Hierarchical Task Networks

Planning to perform tasks rather than to achieve goals

Literature

HTN Planning

• HTN planning:
 • objective: perform a given set of tasks

• input includes:
 • set of operators
 • set of methods: recipes for decomposing a complex task into more primitive subtasks

• planning process:
 • decompose non-primitive tasks recursively until primitive tasks are reached

Overview

♫ Simple Task Networks
• HTN Planning
• Extensions
• State-Variable Representation
STN Planning

- STN: Simple Task Network
- what remains:
 - terms, literals, operators, actions, state transition function, plans
- what’s new:
 - tasks to be performed
 - methods describing ways in which tasks can be performed
 - organized collections of tasks called task networks

DWR Stack Moving Example

- task: move stack of containers from pallet p1 to pallet p3 in a way the preserves the order

- (informal) methods:
 - move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
 - move stack: repeatedly move the topmost container until the stack is empty
 - move topmost: take followed by put action
Tasks

- **task symbols**: $T_S = \{t_1, \ldots, t_n\}$
 - operator names $\subseteq T_S$: primitive tasks
 - non-primitive task symbols: $T_S - \text{operator names}$

- **task**: $t(r_1, \ldots, r_k)$
 - t: task symbol (primitive or non-primitive)
 - r_1, \ldots, r_k: terms, objects manipulated by the task
 - ground task: are ground

- **action a accomplishes** ground primitive task $t_i(r_1, \ldots, r_k)$ in state s iff
 - $\text{name}(a) = t_i$ and
 - a is applicable in s

Simple Task Networks

- A simple task network w is an acyclic directed graph (U, E) in which
 - the node set $U = \{t_1, \ldots, t_n\}$ is a set of tasks and
 - the edges in E define a partial ordering of the tasks in U.

- A task network w is **ground/primitive** if all tasks $t_u \in U$ are ground/primitive, otherwise it is unground/non-primitive.
Totally Ordered STNs

- ordering: $t_u < t_v$ in $w = (U, E)$ iff there is a path from t_u to t_v
- STN w is totally ordered iff E defines a total order on U
 - w is a sequence of tasks: $\langle t_1, \ldots, t_n \rangle$
- Let $w = \langle t_1, \ldots, t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $\pi(w) = \langle a_1, \ldots, a_n \rangle$ where $a_i = t_i$, $1 \leq i \leq n$

STNs: DWR Example

- tasks:
 - $t_1 = \text{take}(\text{crane}, \text{loc}, c1, c2, p1)$: primitive, ground
 - $t_2 = \text{take}(\text{crane}, \text{loc}, c2, c3, p1)$: primitive, ground
 - $t_3 = \text{move-stack}(p1, q)$: non-primitive, unground
- task networks:
 - $w_1 = \{(t_1, t_2, t_3), (t_1, t_2), (t_1, t_3)\}$
 - partially ordered, non-primitive, unground
 - $w_2 = \{(t_1, t_2), (t_1, t_2)\}$
 - totally ordered: $w_2 = \langle t_1, t_2 \rangle$, ground, primitive
 - $\pi(w_2) = \langle \text{take}(\text{crane}, \text{loc}, c1, c2, p1), \text{take}(\text{crane}, \text{loc}, c2, c3, p1) \rangle$
STN Methods

- Let M_S be a set of method symbols. An STN method is a 4-tuple $m=(\text{name}(m), \text{task}(m), \text{precond}(m), \text{network}(m))$ where:
 - $\text{name}(m)$:
 - the name of the method
 - syntactic expression of the form $n(x_1, ..., x_k)$
 - $n \in M_S$: unique method symbol
 - $x_1, ..., x_k$: all the variable symbols that occur in m;
 - $\text{task}(m)$: a non-primitive task;
 - $\text{precond}(m)$: set of literals called the method's preconditions;
 - $\text{network}(m)$: task network (U,E) containing the set of subtasks U of m.

