Automated Planning

Introduction and Overview

Literature

Overview

- What is AI Planning?
 - A Conceptual Model for Planning
 - Restricting Assumptions
 - A Running Example: Dock-Worker Robots

Human Planning and Acting

- acting without (explicit) planning:
 - when purpose is immediate
 - when performing well-trained behaviours
 - when course of action can be freely adapted
- acting after planning:
 - when addressing a new situation
 - when tasks are complex
 - when the environment imposes high risk/cost
 - when collaborating with others

- people plan only when strictly necessary
Defining AI Planning

- **planning**:
 - explicit deliberation process that chooses and organizes actions by anticipating their outcomes
 - aims at achieving some pre-stated objectives

- **AI planning**:
 - computational study of this deliberation process

Why Study Planning in AI?

- **scientific goal of AI**: understand intelligence
 - planning is an important component of rational (intelligent) behaviour

- **engineering goal of AI**: build intelligent entities
 - build planning software for choosing and organizing actions for autonomous intelligent machines
Domain-Specific vs. Domain-Independent Planning

- **domain-specific planning**: use specific representations and techniques adapted to each problem
 - important domains: path and motion planning, perception planning, manipulation planning, communication planning
- **domain-independent planning**: use generic representations and techniques
 - exploit commonalities to all forms of planning
 - leads to general understanding of planning

- domain-independent planning complements domain-specific planning

Overview

- What is AI Planning?
- A Conceptual Model for Planning
- Restricting Assumptions
- A Running Example: Dock-Worker Robots
Why a Conceptual Model?

- conceptual model: theoretical device for describing the elements of a problem
- good for:
 - explaining basic concepts
 - clarifying assumptions
 - analyzing requirements
 - proving semantic properties
- not good for:
 - efficient algorithms and computational concerns

Conceptual Model for Planning: State-Transition Systems

- A state-transition system is a 4-tuple \(\Sigma = (S,A,E,\gamma) \), where:
 - \(S = \{s_1, s_2, \ldots\} \) is a finite or recursively enumerable set of states;
 - \(A = \{a_1, a_2, \ldots\} \) is a finite or recursively enumerable set of actions;
 - \(E = \{e_1, e_2, \ldots\} \) is a finite or recursively enumerable set of events; and
 - \(\gamma: S \times (A \cup E) \rightarrow 2^S \) is a state transition function.
- if \(a \in A \) and \(\gamma(s,a) \neq \emptyset \) then \(a \) is applicable in \(s \)
- applying \(a \) in \(s \) will take the system to \(s' \in \gamma(s,a) \)
State-Transition Systems as Graphs

- A state-transition system $\Sigma = (S,A,E,\gamma)$ can be represented by a directed labelled graph $G = (N_G,E_G)$ where:
 - the nodes correspond to the states in S, i.e. $N_G = S$, and
 - there is an arc from $s \in N_G$ to $s' \in N_G$, i.e. $s \rightarrow s' \in E_G$, with label $u \in (A \cup E)$ if and only if $s' \in \gamma(s,a)$.

State-Transition Graph Example: Missionaries and Cannibals
Objectives and Plans

- state-transition system:
 - describes all ways in which a system may evolve
- plan:
 - a structure that gives appropriate actions to apply in order to achieve some objective when starting from a given state
- types of objective:
 - goal state s_g or set of goal states S_g
 - satisfy some conditions over the sequence of states
 - optimize utility function attached to states
 - task to be performed

Planning and Plan Execution

- planner:
 - given: description of Σ, initial state, objective
 - generate: plan that achieves objective
- controller:
 - given: plan, current state (observation function: $\eta: S \rightarrow O$)
 - generate: action
- state-transition system:
 - evolves as actions are executed and events occur
Dynamic Planning

- problem: real world differs from model described by Σ
- more realistic model: interleaved planning and execution
 - plan supervision
 - plan revision
 - re-planning
- dynamic planning: closed loop between planner and controller
 - execution status

Overview

- What is AI Planning?
- A Conceptual Model for Planning
 - Restricting Assumptions
- A Running Example: Dock-Worker Robots
A0: Finite \(\Sigma \)

- **Assumption A0**
 - system \(\Sigma \) has a finite set of states
- **Relaxing A0**
 - **why?**
 - to describe actions that construct or bring new objects into the world
 - to handle numerical state variables
 - **issues:**
 - decidability and termination of planners

A1: Fully Observable \(\Sigma \)

