
Planning with MDPs
(Markov Decision Processes)

Héctor Geffner
ICREA and Universitat Pompeu Fabra

Barcelona, Spain

Hector Geffner, MDP Planning, Edinburgh, 11/2007 1



Status of Classical Planning

• Classical planning works!!

– Large problems solved very fast (non-optimally)

• Model simple but useful

– Operators not primitive; can be policies themselves
– Fast closed-loop replanning able to cope with uncertainty sometimes

• Limitations

– Does not model Uncertainty (no probabilities)
– Does not deal with Incomplete Information (no sensing)
– Deals with very Simple Cost Structure (no state dependent costs)

Hector Geffner, MDP Planning, Edinburgh, 11/2007 2



Beyond Classical Planning: Two Strategies

1. Develop solver for more general models; e.g., MDPs and POMDPs

+: generality
−: complexity

2. Extend the scope of current ’classical’ solvers

+: efficiency
−: generality

We will pursue first approach here . . .

Hector Geffner, MDP Planning, Edinburgh, 11/2007 3



Reminder: Basic State Models

• Characterized by:

– finite and discrete state space S
– an initial state s0 ∈ S
– a set G ⊆ S of goal states
– actions A(s) ⊆ A applicable in each state s ∈ S
– a transition function F (a, s) for s ∈ S and a ∈ A(s)
– action costs c(a, s) > 0

• A solution is a sequence of applicable actions ai, i = 0, . . . , n, that maps the
initial state s0 into a goal state s ∈ SG; i.e.,

si+1 = f(ai, si) and ai ∈ A(si) for i = 0, . . . , n and sn+1 ∈ SG

• Optimal solutions minimize total cost
∑i=n

i=0 c(ai, si), and can be computed by
shortest-path or heuristic search algorithms . . .

Hector Geffner, MDP Planning, Edinburgh, 11/2007 4



Markov Decision Processes (MDPs)

MDPs are fully observable, probabilistic state models:

• a state space S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions have minimum expected costs

Hector Geffner, MDP Planning, Edinburgh, 11/2007 5



Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• actions A(s) ⊆ A

• costs c(a, s) > 0

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• final belief states bF

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to bF

Hector Geffner, MDP Planning, Edinburgh, 11/2007 6



Illustration: Navigation Problems

Consider robot that has to reach target G when

1. initial state is known and actions are deterministic

2. initial state is unknown and actions are deterministic

3. states are fully observable and actions are stochastic

4. states are partially observable and actions are stochastic . . .

G

– How do these problems map into the models considered?

– What is the form of the solutions?

Hector Geffner, MDP Planning, Edinburgh, 11/2007 7



Solving State Models by Dynamic Programming

• Solutions to wide range of state models can be expressed in terms of solution of
Bellman equation over non-terminal states s:

V (s) = mina∈A(s) QV (a, s)

where cost-to-go term QV (a, s) depends on model

c(a, s) +
∑

s′∈F (a,s) Pa(s′|s)V (s′) for MDPs

c(a, s) + maxs′∈F (a,s) V (s′) for Max AND/OR Graphs
c(a, s) + V (s′), s′ ∈ F (a, s) for OR Graphs . . .

(F (a, s): set of successor states; for terminal states, V (s) = V ∗(s) assumed)

• The greedy policy πV (s) = argmina∈A(s) QV (a, s) is optimal when V = V ∗

solves Bellman

• Question: how to get V ∗?

Hector Geffner, MDP Planning, Edinburgh, 11/2007 8



Value Iteration (VI)

• Value Iteration finds V ∗ by successive approximations

• Starting with an arbitrary V , uses Bellman equation to update V

V (s) := mina∈A(s) QV (a, s)

• If all states updated a sufficient number of times (and certain general conditions
hold), left and right hand sides converge to V = V ∗

• Example: . . .

Hector Geffner, MDP Planning, Edinburgh, 11/2007 9



Value Iteration: Benefits and Limitations

• VI is a very simple and general algorithm (can solve wide range of models)

• Problem: VI is exhaustive; value function V (s) is a vector of the size of the
problem space

• In particular, it does not compete with heuristic search algorithms such as A*
or IDA* for solving OR-graphs (deterministic problems) . . .

