Planning with MDPs (Markov Decision Processes)

Héctor Geffner ICREA and Universitat Pompeu Fabra Barcelona, Spain

Status of Classical Planning

- Classical planning works!!
 - Large problems solved very fast (non-optimally)

• Model simple but useful

- Operators not primitive; can be policies themselves
- Fast closed-loop replanning able to cope with uncertainty sometimes

• Limitations

- Does not model **Uncertainty** (no probabilities)
- Does not deal with Incomplete Information (no sensing)
- Deals with very **Simple Cost Structure** (no state dependent costs)

Beyond Classical Planning: Two Strategies

1. **Develop** solver for more general models; e.g., MDPs and POMDPs

- +: generality
- -: complexity
- 2. Extend the scope of current 'classical' solvers
 - +: efficiency
 - -: generality

We will pursue first approach here . . .

Reminder: Basic State Models

- Characterized by:
 - finite and discrete state space ${\boldsymbol{S}}$
 - an initial state $s_0 \in S$
 - a set $G\subseteq S$ of goal states
 - actions $A(s) \subseteq A$ applicable in each state $s \in S$
 - a transition function F(a,s) for $s \in S$ and $a \in A(s)$
 - action costs c(a,s) > 0
- A solution is a sequence of applicable actions a_i , i = 0, ..., n, that maps the initial state s_0 into a goal state $s \in S_G$; i.e.,

$$s_{i+1} = f(a_i, s_i)$$
 and $a_i \in A(s_i)$ for $i = 0, \ldots, n$ and $s_{n+1} \in S_G$

• Optimal solutions minimize total cost $\sum_{i=0}^{i=n} c(a_i, s_i)$, and can be computed by shortest-path or heuristic search algorithms . . .

Markov Decision Processes (MDPs)

MDPs are fully observable, probabilistic state models:

- $\bullet\,$ a state space S
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- action costs c(a, s) > 0
- Solutions are functions (policies) mapping states into actions
- Optimal solutions have minimum expected costs

Partially Observable MDPs (POMDPs)

POMDPs are **partially observable**, **probabilistic** state models:

- $\bullet \ {\rm states} \ s \in S$
- actions $A(s) \subseteq A$
- costs c(a,s) > 0
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- initial **belief state** b_0
- final **belief states** b_F
- sensor model given by probabilities $P_a(o|s)$, $o \in Obs$
- **Belief states** are probability distributions over S
- Solutions are policies that map belief states into actions
- **Optimal** policies minimize **expected** cost to go from b_0 to b_F

Illustration: Navigation Problems

Consider robot that has to reach target ${\cal G}$ when

- 1. initial state is known and actions are deterministic
- 2. initial state is unknown and actions are deterministic
- 3. states are fully observable and actions are stochastic
- 4. states are partially observable and actions are stochastic . . .

- How do these problems map into the models considered?
- What is the form of the solutions?

Solving State Models by Dynamic Programming

 Solutions to wide range of state models can be expressed in terms of solution of Bellman equation over non-terminal states s:

$$V(s) = \min_{a \in A(s)} Q_V(a, s)$$

where **cost-to-go** term $Q_V(a, s)$ depends on model

 $\begin{array}{ll} c(a,s) + \sum_{s' \in F(a,s)} P_a(s'|s) V(s') & \text{ for MDPs} \\ c(a,s) + \max_{s' \in F(a,s)} V(s') & \text{ for Max AND/OR Graphs} \\ c(a,s) + V(s'), \ s' \in F(a,s) & \text{ for OR Graphs} \dots \end{array}$

(F(a, s): set of successor states; for terminal states, $V(s) = V^*(s)$ assumed)

- The greedy policy $\pi_V(s) = \operatorname{argmin}_{a \in A(s)} Q_V(a, s)$ is optimal when $V = V^*$ solves Bellman
- Question: how to get V^* ?

Value Iteration (VI)

- Value Iteration finds V^* by successive approximations
- $\bullet\,$ Starting with an arbitrary V , uses Bellman equation to update V

$$V(s) := \min_{a \in A(s)} Q_V(a, s)$$

- If all states updated a sufficient number of times (and certain general conditions hold), left and right hand sides converge to $V = V^*$
- Example: . . .