- **Assumption A1**
 - system \(\Sigma \) is fully observable, i.e. \(\eta \) is the identity function
- **Relaxing A1**
 - **why?**
 - to handle states in which not every aspect is or can be known
 - **issues:**
 - if \(\eta(s)=o \), \(\eta^{-1}(o) \) usually more than one state (ambiguity)
 - determining the successor state
A2: Deterministic Σ

- Assumption A2
 - system Σ is deterministic, i.e. for all $s \in S$, $u \in A \cup E$:
 \[|\gamma(s,u)| \leq 1 \]
 - short form: $\gamma(s,u) = s'$ for $\gamma(s,u) = \{s'\}$
- Relaxing A2
 - why?
 - to plan with actions that may have multiple alternative outcomes
 - issues:
 - controller has to observe actual outcomes of actions
 - solution plan may include conditional and iterative constructs

A3: Static Σ

- Assumption A3
 - system Σ is static, i.e. $E = \emptyset$
 - short form: $\Sigma = (S,A,\gamma)$ for $\Sigma = (S,A,\emptyset,\gamma)$
- Relaxing A3
 - why?
 - to model a world in which events can occur
 - issues:
 - world becomes nondeterministic from the point of view of the planner (same issues)
A4: Restricted Goals

- Assumption A4
 - the planner handles only restricted goals that are given as an explicit goal state s_g or set of goal states S_g

- Relaxing A4
 - why?
 - to handle constraints on states and plans, utility functions, or tasks
 - issues:
 - representation and reasoning over constraints, utility, and tasks

A5: Sequential Plans

- Assumption A5
 - a solution plan is a linearly ordered finite sequence of actions

- Relaxing A5
 - why?
 - to handle dynamic systems (see A3: static Σ)
 - to create different types of plans
 - issues:
 - must not shift problem to the controller
 - reasoning about (more complex) data structures
A6: Implicit Time

- **Assumption A6**
 - actions and events have no duration in state transition systems

- **Relaxing A6**
 - why?
 - to handle action duration, concurrency, and deadlines
 - issues:
 - representation of and reasoning about time
 - controller must wait for effects of actions to occur

A7: Offline Planning

- **Assumption A7**
 - planner is not concerned with changes of Σ while it is planning

- **Relaxing A7**
 - why?
 - to drive a system towards some objectives
 - issues:
 - check whether the current plan remains valid
 - if needed, revise current plan or re-plan
The Restricted Model

- restricted model: make assumptions A0-A7

- Given a planning problem $\mathcal{P} = (\Sigma, s_i, S_g)$ where
 - $\Sigma = (S, A, \gamma)$ is a state transition system,
 - $s_i \in S$ is the initial state, and
 - $S_g \subset S$ is a set of goal states,
- find a sequence of actions $\langle a_1, a_2, \ldots, a_k \rangle$
 - corresponding to a sequence of state transitions $\langle s_i, s_1, \ldots, s_k \rangle$ such that
 - $s_1 = \gamma(s_i, a_1)$, $s_2 = \gamma(s_1, a_2)$, ..., $s_k = \gamma(s_{k-1}, a_k)$, and $s_k \in S_g$.

Restrictedness?

- non-deterministic state-transition system:
- equivalent deterministic state-transition system:
Overview

- What is AI Planning?
- A Conceptual Model for Planning
- Restricting Assumptions

A Running Example: Dock-Worker Robots

The Dock-Worker Robots (DWR) Domain

- aim: have one example to illustrate planning procedures and techniques
- informal description:
 - harbour with several locations (docks), docked ships, storage areas for containers, and parking areas for trucks and trains
 - cranes to load and unload ships etc., and robot carts to move containers around
Automated Planning: Introduction and Overview

DWR Example State

![Diagram of DWR Example State]

Actions in the DWR Domain

- **move** robot \(r \) from location \(l \) to some adjacent and unoccupied location \(l' \)
- **take** container \(c \) with empty crane \(k \) from the top of pile \(p \), all located at the same location \(l \)
- **put** down container \(c \) held by crane \(k \) on top of pile \(p \), all located at location \(l \)
- **load** container \(c \) held by crane \(k \) onto unloaded robot \(r \), all located at location \(l \)
- **unload** container \(c \) with empty crane \(k \) from loaded robot \(r \), all located at location \(l \)
State-Transition Systems: Graph Example

Overview

- What is AI Planning?
- A Conceptual Model for Planning
- Restricting Assumptions
- A Running Example: Dock-Worker Robots