• Question: can VI be ’modified’ to deal with larger state spaces that do not fit
into memory, without giving up optimality?

• Yes, use Lower Bounds and Initial State as in Heuristic Search methods . . .

Hector Geffner, MDP Planning, Edinburgh, 11/2007 10



Focusing Value Iteration using LBs and s0: Find and Update

• Say that a state s is

– greedy if reachable from s0 using greedy policy πV , and
– inconsistent if V (s) 6= mina∈A(s) QV (a, s)

• Then starting with an admissible and monotone V , follow loop:

– Find an inconsistent greedy state s and Update it

• Find-and-Update loop delivers greedy policy that is optimal even if some
states not updated or visited at all!

• Recent heuristic search algorithms for MDPs, like RTDP, LAO*, and LDFS;
all implement this loop in various forms

• We will focus here on RTDP (Barto, Bradke, Singh, 95)

Hector Geffner, MDP Planning, Edinburgh, 11/2007 11



Greedy Policy for For Deterministic MDP

The Greedy policy is a closed-loop version of greedy search

1. Evaluate each action a applicable in s

Q(a, s) = c(a, s) + h(sa) where sa is next state

2. Apply action a that minimizes Q(a, s)

3. Observe resulting states s′

4. Exit if s′ is goal, else go to 1 with s := s′

• Greedy policy based on h can be written as πh(s) = argmina∈A(s)Q(a, s)

• πh is optimal when h = h∗, otherwise non-optimal and may get trapped into
loops

Hector Geffner, MDP Planning, Edinburgh, 11/2007 12



Modifiable Greedy Policy for For Deterministic MDP (LRTA*)

Update heuristic h as you move, to make it consistent with Bellman

1. Evaluate each action a applicable in s

Q(a, s) = c(a, s) + h(sa) where sa is next state

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Observe resulting states s′

5. Exit if s′ is goal, else go to 1 with s := s′

• Greedy policy based on h can be written as πh(s) = argmina∈A(s)Q(a, s)

• πh is optimal when h = h∗, otherwise non-optimal and may get trapped into
loops

Hector Geffner, MDP Planning, Edinburgh, 11/2007 13



Real Time Dynamic Programming (RTDP)

Same as LRTA* but deals with true (probabilistic) MDP

1. Evaluate each action a applicable in s as

Q(a, s) = c(a, s) +
∑
s′∈S

Pa(s′|s)Vi(s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Observe resulting state s′

5. Exit if s′ is goal, else go to 1 with s := s′

V (s) initialized to h(s); if h < V ∗, RTDP eventually optimal

Hector Geffner, MDP Planning, Edinburgh, 11/2007 14



Variations on RTDP : Reinforcement Learning

Q-learning is a model-free version of rtdp

1. Apply action a that minimizes Q(a, s) with prob-
ability 1−ε, with probability ε, choose a randomly

2. Observe resulting state s′

3. Update Q(a, s) to

(1−α)Q(a, s) + α[c(a, s) + maxaQ(a, s′)]

4. Exit if s′ is goal, else with s := s′ go to 1

Q-learning learns asymptotically to solve MDPs optimally (Watkins 89)

Hector Geffner, MDP Planning, Edinburgh, 11/2007 15



Bibliography

• TEXT: Malik Ghallab et. al. Automated Planning: Theory & Practice. Morgan Kaufmann 2004.

• Andrew G. Barto, Steven J. Bradtke, Satinder P. Singh: Learning to Act Using Real-Time Dynamic Programming.
Artif. Intell. 72(1-2): 81-138 (1995)

• Chris Watkins Peter Dayan. Q-learning, Machine Learning, 8, 279-292.

• Blai Bonet and Hector Geffner. Learning Depth-First Search: A Unified Approach to Heuristic Search in Deterministic
and Non-Deterministic Settings, and its application to MDPs. Proc. 16th Int. Conf. on Automated Planning and
Scheduling (ICAPS-06), 6/2006

Hector Geffner, MDP Planning, Edinburgh, 11/2007 16


