efficiency
Implementing plan.openGoals()

- finding unachieved sub-goals (incrementally):
 - in π_0: goal conditions
 - when adding an action: all preconditions are unachieved sub-goals
 - when adding a causal link: protected proposition is no longer unachieved

Implementing plan.threats()

- finding threats (incrementally):
 - in π_0: no threats
 - when adding an action a_{new} to $\pi = (A, <, B, L)$:
 - for every causal link $\langle a_i, [-p] \Rightarrow a_j \rangle \in L$
 - if $(a_{\text{new}} < a_i)$ or $(a_i < a_{\text{new}})$ then next link
 - else for every effect q of a_{new}
 - if $(\exists \sigma: \sigma(p) = \sigma(\neg q))$ then q of a_{new} threatens $\langle a_i, [-p] \Rightarrow a_j \rangle$
 - when adding a causal link $\langle a_i, [-p] \Rightarrow a_j \rangle$ to $\pi = (A, <, B, L)$:
 - for every action $a_{\text{old}} \in A$
 - if $(a_{\text{old}} < a_i)$ or $(a_i = a_{\text{old}})$ or $(a_j < a_{\text{old}})$ then next action
 - else for every effect q of a_{old}
 - if $(\exists \sigma: \sigma(p) = \sigma(\neg q))$ then q of a_{old} threatens $\langle a_i, [-p] \Rightarrow a_j \rangle$
Implementing flaw.getResolvers(plan)

- for unachieved precondition \(p \) of \(a_g \):
 - add causal links to an existing action:
 - for every action \(a_{old} \in A \)
 if \((a_g = a_{old}) \) or \((a_g < a_{old}) \) then next action
 else for every effect \(q \) of \(a_{old} \)
 if \((\exists \sigma: \sigma(p) = \sigma(q)) \) then adding
 \(\langle a_{old} - [\sigma(p)] \rightarrow a_g \rangle \) is a resolver
 - add a new action and a causal link:
 - for every effect \(q \) of every operator \(o \)
 if \((\exists \sigma: \sigma(p) = \sigma(q)) \) then adding
 \(a_{new} = o.newInstance() \) and
 \(\langle a_{new} - [\sigma(p)] \rightarrow a_g \rangle \) is a resolver

- for effect \(q \) of action \(a_i \) threatening \(\langle a_i - [p] \rightarrow a_j \rangle \):
 - order action before threatened link:
 - if \((a_i = a_j) \) or \((a_i < a_j) \) then not a resolver
 else adding \((a_i < a_j) \) is a resolver
 - order threatened link before action:
 - if \((a_i = a_j) \) or \((a_i < a_j) \) then not a resolver
 else adding \((a_i < a_j) \) is a resolver
 - extend variable bindings such that unification fails:
 - for every variable \(v \) in \(p \) or \(q \)
 if \(v \neq \sigma(v) \) is consistent with \(B \) then
 adding \(v \neq \sigma(v) \) is a resolver
Implementing

plan.refine(resolver)

- refines partial plan with elements in resolver by adding:
 - an ordering constraint;
 - one or more binding constraints;
 - a causal link; and/or
 - a new action.
- no testing required
- must update flaws:
 - unachieved preconditions (see: plan.openGoals())
 - threats (see: plan.threats())

Maintaining Ordering Constraints

- required operations:
 - query whether \(a_i < a_j\)
 - adding \(a_i < a_j\)
- possible internal representations:
 - maintain set of predecessors/successors for each action as given
 - maintain only direct predecessors/successors for each action
 - maintain transitive closure of \(<\) relation
Maintaining Variable Binding Constraints

- types of constraints:
 - unary constraints: \(x \in D_x \)
 - equality constraints: \(x = y \)
 - inequalities: \(x \neq y \)

- note: general CSP problem is NP-complete

PSP: Data Flow

\[\pi_0 \]

Plan = \((A, \preceq, B, L)\)

- compute threats
- compute open goals

- has flaw?
 - select flaw
 - compute resolvers
 - has resolver?
 - choose resolver
 - apply resolvers
 - maintain ordering constraints
 - maintain binding constraints

- return failure
- return plan
PSP: Sound and Complete

- **Proposition**: The PSP procedure is sound and complete: whenever π_0 can be refined into a solution plan, $\text{PSP}(\pi_0)$ returns such a plan.

