The Graphplan Planner

Searching the Planning Graph

Literature

Neoclassical Planning

- concerned with restricted state-transition systems
- representation is usually restricted to propositional STRIPS
- neoclassical vs. classical planning
 - classical planning: search space consists of nodes containing partial plans
 - neoclassical planning: nodes can be seen as sets of partial plans
- resulted in significant speed-up and revival of planning research

Overview

- The Propositional Representation
- The Planning-Graph Structure
- The Graphplan Algorithm
Classical Representations

- **propositional representation**
 - world state is set of propositions
 - action consists of precondition propositions, propositions to be added and removed

- **STRIPS representation**
 - like propositional representation, but first-order literals instead of propositions

- **state-variable representation**
 - state is tuple of state variables \(\{x_1, \ldots, x_n\} \)
 - action is partial function over states

Propositional Planning Domains

- Let \(L = \{p_1, \ldots, p_n\} \) be a finite set of proposition symbols. A propositional planning domain on \(L \) is a restricted state-transition system \(\Sigma = (S, A, \gamma) \) such that:
 - \(S \subseteq 2^L \), i.e. each state \(s \) is a subset of \(L \)
 - \(A \subseteq 2^L \times 2^L \times 2^L \), i.e. each action \(a \) is a triple \((\text{precond}(a), \text{effects}^-(a), \text{effects}^+(a))\) where \(\text{effects}^-(a) \) and \(\text{effects}^+(a) \) must be disjoint
 - \(\gamma : S \times A \rightarrow 2^L \) where
 - \(\gamma(s, a) = (s - \text{effects}^-(a)) \cup \text{effects}^+(a) \) if \(\text{precond}(a) \subseteq s \)
 - \(\gamma(s, a) = \text{undefined} \) otherwise
 - \(S \) is closed under \(\gamma \)
DWR Example: State Space

The Graphplan Planner 7

DWR Example: Propositional States

- \(L = \{ \text{onpallet}, \text{onrobot}, \text{holding}, \text{at1}, \text{at2} \} \)
- \(S = \{ s_0, \ldots, s_5 \} \)
 - \(s_0 = \{ \text{onpallet}, \text{at2} \} \)
 - \(s_1 = \{ \text{holding}, \text{at2} \} \)
 - \(s_2 = \{ \text{onpallet}, \text{at1} \} \)
 - \(s_3 = \{ \text{holding}, \text{at1} \} \)
 - \(s_4 = \{ \text{onrobot}, \text{at1} \} \)
 - \(s_5 = \{ \text{onrobot}, \text{at2} \} \)

The Graphplan Planner 8
DWR Example: Propositional Actions

<table>
<thead>
<tr>
<th>a</th>
<th>precond(a)</th>
<th>effects$^-(a)$</th>
<th>effects$^+(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>take</td>
<td>{onpallet}</td>
<td>{onpallet}</td>
<td>{holding}</td>
</tr>
<tr>
<td>put</td>
<td>{holding}</td>
<td>{holding}</td>
<td>{onpallet}</td>
</tr>
<tr>
<td>load</td>
<td>{holding,at1}</td>
<td>{holding}</td>
<td>{onrobot}</td>
</tr>
<tr>
<td>unload</td>
<td>{onrobot,at1}</td>
<td>{onrobot}</td>
<td>{holding}</td>
</tr>
<tr>
<td>move1</td>
<td>{at2}</td>
<td>{at2}</td>
<td>{at1}</td>
</tr>
<tr>
<td>move2</td>
<td>{at1}</td>
<td>{at1}</td>
<td>{at2}</td>
</tr>
</tbody>
</table>

DWR Example: Propositional State Transitions

<table>
<thead>
<tr>
<th></th>
<th>s_0</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>take</td>
<td>s_1</td>
<td></td>
<td>s_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put</td>
<td></td>
<td>s_0</td>
<td></td>
<td>s_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>load</td>
<td></td>
<td></td>
<td>s_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unload</td>
<td></td>
<td></td>
<td></td>
<td>s_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>move1</td>
<td></td>
<td>s_0</td>
<td></td>
<td>s_1</td>
<td></td>
<td>s_4</td>
</tr>
<tr>
<td>move2</td>
<td>s_2</td>
<td></td>
<td>s_3</td>
<td></td>
<td></td>
<td>s_5</td>
</tr>
</tbody>
</table>
Propositional Planning Problems