STN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o,p_d)
 - precond: top(c,p_o), on(c,x_o), attached(p_o,l), belong(k,l), attached(p_d,l), top(x_d,p_d)
 - subtasks: \langletake(k,l,c,x_o,p_o), put(k,l,c,x_d,p_d)\rangle
STN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o, p_d, c, x_o)
 - task: move-stack(p_o, p_d)
 - precond: top(c, p_o), on(c, x_o)
 - subtasks: \langlemove-topmost(p_o, p_d), move-stack(p_o, p_d)\rangle
- no-move(p_o, p_d)
 - task: move-stack(p_o, p_d)
 - precond: top(pallet, p_o)
 - subtasks: $\langle\rangle$

STN Methods: DWR Example (3)

- move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
- move-stack-twice(p_o, p_i, p_d)
 - task: move-ordered-stack(p_o, p_d)
 - precond: -
 - subtasks: \langlemove-stack(p_o, p_i), move-stack(p_i, p_d)\rangle
Hierarchical Task Networks

Applicability and Relevance

- A method instance m is **applicable** in a state s if
 - $\text{precond}^+(m) \subseteq s$ and
 - $\text{precond}^-(m) \cap s = \emptyset$.
- A method instance m is **relevant** for a task t if
 - there is a substitution σ such that $\sigma(t) = \text{task}(m)$.
- The **decomposition** of a task t by a relevant method m under σ is
 - $\delta(t,m,\sigma) = \sigma(\text{network}(m))$ or
 - $\delta(t,m,\sigma) = \sigma(\langle\text{subtasks}(m)\rangle)$ if m is totally ordered.

Method Applicability and Relevance: DWR Example

- task $t = \text{move-stack}(p1,q)$
- state s (as shown)

- method instance $m_i = \text{recursive-move}(p1,p2,c1,c2)$
 - m_i is applicable in s
 - m_i is relevant for t under $\sigma = \{q\leftarrow p2\}$
Method Decomposition: DWR

Example

- $\delta(t, m, \sigma) = \langle \text{move-topmost}(p1, p2), \text{move-stack}(p1, p2) \rangle$

Decomposition of Tasks in STNs

- Let
 - $w = (U, E)$ be a STN and
 - $t \in U$ be a task with no predecessors in w and
 - m a method that is relevant for t under some substitution σ with $\text{network}(m) = (U_m, E_m)$.
- The decomposition of t in w by m under σ is the STN $\delta(w, u, m, \sigma)$ where:
 - t is replaced in U by $\sigma(U_m)$ and
 - edges in E involving t are replaced by edges to appropriate nodes in $\sigma(U_m)$.
STN Planning Domains

- An STN planning domain is a pair $\mathcal{D}=(O,M)$ where:
 - O is a set of STRIPS planning operators and
 - M is a set of STN methods.

- \mathcal{D} is a total-order STN planning domain if every $m \in M$ is totally ordered.

STN Planning Problems

- An STN planning problem is a 4-tuple $\mathcal{P}=(s_i,w_i,O,M)$ where:
 - s_i is the initial state (a set of ground atoms)
 - w_i is a task network called the initial task network and
 - $\mathcal{D}=(O,M)$ is an STN planning domain.

- \mathcal{P} is a total-order STN planning domain if w_i and \mathcal{D} are both totally ordered.
STN Solutions

A plan $\pi = \langle a_1, \ldots, a_n \rangle$ is a solution for an STN planning problem $\mathcal{P} = (s_i, w_i, O, M)$ if:

- w_i is empty and π is empty;
- or:
 - there is a primitive task $t \in w_i$ that has no predecessors in w_i and
 - $a_1 = t$ is applicable in s_i, and
 - $\pi' = \langle a_2, \ldots, a_n \rangle$ is a solution for $\mathcal{P}' = (s_i, t, w_i - \{t\}, O, M)$
- or:
 - there is a non-primitive task $t \in w_i$ that has no predecessors in w_i and
 - $m \in M$ is relevant for t, i.e. $\sigma(t) = \text{task}(m)$ and applicable in s_i and
 - π is a solution for $\mathcal{P}' = (s_i, \delta(w_i, t, m, \sigma), O, M)$.