- **Proof**:
 - soundness: \prec and B are consistent at every stage of the refinement
 - completeness: induction on the number of actions in the solution plan

PSP Implementation: PoP

- extended input:
 - partial plan (as before)
 - agenda: set of pairs (a,p) where a is an action and p is one of its preconditions

- search control by flaw type
 - unachieved sub-goal (on agenda): as before
 - threats: resolved as part of the successor generation process
PoP: Pseudo Code (1)

function PoP(plan, agenda)

 if agenda.empty() then return plan

 (a_g,p_g) ← agenda.selectOne()
 agenda ← agenda - (a_g,p_g)
 relevant ← plan.getProviders(p_g)

 if relevant.empty() then return failure

 (a_p,p_p,σ) ← relevant.chooseOne()
 plan.L ← plan.L ∪ \langle a_p -[p] \rightarrow a_g \rangle
 plan.B ← plan.B ∪ σ

PoP: Pseudo Code (2)

if a_p ∉ plan.A then

 plan.add(a_p)
 agenda ← agenda + a_p.preconditions
 newPlan ← plan

 for each threat on \langle a_p -[p] \rightarrow a_g \rangle or due to a_p do

 allResolvers ← threat.getResolvers(newPlan)

 if allResolvers.empty() then return failure

 resolver ← allResolvers.chooseOne()
 newPlan ← newPlan.refine(resolver)

 return PSP(newPlan,agenda)
State-Space vs. Plan-Space Planning

- State-space planning
 - finite search space
 - explicit representation of intermediate states
 - action ordering reflects control strategy
 - causal structure only implicit
 - search nodes relatively simple and successors easy to compute

- Plan-space planning
 - finite search space
 - no intermediate states
 - choice of actions and organization independent
 - explicit representation of rationale
 - search nodes are complex and successors expensive to compute

Using Partial-Order Plans: Main Advantages

- more flexible during execution
- using constraint managers facilitates extensions such as:
 - temporal constraints
 - resource constraints
- distributed and multi-agent planning fit naturally into the framework
Overview

- The Search Space of Partial Plans
- Plan-Space Search Algorithms
 - Extensions of the STRIPS Representation

Existential Quantification in Goals

- allow existentially quantified conjunction of literals as goal:
 - \(g = \exists x_1, \ldots, x_n : l_1 \land \ldots \land l_m \)
- rewrite into equivalent planning problem:
 - new goal \(g' = \{p\} \) where \(p \) is an unused proposition symbol
 - introduce additional operator
 \(o = (\text{op-g}(x_1, \ldots, x_n), \{l_1, \ldots, l_m\}, \{p\}) \)
- in plan-space search: no change needed
DWR Example: Existential Quantification in Goals

- goal: $\exists x, y: \text{on}(x, c1) \land \text{on}(y, c2)$

- rewritten goal: p
- new operator:
 $o = (\text{op-g}(x, y), \{\text{on}(x, c1), \text{on}(y, c2)\}, \{p\})$

- plan-space search goal: $\text{on}(x, c1) \land \text{on}(y, c2)$

Typed Variables

- allow typed variables in operators:
 - name(o) = $n(x_1: t_1, \ldots, x_k: t_k)$ where t_i is the type of variable x_i
- rewrite into equivalent planning problem:
 - add preconditions $\{t_1(x_1), \ldots, t_k(x_k)\}$ to o
 - if constant c_i is of type t_j, add rigid relation $t_j(c_i)$ to the initial state
 - remove types from operator names
DWR Example: Typed Variables

- **operator:** `move(r:robot, l:location, m:location)`
 - **precond:** `adjacent(l, m), at(r, l), ¬occupied(m)`
 - **effects:** `at(r, m), occupied(m), ¬occupied(l), ¬at(r, l)`

- **rewritten operator:** `move(l, r, m)`
 - **precond:** `adjacent(l, m), at(r, l), ¬occupied(m), robot(r), location(l), location(m)`
 - **effects:** `at(r, m), occupied(m), ¬occupied(l), ¬at(r, l)`

- **rewritten initial state:**
 - `s_i ∪ {robot(r1), container(c1), container(c2),...}`

Conditional Operators

- **conditional planning operators:**
 - `o = (n, (precond_0, effects_0),..., (precond_n, effects_n))`
 where:
 - `n = o(x_1,...,x_n)` as before,
 - `(precond_0, effects_0)` are the unconditional preconditions and effects of the operator, and
 - `(precond_i, effects_i)` for `i ≥ 1` are the conditional preconditions and effects of the operator.
 - A ground instance `a` of `o` is applicable in state `s` if `s` satisfies `precond_0`
 - Let `I = {i ∈ [0,n] | s satisfies precond_i(a)}`; then:
 - `γ(s,a) = (s - ∪_{i∈I} effects_i(a)) ∪ (∪_{i∈I} effects_i*(a))`
DWR Example: Conditional Operators