• A propositional planning problem is a triple \(P=(\Sigma,s_i,g) \) where:
 - \(\Sigma=(S,A,\gamma) \) is a propositional planning domain on \(L=\{p_1,\ldots,p_n\} \)
 - \(s_i \in S \) is the initial state
 - \(g \subseteq L \) is a set of goal propositions that define the set of goal states \(S_g=\{s \in S \mid g \subseteq s\} \)

DWR Example: Propositional Planning Problem

• \(\Sigma \): propositional planning domain for DWR domain
• \(s_i \): any state
 - example: initial state = \(s_0 \in S \)
• \(g \): any subset of \(L \)
 - example: \(g=\{\text{onrobot,at2}\} \), i.e. \(S_g=\{s_5\} \)
Classical Plans

- A plan is any sequence of actions \(\pi = \langle a_1, \ldots, a_k \rangle \), where \(k \geq 0 \).
 - The length of plan \(\pi \) is \(|\pi| = k \), the number of actions.
 - If \(\pi_1 = \langle a_1, \ldots, a_k \rangle \) and \(\pi_2 = \langle a'_1, \ldots, a'_j \rangle \) are plans, then their concatenation is the plan \(\pi_1 \cdot \pi_2 = \langle a_1, \ldots, a_k, a'_1, \ldots, a'_j \rangle \).
 - The extended state transition function for plans is defined as follows:
 - \(\gamma(s, \pi) = s \) if \(k = 0 \) (\(\pi \) is empty)
 - \(\gamma(s, \pi) = \gamma(\gamma(s, a_1), \langle a_2, \ldots, a_k \rangle) \) if \(k > 0 \) and \(a_1 \) applicable in \(s \)
 - \(\gamma(s, \pi) = \text{undefined} \) otherwise

Classical Solutions

- Let \(\mathcal{P} = (\Sigma, s_i, g) \) be a propositional planning problem. A plan \(\pi \) is a solution for \(\mathcal{P} \) if \(g \subseteq \gamma(s_i, \pi) \).
 - A solution \(\pi \) is redundant if there is a proper subsequence of \(\pi \) is also a solution for \(\mathcal{P} \).
 - \(\pi \) is minimal if no other solution for \(\mathcal{P} \) contains fewer actions than \(\pi \).
DWR Example: Plans and Solutions

| plan π | $|\pi|$ | $\gamma(s,\pi)$ | sol. | red. | min. |
|--------------------------------|---------|-----------------|------|------|------|
| {} | 0 | s_0 | no | - | - |
| $\langle \text{move2}, \text{move2} \rangle$ | 2 | undef. | no | - | - |
| $\langle \text{take}, \text{move1} \rangle$ | 2 | s_3 | no | - | - |
| $\langle \text{take}, \text{move1}, \text{put}, \text{move2}, \text{take}, \text{move1}, \text{load}, \text{move2} \rangle$ | 8 | s_5 | yes | yes | no |
| $\langle \text{take}, \text{move1}, \text{load}, \text{move2} \rangle$ | 4 | s_5 | yes | no | yes |
| $\langle \text{move1}, \text{take}, \text{load}, \text{move2} \rangle$ | 4 | s_5 | yes | no | yes |

Reachable Successor States

- The successor function $\Gamma^m : 2^S \rightarrow 2^S$ for a propositional domain $\Sigma = (S, A, \gamma)$ is defined as:
 - $\Gamma(s) = \{ \gamma(s, a) | a \in A \text{ and } a \text{ applicable in } s \}$ for $s \in S$
 - $\Gamma(\{s_1, \ldots, s_n\}) = \bigcup(k \in \{1, \ldots, n\}) \Gamma(s_k)$
 - $\Gamma^0(\{s_1, \ldots, s_p\}) = \{s_1, \ldots, s_p\}$
 - $\Gamma^m(\{s_1, \ldots, s_p\}) = \Gamma(\Gamma^{m-1}(\{s_1, \ldots, s_p\}))$

- The transitive closure of Γ defines the set of all reachable states:
 - $\Gamma^\ast(s) = \bigcup(k \in \{0, \ldots\}) \Gamma^k(\{s\})$ for $s \in S$
Relevant Actions and Regression Sets

• Let $\mathcal{P} = (\Sigma, s, g)$ be a propositional planning problem. An action $a \in A$ is relevant for g if
 • $g \cap \text{effects}^+(a) \neq \emptyset$ and
 • $g \cap \text{effects}^-(a) = \emptyset$.