Decomposition Tree: DWR Example
Ground-TFD: Pseudo Code

function Ground-TFD(s,〈t₁,…,tₖ〉,O,M)
 if k=0 return ()
 if t₁.isPrimitive() then
 actions = {(a,σ) | a=σ(t₁) and a applicable in s}
 if actions.isEmpty() then return failure
 (a,σ) = actions.chooseOne()
 plan ← Ground-TFD(γ(s,a),σ(〈t₂,…,tₖ〉),O,M)
 if plan = failure then return failure
 else return (a) • plan
 else
 methods = {(m,σ) | m is relevant for σ(t₁) and m is applicable in s}
 if methods.isEmpty() then return failure
 (m,σ) = methods.chooseOne()
 plan ← subtasks(m) • σ(〈t₂,…,tₖ〉)
 return Ground-TFD(s,plan,O,M)

TFD vs. Forward/Backward Search

- choosing actions:
 - TFD considers only applicable actions like forward search
 - TFD considers only relevant actions like backward search
- plan generation:
 - TFD generates actions execution order; current world state always known
- lifting:
 - Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search
Ground-PFD: Pseudo Code

function Ground-PFD(s,w,O,M)
 if w.U={} return ∅
 task ← {t∈U | t has no predecessors in w.E}.chooseOne()
 if task.isPrimitive() then
 actions = {(a,σ) | a=σ(t) and a applicable in s}
 if actions.isEmpty() then return failure
 (a,σ) = actions.chooseOne()
 plan ← Ground-PFD(γ(s,a),σ(w-{task}),O,M)
 if plan = failure then return failure
 else return (a) ∙ plan
 else
 methods = {(m,σ) | m is relevant for σ(t) and m is applicable in s}
 if methods.isEmpty() then return failure
 (m,σ) = methods.chooseOne()
 return Ground-PFD(s, δ(w,task,m,σ),O,M)

Overview

- Simple Task Networks
- HTN Planning
- Extensions
- State-Variable Representation
Preconditions in STN Planning

- STN planning constraints:
 - ordering constraints: maintained in network
 - preconditions:
 - enforced by planning procedure
 - must know state to test for applicability
 - must perform forward search

- HTN Planning
 - additional bookkeeping maintains general constraints explicitly

First and Last Network Nodes

- Let
 - \(\pi = \langle a_1, \ldots, a_n \rangle \) be a solution for \(w \),
 - \(U' \subseteq U \) be a set of tasks in \(w \), and
 - \(A(U') \) the subset of actions in \(\pi \) such that each \(a_i \in A(U') \) is a descendant of some \(t \in U' \) in the decomposition tree.

- Then we define:
 - \(\text{first}(U', \pi) = \) the action \(a_i \in A(U') \) that occurs first in \(\pi \); and
 - \(\text{last}(U', \pi) = \) the action \(a_i \in A(U') \) that occurs last in \(\pi \).
Hierarchical Task Networks

- A (hierarchical) task network is a pair \(w = (U, C) \), where:
 - \(U \) is a set of tasks and
 - \(C \) is a set of constraints of the following types:
 - \(t_1 \prec t_2 \): precedence constraint between tasks satisfied if in every solution \(\pi \): \(\text{last}\{t_1, \pi\} < \text{first}\{t_2, \pi\} \);
 - before\((U', l)\): satisfied if in every solution \(\pi \): literal \(l \) holds in the state just before \(\text{first}(U', \pi) \);
 - after\((U', l)\): satisfied if in every solution \(\pi \): literal \(l \) holds in the state just after \(\text{last}(U', \pi) \);
 - between\((U', U'', l)\): satisfied if in every solution \(\pi \): literal \(l \) holds in every state after \(\text{last}(U', \pi) \) and before \(\text{first}(U'', \pi) \).