Value Iteration: Benefits and Limitations

- VI is a very **simple** and **general** algorithm (can solve wide range of models)
- Problem: VI is exhaustive; value function V(s) is a vector of the size of the problem space
- In particular, it does not compete with **heuristic search algorithms** such as A* or IDA* for solving OR-graphs (deterministic problems) . . .
- **Question:** can VI be 'modified' to deal with **larger state spaces** that do not fit into memory, without giving up **optimality**?
- Yes, use Lower Bounds and Initial State as in Heuristic Search methods . . .

Focusing Value Iteration using LBs and s_0 : Find and Update

- Say that a state s is
 - greedy if reachable from s_0 using greedy policy π_V , and
 - inconsistent if $V(s) \neq \min_{a \in A(s)} Q_V(a, s)$
- Then starting with an **admissible** and **monotone** V, follow loop:
 - Find an inconsistent greedy state s and Update it
- Find-and-Update loop delivers greedy policy that is optimal even if some states not updated or visited at all!
- Recent heuristic search algorithms for MDPs, like RTDP, LAO*, and LDFS; all implement this loop in various forms
- We will focus here on RTDP (Barto, Bradke, Singh, 95)

Greedy Policy for For Deterministic MDP

The **Greedy policy** is a closed-loop version of greedy search

1. **Evaluate** each action a applicable in s

 $Q(a,s) = c(a,s) + h(s_a)$ where s_a is next state

- 2. Apply action \mathbf{a} that minimizes $Q(\mathbf{a},s)$
- 3. **Observe** resulting states s'

4. **Exit** if s' is goal, else go to 1 with s := s'

- Greedy policy based on h can be written as $\pi_h(s) = \operatorname{argmin}_{a \in A(s)}Q(a, s)$
- π_h is **optimal** when $h = h^*$, otherwise non-optimal and may get trapped into loops

Modifiable Greedy Policy for For Deterministic MDP (LRTA*)

Update heuristic h as you move, to make it consistent with Bellman

1. **Evaluate** each action a applicable in s

 $Q(a,s) = c(a,s) + h(s_a)$ where s_a is next state

- 2. Apply action a that minimizes $Q(\mathbf{a},s)$
- 3. Update V(s) to $Q(\mathbf{a}, s)$
- 4. **Observe** resulting states s'
- 5. **Exit** if s' is goal, else go to 1 with s := s'
- Greedy policy based on h can be written as $\pi_h(s) = \operatorname{argmin}_{a \in A(s)}Q(a, s)$
- π_h is **optimal** when $h = h^*$, otherwise non-optimal and may get trapped into loops

Real Time Dynamic Programming (RTDP)

Same as LRTA* but deals with true (probabilistic) MDP

1. **Evaluate** each action a applicable in s as

$$Q(a,s) = c(a,s) + \sum_{s' \in S} P_a(s'|s)V_i(s')$$

- 2. Apply action \mathbf{a} that minimizes $Q(\mathbf{a},s)$
- 3. Update V(s) to $Q(\mathbf{a}, s)$
- 4. **Observe** resulting state s'
- 5. **Exit** if s' is goal, else go to 1 with s := s'

V(s) initialized to h(s); if $h < V^*$, RTDP eventually **optimal**

Variations on RTDP : Reinforcement Learning

Q-learning is a model-free version of RTDP

- 1. Apply action a that minimizes $Q(\mathbf{a}, s)$ with probability 1ϵ , with probability ϵ , choose a randomly
- 2. **Observe** resulting state s'
- 3. Update $Q(\mathbf{a},s)$ to

$$(1-\alpha)Q(\mathbf{a},s) + \alpha[c(\mathbf{a},s) + \max_a Q(a,s')]$$

4. **Exit** if s' is goal, else with s := s' go to 1

Q-learning learns asymptotically to solve MDPs optimally (Watkins 89)

Bibliography

- TEXT: Malik Ghallab et. al. Automated Planning: Theory & Practice. Morgan Kaufmann 2004.
- Andrew G. Barto, Steven J. Bradtke, Satinder P. Singh: Learning to Act Using Real-Time Dynamic Programming. Artif. Intell. 72(1-2): 81-138 (1995)
- Chris Watkins Peter Dayan. Q-learning, Machine Learning, 8, 279-292.
- Blai Bonet and Hector Geffner. Learning Depth-First Search: A Unified Approach to Heuristic Search in Deterministic and Non-Deterministic Settings, and its application to MDPs. Proc. 16th Int. Conf. on Automated Planning and Scheduling (ICAPS-06), 6/2006