• The regression set of g for a relevant action $a \in A$ is:
 • $\gamma^{-1}(g, a) = (g - \text{effects}^+(a)) \cup \text{precond}(a)$
 • note: $\gamma(s, a) \in S_g$ iff $\gamma^{-1}(g, a) \subseteq s$

Regression Function

• The regression function Γ^{-m} for a propositional domain $\Sigma = (S, A, \gamma)$ on L is defined as:
 • $\Gamma^{-1}(g) = \{ \gamma^{-1}(g, a) \mid a \in A \text{ is relevant for } g \}$ for $g \in 2^L$
 • $\Gamma^0(g_1, \ldots, g_n) = \{ g_1, \ldots, g_n \}$
 • $\Gamma^{-1}(g_1, \ldots, g_n) = \bigcup_{k \in [1,n]} \Gamma^{-1}(g_k)$
 • $\Gamma^{-m}(g_1, \ldots, g_n) = \Gamma^{-1}(\Gamma^{-m-1}(\{g_1, \ldots, g_n\}))$

• The transitive closure of Γ^{-1} defines the set of all regression sets:
 • $\Gamma^c(g) = \bigcup_{k \in [0, \infty]} \Gamma^{-k}(\{g\})$ for $g \in 2^L$
Statement of a Propositional Planning Problem

- A statement of a propositional planning problem is a triple $P = (A, s_i, g)$ where:
 - A is a set of actions in an appropriate propositional planning domain $\Sigma = (S, A, \gamma)$ on L
 - s_i is the initial state in an appropriate propositional planning problem $P = (\Sigma, s_i, g)$
 - g is a set of goal propositions in the same propositional planning problem P

Example: Ambiguity in Statement of a Planning Problem

- statement: $P = (\{a_1\}, s_i, g)$ where $a_1 = (\{p_1\}, \{p_1, p_2\})$, $s_i = \{p_1\}$, and $g = \{p_2\}$

- $\Sigma_1 =$
 - $\{\{p_1\}, \{p_2\}\}$
 - $\{a_1\}$
 - $((\{p_1\}, a_1) \rightarrow \{p_2\})$ on $L_1 = \{p_1, p_2\}$

- $\Sigma_2 =$
 - $\{\{p_1\}, \{p_2\}, \{p_1, p_3\}, \{p_2, p_3\}\}$
 - $\{a_1\}$
 - $((\{p_1\}, a_1) \rightarrow \{p_2\}, ((\{p_1, p_3\}, a_1) \rightarrow \{p_2, p_3\})$ on $L_2 = \{p_1, p_2, p_3\}$
Statement Ambiguity

- **Proposition**: Let \mathcal{P}_1 and \mathcal{P}_2 be two propositional planning problems that have the same statement. Then both, \mathcal{P}_1 and \mathcal{P}_2, have
 - the same set of reachable states $\Gamma^*(s_j)$ and
 - the same set of solutions.

Properties of the Propositional Representation

- **Expressiveness**: For every propositional planning domain there is a corresponding state-transition system, but what about vice versa?
- **Conciseness**: propositional action representation is concise because it does not mention what does not change
- **Consistency**: not every assignment of truth values to propositions must correspond to a state in the underlying state-transition system
Grounding a STRIPS Planning Problem

- Let $P=(O,s_i,g)$ be the statement of a STRIPS planning problem and C the set of all the constant symbols that are mentioned in s_i. Let $\text{ground}(O)$ be the set of all possible instantiations of operators in O with constant symbols from C consistently replacing variables in preconditions and effects.
- Then $P'=(\text{ground}(O),s_i,g)$ is a statement of a STRIPS planning problem and P' has the same solutions as P.