HTN Methods

- Let \(M_S \) be a set of method symbols. An HTN method is a 4-tuple \(m = (\text{name}(m), \text{task}(m), \text{subtasks}(m), \text{constr}(m)) \) where:
 - \(\text{name}(m) \):
 - the name of the method
 - syntactic expression of the form \(n(x_1, \ldots, x_k) \)
 - \(n \in M_S \): unique method symbol
 - \(x_1, \ldots, x_k \): all the variable symbols that occur in \(m \);
 - \(\text{task}(m) \): a non-primitive task;
 - \((\text{subtasks}(m), \text{constr}(m)) \): a task network.
HTN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o,p_d)
 - network:
 - subtasks: t_1=take(k,l,c,x_o,p_o), t_2=put(k,l,c,x_o,p_d)
 - constraints: \(t_1 \prec t_2, \text{before}(\{t_1\}, \text{top}(c,p_o)), \text{before}(\{t_1\}, \text{on}(c,x_o)), \text{before}(\{t_1\}, \text{attached}(p_o,l)), \text{before}(\{t_1\}, \text{belong}(k,l)), \text{before}(\{t_2\}, \text{attached}(p_o,l)), \text{before}(\{t_2\}, \text{top}(x_o,p_d)) \)}

HTN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o,p_d,c,x_o)
 - task: move-stack(p_o,p_d)
 - network:
 - subtasks: t_1=move-topmost(p_o,p_d), t_2=move-stack(p_o,p_d)
 - constraints: \(t_1 \prec t_2, \text{before}(\{t_1\}, \text{top}(c,p_o)), \text{before}(\{t_1\}, \text{on}(c,x_o)) \)}
- move-one(p_o,p_d,c)
 - task: move-stack(p_o,p_d)
 - network:
 - subtasks: t_1=move-topmost(p_o,p_d)
 - constraints: \(\text{before}(\{t_1\}, \text{top}(c,p_o)), \text{before}(\{t_1\}, \text{on}(c,pallet)) \)}
Hierarchical Task Networks

HTN Decomposition

- Let \(w=(U,C) \) be a task network, \(t\in\mathcal{U} \) a task, and \(m \) a method such that \(\sigma(\text{task}(m))=t \). Then the decomposition of \(t \) in \(w \) using \(m \) under \(\sigma \) is defined as:

\[
\delta(w,t,m,\sigma) = ((U-\{t\})\cup\sigma(\text{subtasks}(m)), C\cup\sigma(\text{constr}(m)))
\]

where \(C' \) is modified from \(C \) as follows:
- for every precedence constraint in \(C \) that contains \(t \), replace it with precedence constraints containing \(\sigma(\text{subtasks}(m)) \) instead of \(t \); and
- for every before-, after-, or between constraint over tasks \(U' \) containing \(t \), replace \(U' \) with \((U'\{-t\})\cup\sigma(\text{subtasks}(m)) \).

HTN Decomposition: Example

- network: \(w = (\{t_1=\text{move-stack}(p1,q)\}, \{\}) \)

\[
\delta(w, t_1, \text{recursive-move}(p_o,p_d,c,x_o), \{p_o\leftarrow p1,p_d\leftarrow q\}) = w' = \\
\delta(w', t_2, \text{take-and-put}(c,k,l,p_o,p_d,x_o,x_d), \{p_o\leftarrow p1,p_d\leftarrow q\}) =
\]

- \(\delta(w', t_2) = \{(t_2=\text{move-topmost}(p1,q), t_3=\text{move-stack}(p1,q)), \\
\{t_2< t_3, \text{before}(\{t_2, \text{top}(c,p1)\}), \text{before}(\{t_3, \text{on}(c,x_o)\})\}) \\
\{t_4< t_5, \text{attached}(p1,l), \text{before}(\{t_4, \text{belong}(k,l)\}), \text{before}(\{t_5, \text{attached}(q,l)\}), \text{before}(\{t_3, \text{top}(x_o,q)\})\}) \\
\}

Hierarchical Task Networks
HTN Planning Domains and Problems

- An HTN planning domain is a pair $\mathcal{D} = (O, M)$ where:
 - O is a set of STRIPS planning operators and
 - M is a set of HTN methods.
- An HTN planning problem is a 4-tuple $\mathcal{P} = (s_i, w_i, O, M)$ where:
 - s_i is the initial state (a set of ground atoms)
 - w_i is a task network called the initial task network and
 - $\mathcal{D} = (O, M)$ is an HTN planning domain.