- relation \(\text{at}(o,l) \): object \(o \) is at location \(l \)
- conditional move operator:
 \(\text{move}(r,l,m,c) \)
 - \(\text{precond}_0 \): \(\text{adjacent}(l,m) \), \(\text{at}(r,l) \), \(\neg \text{occupied}(m) \)
 - \(\text{effects}_0 \): \(\text{at}(r,m) \), \(\text{occupied}(m) \), \(\neg \text{occupied}(l) \), \(\neg \text{at}(r,l) \)
 - \(\text{precond}_1 \): \(\text{loaded}(r,c) \)
 - \(\text{effects}_1 \): \(\text{at}(c,m) \), \(\neg \text{at}(c,l) \)

Extending PoP to handle Conditional Operators

- modifying \(\text{plan}.\text{getProviders}(p_g) \):
 - new action with matching conditional effect
 - add precondition of conditional effect to agenda
- managing conditional threats:
 - new alternative resolver: add negated precondition of threatening conditional effect to agenda
Quantified Expressions

- allow universally quantified variables in conditional preconditions and effects:
 - for-all x_1, \ldots, x_n: $(\text{precond}_i, \text{effects}_i)$
- a is applicable in state s if s satisfies precond_0
- Let σ be a substitution for x_1, \ldots, x_n such that $\sigma(\text{precond}_i(a))$ and $\sigma(\text{effects}_i(a))$ are ground.
 - If s satisfies $\sigma(\text{precond}_i(a))$ then
 - $\sigma(\text{effects}_i(a))$ are effects of the action.

DWR Example: Quantified Expressions

- extension: robots can carry multiple containers
- extended move operator:
 - $\text{move}(r, l, m)$
 - precond$_0$: adjacent(l, m), at(r, l), \negoccupied(m)
 - effects$_0$: at(r, m), occupied(m), \negoccupied(l), \negat(r, l)
 - for-all x:
 - precond$_i$: loaded(r, x)
 - effects$_i$: at(x, m), \negat(x, l)
Disjunctive Preconditions

- allow alternatives (disjunctions) in preconditions:
 - precond = precond₁ ∨ … ∨ precondₙ
 - a is applicable in state s if s satisfies at least one of precond₁ … precondₙ
 - effects remain unchanged
- rewrite:
 - replace operator with n disjunctive preconditions by n operators with precondᵢ as precondition

DWR Example: Disjunctive Preconditions

- robot can move between locations if there is a road between them or the robot has all-wheel drive
- extended move operator:
 move(r,l,m)
 - precond: (road(l,m), at(r,l), ¬occupied(m)) ∨ (all-wheel-drive(r), at(r,l), ¬occupied(m))
 - effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
Axiomatic Inference: Static Case

- axioms over rigid relations:
 - example:
 \[\forall l_1, l_2: \text{adjacent}(l_1, l_2) \leftrightarrow \text{adjacent}(l_2, l_1) \]
- state-specific axioms:
 - example:
 \[\forall c: \text{container}(c) \leftrightarrow \text{at}(c, \text{loc1}) \text{ holds in } s_i \]
- approach: pre-compute

Axiomatic Inference: Dynamic Case

- axioms over flexible relations:
 - example: \[\forall k, x: \neg \text{holding}(k, x) \leftrightarrow \text{empty}(k) \]
 - approach:
 - divide relations into primary and secondary where secondary relations do not appear in effects
 - transform axioms into implications where primary relations must not appear in right-hand side
 - example:
 - primary: holding / secondary: empty
 \[\forall k \neg \exists x: \text{holding}(k, x) \rightarrow \text{empty}(k) \]
 \[\forall k \exists x: \text{holding}(k, x) \rightarrow \neg \text{empty}(k) \]
Extended Goals

- not part of classical planning formalisms
- some problems can be translated into equivalent classical problems, e.g.
 - states to be avoided: add corresponding preconditions to operators
 - states to be visited twice: introduce visited relation and maintain in operators
 - constraints on solution length: introduce count relation that is increased with each step

Other Extensions

- Function Symbols
 - infinite domains, undecidable in general
- Attached Procedures
 - evaluate relations using special code rather than general inference
 - efficiency may be necessary in real-world domains
 - variables must usually be bound to evaluate relations
 - semantics of such relations
Overview

- The Search Space of Partial Plans
- Plan-Space Search Algorithms
- Extensions of the STRIPS Representation