Translation: Propositional Representation to Ground STRIPS

- Let $P=(A,s_i,g)$ be a statement of a propositional planning problem. In the actions A:
 - replace every action $(\text{precond}(a), \text{effects}^-(a), \text{effects}^+(a))$ with an operator o with
 - some unique name(o),
 - $\text{precond}(o) = \text{precond}(a)$, and
 - $\text{effects}(o) = \text{effects}^+(a) \cup \{\neg p \mid p \in \text{effects}^-(a)}$.

Translation: Ground STRIPS to Propositional Representation

- Let \(P = (O, s, g) \) be a ground statement of a classical planning problem.
 - In the operators \(O \), in the initial state \(s \), and in the goal \(g \) replace every atom \(P(v_1, \ldots, v_n) \) with a propositional atom \(P_{v_1, \ldots, v_n} \).
 - In every operator \(o \): for all \(\neg p \) in \(\text{precond}(o) \), replace \(\neg p \) with \(p' \).
 - if \(p \) in \(\text{effects}(o) \), add \(\neg p' \) to \(\text{effects}(o) \).
 - if \(\neg p \) in \(\text{effects}(o) \), add \(p' \) to \(\text{effects}(o) \).
 - In the goal replace \(\neg p \) with \(p' \).
 - For every operator \(o \) create an action \((\text{precond}(o), \text{effects}^{-}(a), \text{effects}^{+}(a)) \).

Overview

- The Propositional Representation
 - The Planning-Graph Structure
 - The Graphplan Algorithm
Example: Simplified DWR Problem

- robots can load and unload autonomously
- locations may contain unlimited number of robots and containers
- problem: swap locations of containers

Simplified DWR Problem: STRIPS Actions

- move(r,l,l')
 - precond: at(r,l), adjacent(l,l')
 - effects: at(r,l'), ¬at(r,l)
- load(c,r,l)
 - precond: at(r,l), in(c,l), unloaded(r)
 - effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)
- unload(c,r,l)
 - precond: at(r,l), loaded(r,c)
 - effects: unloaded(r), in(c,l), ¬loaded(r,c)
Simplified DWR Problem: State Proposition Symbols

- **robots:**
 - \(r1 \) and \(r2 \): \(\text{at(robr,loc1)} \) and \(\text{at(robr,loc2)} \)
 - \(q1 \) and \(q2 \): \(\text{at(robq,loc1)} \) and \(\text{at(robq,loc2)} \)
 - \(ur \) and \(uq \): \(\text{unloaded(robr)} \) and \(\text{unloaded(robq)} \)

- **containers:**
 - \(a1, a2, ar, \) and \(aq \): \(\text{in(conta,loc1)} \), \(\text{in(conta,loc2)} \), \(\text{loaded(conta,robr)} \), and \(\text{loaded(conta,robq)} \)
 - \(b1, b2, br, \) and \(bq \): \(\text{in(contb,loc1)} \), \(\text{in(contb,loc2)} \), \(\text{loaded(contb,robr)} \), and \(\text{loaded(contb,robq)} \)

- **initial state:** \(\{r1, q2, a1, b2, ur, uq\} \)

Simplified DWR Problem: Action Symbols

- **move actions:**
 - \(Mr12 \): \(\text{move(robr,loc1,loc2)} \), \(Mr21 \):
 \(\text{move(robr,loc2,loc1)} \), \(Mq12 \): \(\text{move(robq,loc1,loc2)} \), \(Mq21 \): \(\text{move(robq,loc2,loc1)} \)

- **load actions:**
 - \(Lar1 \): \(\text{load(conta,robr,loc1)} \); \(Lar2, Laq1, Laq2, Lar1, Lbr2, Lbq1, \) and \(Lbq2 \) correspondingly

- **unload actions:**
 - \(Uar1 \): \(\text{unload(conta,robr,loc1)} \); \(Uar2, Uaq1, Uaq2, Uar1, Ubr2, Ubq1, \) and \(Ubq2 \) correspondingly
Solution Existence

• **Proposition**: A propositional planning problem \(P = (\Sigma, s_i, g) \) has a solution iff
 \(S_g \cap \Gamma^>(\{s_i\}) \neq \emptyset \).