Solutions for Primitive HTNs

- Let (U, C) be a primitive HTN. A plan $\pi = \langle a_1, \ldots, a_n \rangle$ is a solution for $\mathcal{P} = (s_i, (U, C), O, M)$ if there is a ground instance $(\sigma(U), \sigma(C))$ of (U, C) and a total ordering $\langle t_1, \ldots, t_n \rangle$ of tasks in $\sigma(U)$ such that:
 - for $i = 1 \ldots n$: $\text{name}(a_i) = t_i$;
 - π is executable in s_i, i.e. $\gamma(s_i, \pi)$ is defined;
 - the ordering of $\langle t_1, \ldots, t_n \rangle$ respects the ordering constraints in $\sigma(C);
 - for every constraint before (U', l) in $\sigma(C)$ where $t_k = \text{first}(U', \pi)$: l must hold in $\gamma(s_i, \langle a_1, \ldots, a_{k-1} \rangle)$;
 - for every constraint after (U', l) in $\sigma(C)$ where $t_k = \text{last}(U', \pi)$: l must hold in $\gamma(s_i, \langle a_1, \ldots, a_{k} \rangle)$;
 - for every constraint between (U', U'', l) in $\sigma(C)$ where $t_k = \text{first}(U', \pi)$ and $t_m = \text{last}(U'', \pi)$: l must hold in every state $\gamma(s_i, \langle a_1, \ldots, a_j \rangle)$, $j \in \{k \ldots m-1\}$.
Solutions for Non-Primitive HTNs

- Let \(w = (U,C) \) be a non-primitive HTN. A plan \(\pi = \langle a_1, \ldots, a_n \rangle \) is a solution for \(P = (s_i, w, O, M) \) if there is a sequence of task decompositions that can be applied to \(w \) such that:
 - the result of the decompositions is a primitive HTN \(w' \); and
 - \(\pi \) is a solution for \(P' = (s_i, w', O, M) \).

Abstract-HTN: Pseudo Code

```
function Abstract-HTN(s, U, C, O, M)
    if (U,C).isInconsistent() then return failure
    if U.isPrimitive() then
        return extractSolution(s, U, C, O)
    else
        return decomposeTask(s, U, C, O, M)
```

extractSolution: Pseudo Code

```plaintext
function extractSolution(s, U, C, O)
  \langle t_1, \ldots, t_n \rangle \leftarrow U.\text{chooseSequence}(C)
  \langle a_1, \ldots, a_n \rangle \leftarrow \langle t_1, \ldots, t_n \rangle.\text{chooseGrounding}(s, C, O)
  \text{if } \langle a_1, \ldots, a_n \rangle.\text{satisfies}(C) \text{ then}
    \text{return } \langle a_1, \ldots, a_n \rangle
  \text{return failure}
```

decomposeTask: Pseudo Code

```plaintext
function decomposeTask(s, U, C, O, M)
  t \leftarrow U.\text{nonPrimitives}().\text{selectOne()}
  methods \leftarrow \{(m, \sigma) \mid m \in M \text{ and } \sigma(\text{task}(m)) = \sigma(t)\}
  \text{if } \text{methods}.\text{isEmpty()} \text{ then return failure}
  (m, \sigma) \leftarrow \text{methods}.\text{chooseOne()}
  (U', C') \leftarrow \delta((U, C), t, m, \sigma)
  (U', C') \leftarrow (U', C').\text{applyCritic()}
  \text{return Abstract-HTN}(s, U', C', O, M)
```
HTN vs. STRIPS Planning

- Since
 - HTN is a generalization of STN Planning, and
 - STN problems can encode undecidable problems, but
 - STRIPS cannot encode such problems:
- **STN/HTN formalism is more expressive**
- non-recursive STN can be translated into equivalent STRIPS problem
 - but exponentially larger in worst case
- “regular” STN is equivalent to STRIPS

Overview

- Simple Task Networks
- HTN Planning
 - Extensions
- State-Variable Representation
Functions in Terms

- allow function terms in world state and method constraints
- ground versions of all planning algorithms may fail
 - potentially infinite number of ground instances of a given term
- lifted algorithms can be applied with most general unifier
 - least commitment approach instantiates only as far as necessary
 - plan-existence may not be decidable