• **Proposition**: A propositional planning problem \(P = (\Sigma, s_i, g) \) has a solution iff
 \(\exists s \in \Gamma^<(\{g\}) : s \subseteq s_i \).

Reachability Tree

• tree structure, where:
 • root is initial state \(s_i \)
 • children of node \(s \) are \(\Gamma(\{s\}) \)
 • arcs are labelled with actions
• all nodes in reachability tree are \(\Gamma^>(\{s_i\}) \)
 • all nodes to depth \(d \) are \(\Gamma^d(\{s_i\}) \)
 • solves problems with up to \(d \) actions in solution

• problem: \(O(k^d) \) nodes;
 \(k = \) applicable actions per state
DWR Example: Reachability Tree

Planning Graph: Nodes

- layered directed graph $G=(N,E)$:
 - $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$
 - state proposition layers: P_0, P_1, \ldots
 - action layers: A_1, A_2, \ldots
- first proposition layer P_0:
 - propositions in initial state s_i: $P_0 = s_i$
- action layer A_j:
 - all actions a where: $\text{precond}(a) \subseteq P_{j-1}$
- proposition layer P_j:
 - all propositions p where: $p \in P_{j-1}$ or $\exists a \in A_j: p \in \text{effects}^+(a)$
Planning Graph: Arcs

- from proposition $p \in P_{j-1}$ to action $a \in A_j$:
 - if: $p \in \text{precond}(a)$
- from action $a \in A_j$ to layer $p \in P_j$:
 - positive arc if: $p \in \text{effects}^+(a)$
 - negative arc if: $p \in \text{effects}^-(a)$

- no arcs between other layers
Reachability in the Planning Graph

- reachability analysis:
 - if a goal g is reachable from initial state s_i
 - then there will be a proposition layer P_g in the planning graph such that $g \subseteq P_g$

- necessary condition, but not sufficient
- low complexity:
 - planning graph is of polynomial size and
 - can be computed in polynomial time

Independent Actions: Examples

- Mr12 and Lar1:
 - cannot occur together
 - Mr12 deletes precondition r_1 of Lar1

- Mr12 and Mr21:
 - cannot occur together
 - Mr12 deletes positive effect r_1 of Mr21

- Mr12 and Mq21:
 - may occur in same action layer
Independent Actions

- Two actions a_1 and a_2 are independent iff:
 - $\text{effects}^{-}(a_1) \cap (\text{precond}(a_2) \cup \text{effects}^{+}(a_2)) = \emptyset$
 - $\text{effects}^{-}(a_2) \cap (\text{precond}(a_1) \cup \text{effects}^{+}(a_1)) = \emptyset$.
- A set of actions π is independent iff every pair of actions $a_1, a_2 \in \pi$ is independent.

Pseudo Code: independent

function independent(a_1, a_2)
 for all $p \in \text{effects}^{-}(a_1)$
 if $p \in \text{precond}(a_2)$ or $p \in \text{effects}^{+}(a_2)$ then
 return false
 for all $p \in \text{effects}^{-}(a_2)$
 if $p \in \text{precond}(a_1)$ or $p \in \text{effects}^{+}(a_1)$ then
 return false
 return true
Applying Independent Actions

- A set π of independent actions is *applicable* to a state s iff $\bigcup_{a \in \pi} \text{precond}(a) \subseteq s$.
- The result of applying the set π in s is defined as:
 $$\gamma(s, \pi) = (s - \text{effects}^{-}(\pi)) \cup \text{effects}^{+}(\pi),$$
 where:
 - $\text{precond}(\pi) = \bigcup_{a \in \pi} \text{precond}(a)$,
 - $\text{effects}^{+}(\pi) = \bigcup_{a \in \pi} \text{effects}^{+}(a)$, and
 - $\text{effects}^{-}(\pi) = \bigcup_{a \in \pi} \text{effects}^{-}(a)$.