Axiomatic Inference

- use theorem prover to infer derived knowledge within world states
 - undecidability of first-order logic in general
- idea: use restricted (decidable) subset of first-order logic: Horn clauses
 - only positive preconditions can be derived
 - precondition p is satisfied in state s iff p can be proved in s
Attached Procedures

- associate predicates with procedures
- modify planning algorithm
 - evaluate preconditions by
 - calling the procedure attached to the predicate symbol if there is such a procedure
 - test against world state (set-relation, theorem prover) otherwise
- soundness and completeness: depends on procedures

High-Level Effects

- allow user to declare effects for non-primitive methods
- aim:
 - establish preconditions
 - prune partial plans if high-level effects threaten preconditions
- increases efficiency
- problem: semantics
Other Extensions

- other constraints
 - time constraints
 - resource constraints
- extended goals
 - states to be avoided
 - required intermediate states
 - limited plan length
 - visit states multiple times

Overview

- Simple Task Networks
- HTN Planning
- Extensions
 - State-Variable Representation
State Variables

- some relations are functions
 - example: at(r1,loc1): relates robot r1 to location loc1 in some state
 - truth value changes from state to state
 - will only be true for exactly one location / in each state

- idea: represent such relations using state-variable functions mapping states into objects
 - example: functional representation:
 \[\text{rloc}: \text{robots} \times S \rightarrow \text{locations} \]

States in the State-Variable Representation

- Let \(X \) be a set of state-variable functions. A \(k \)-ary state variable is an expression of the form \(x(v_1,\ldots,v_k) \) where:
 - \(x \in X \) is a state-variable function and
 - \(v_i \) is either an object constant or an object variable.

- A state-variable state description is a set of expressions of the form \(x_s = c \) where:
 - \(x_s \) is a ground state variable \(x(v_1,\ldots,v_k) \) and
 - \(c \) is an object constant.
DWR Example: State-Variable State Descriptions

- simplified: no cranes, no piles
- state-variable functions:
 - rloc: robots×S → locations
 - rolad: robots×S→containers ∪ {nil}
 - cpos: containers×S → locations ∪ robots
- sample state-variable state descriptions:
 - \{rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, cpos(c2)=loc2, cpos(c3)=loc2\}
 - \{rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, cpos(c2)=loc2, cpos(c3)=loc2\}

Operators in the State-Variable Representation

- A state-variable planning operator is a triple \((\text{name}(o), \text{precond}(o), \text{effects}(o)) \) where:
 - \(\text{name}(o) \) is a syntactic expression of the form \(n(x_1,\ldots,x_k) \) where \(n \) is a (unique) symbol and \(x_1,\ldots,x_k \) are all the object variables that appear in \(o \),
 - \(\text{precond}(o) \) are the unions of a state-variable state description and some rigid relations, and
 - \(\text{effects}(o) \) are sets of expressions of the form \(x_s←v_k+1 \) where:
 - \(x_s \) is a ground state variable \(x(v_1,\ldots,v_k) \) and
 - \(v_{k+1} \) is an object constant or an object variable.
DWR Example: State-Variable Operators

- **move(r,l,m)**
 - precond: \(\text{rloc}(r) = l \), adjacent\((l,m)\)
 - effects: \(\text{rloc}(r) \rightarrow m \)

- **load(r,c,l)**
 - precond: \(\text{rloc}(r) = l \), \(\text{cpos}(c) = l \), \(\text{rload}(r) = \text{nil} \)
 - effects: \(\text{cpos}(c) \leftarrow r \), \(\text{rload}(r) \leftarrow c \)

- **unload(r,c,l)**
 - precond: \(\text{rloc}(r) = l \)
 - effects: \(\text{rload}(r) \leftarrow \text{nil} \), \(\text{cpos}(c) \leftarrow l \)

Applicability and State Transitions

- Let \(a \) be an action and \(s \) a state. Then \(a \) is **applicable** in \(s \) iff:
 - all rigid relations mentioned in \(\text{precond}(a) \) hold, and
 - if \(x_s = c \in \text{precond}(a) \) then \(x_s = c \in s \).

- The state transition function \(\gamma \) for an action \(a \) in state \(s \) is defined as:
 \[
 \gamma(s,a) = \{ x_s = c \mid x \in X \}
 \]
 where:
 - \(x_s = c \in \text{effects}(a) \) or
 - \(x_s = c \in s \) otherwise.
State-Variable Planning Domains

- Let X be a set of state-variable functions. A state-variable planning domain on X is a restricted state-transition system $\Sigma=(S,A,\gamma)$ such that:
 - S is a set of state-variable state descriptions,
 - A is a set of ground instances of some state-variable planning operators O,
 - $\gamma:S \times A \rightarrow S$ where
 - $\gamma(s,a) = \{x_s=c \mid x \in X$ and $x,\leftarrow c \in \text{effects}(a)$ or $x_s=c \in s$ otherwise} if a is applicable in s
 - $\gamma(s,a) = \text{undefined}$ otherwise,
 - S is closed under γ

State-Variable Planning Problems

- A state-variable planning problem is a triple $P=(\Sigma,s_i,g)$ where:
 - $\Sigma=(S,A,\gamma)$ is a state-variable planning domain on some set of state-variable functions X
 - $s_i \in S$ is the initial state
 - g is a set of expressions of the form $x_s=c$ describing the goal such that the set of goal states is: $S_g = \{s \in S \mid x_s=c \in s\}$
Relevance and Regression Sets

- Let $P=(\Sigma, s_i, g)$ be a state-variable planning problem. An action $a \in A$ is relevant for g if
 - $g \cap \text{effects}(a) \neq \emptyset$ and
 - for every $x \leftarrow c \in g$, there is no $x \leftarrow d \in \text{effects}(a)$ such that $c \neq d$.
- The regression set of g for a relevant action $a \in A$ is:
 - $\gamma^{-1}(g, a) = (g - \theta(a)) \cup \text{precond}(a)$ where
 - $\theta(a) = \{x \leftarrow c \mid x \leftarrow c \in \text{effects}(a)\}$
- definition for all regression sets $\Gamma^<(g)$ exactly as for propositional case

Statement of a State-Variable Planning Problem

- A statement of a state-variable planning problem is a triple $P=(O, s_i, g)$ where:
 - O is a set of planning operators in an appropriate state-variable planning domain $\Sigma=(S,A,\gamma)$ on X
 - s_i is the initial state in an appropriate state-variable planning problem $P=(\Sigma, s_i, g)$
 - g is a goal in the same state-variable planning problem P
Translation: STRIPS to State-Variable Representation

- Let \(P=(O,s_i,g) \) be a statement of a classical planning problem. In the operators \(O \), in the initial state \(s_i \), and in the goal \(g \):
 - replace every positive literal \(p(t_1,\ldots,t_n) \) with a state-variable expression \(p(t_1,\ldots,t_n)=1 \) or \(p(t_1,\ldots,t_n)\leftarrow 1 \) in the operators’ effects, and
 - replace every negative literal \(\neg p(t_1,\ldots,t_n) \) with a state-variable expression \(p(t_1,\ldots,t_n)=0 \) or \(p(t_1,\ldots,t_n)\leftarrow 0 \) in the operators’ effects.

Translation: State-Variable to STRIPS Representation

- Let \(P=(O,s_i,g) \) be a statement of a state-variable planning problem. In the operators’ preconditions, in the initial state \(s_i \), and in the goal \(g \):
 - replace every state-variable expression \(p(t_1,\ldots,t_n)=v \) with an atom \(p(t_1,\ldots,t_n,v) \), and
 - in the operators’ effects:
 - replace every state-variable assignment \(p(t_1,\ldots,t_n)\leftarrow v \) with a pair of literals \(p(t_1,\ldots,t_n,v), \neg p(t_1,\ldots,t_n,w) \), and add \(p(t_1,\ldots,t_n,w) \) to the respective operators preconditions.
Overview

- Simple Task Networks
- HTN Planning
- Extensions
- State-Variable Representation