Execution Order of Independent Actions

- **Proposition**: If a set π of independent actions is applicable in state s then, for any permutation $\langle a_1, \ldots, a_k \rangle$ of the elements of π:
 - the sequence $\langle a_1, \ldots, a_k \rangle$ is applicable to s, and
 - the state resulting from the application of π to s is the same as from the application of $\langle a_1, \ldots, a_k \rangle$, i.e.:
 $$\gamma(s, \pi) = \gamma(s, \langle a_1, \ldots, a_k \rangle).$$
Layered Plans

- Let $P = (A, s, g)$ be a statement of a propositional planning problem and $G = (N, E)$, $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$, the corresponding planning graph.
- A layered plan over G is a sequence of sets of actions: $\prod = \langle \pi_1, \ldots, \pi_k \rangle$ where:
 - $\pi_i \subseteq A_i \subseteq A$,
 - π_i is applicable in state P_{i-1}, and
 - the actions in π_i are independent.

Layered Solution Plan

- A layered plan $\prod = \langle \pi_1, \ldots, \pi_k \rangle$ is a solution to a planning problem $P = (A, s, g)$ iff:
 - π_1 is applicable in s,
 - for $j \in \{2, \ldots, k\}$, π_j is applicable in state $\gamma(\ldots \gamma(\gamma(s, \pi_1), \pi_2), \ldots, \pi_{j-1})$, and
 - $g \subseteq \gamma(\ldots \gamma(\gamma(s, \pi_1), \pi_2), \ldots, \pi_k)$.
Execution Order in Layered Solution Plans

- **Proposition:** If \(\Pi = (\pi_1, \ldots, \pi_k) \) is a solution to a planning problem \(P=(A,s_i,g) \), then:
 - a sequence of actions corresponding to any permutation of the elements of \(\pi_1 \),
 - followed by a sequence of actions corresponding to any permutation of the elements of \(\pi_2 \),
 - …
 - followed by a sequence of actions corresponding to any permutation of the elements of \(\pi_k \)

is a path from \(s_i \) to a goal state.

Problem: Dependent Propositions: Example

- \(r2 \) and \(ar \):
 - \(r2 \): positive effect of Mr12
 - \(ar \): positive effect of Lar1
 - but: Mr12 and Lar1 not independent
 - hence: \(r2 \) and \(ar \) incompatible in \(P_1 \)
- \(r1 \) and \(r2 \):
 - positive and negative effects of same action: Mr12
 - hence: \(r1 \) and \(r2 \) incompatible in \(P_1 \)
No-Operation Actions

- No-Op for proposition \(p \):
 - name: \(Ap \)
 - precondition: \(p \)
 - effect: \(p \)
- \(r1 \) and \(r2 \):
 - \(r1 \): positive effect of \(Ar1 \)
 - \(r2 \): positive effect of \(Mr12 \)
 - but: \(Ar1 \) and \(Mr12 \) not independent
 - hence: \(r1 \) and \(r2 \) incompatible in \(P_1 \)
- only one incompatibility test

Mutex Propositions

- Two propositions \(p \) and \(q \) in proposition layer \(P_j \) are mutex (mutually exclusive) if:
 - every action in the preceding action layer \(A_j \) that has \(p \) as a positive effect (incl. no-op actions) is mutex with every action in \(A_j \) that has \(q \) as a positive effect, and
 - there is no single action in \(A_j \) that has both, \(p \) and \(q \), as positive effects.
- notation: \(\mu P_j = \{ (p,q) | p,q \in P_j \text{ are mutex} \} \)
Pseudo Code: mutex for Propositions

```plaintext
function mutex(p1, p2, μA_j)
    for all a_1 ∈ p1.producers()
        for all a_2 ∈ p2.producers()
            if (a_1, a_2) ∉ μA_j then
                return false
            end if
        end for
    end for
    return true
end function
```

Mutex Actions: Example

- r1 and r2 are mutex in P_1
- r1 is precondition for Lar1 in A_2
- r2 is precondition for Mr21 in A_2
- hence: Lar1 and Mr21 are mutex in A_2
Mutex Actions

- Two actions a_1 and a_2 in action layer A_j are mutex if:
 - a_1 and a_2 are dependent, or
 - a precondition of a_1 is mutex with a precondition of a_2.
- notation:
 $\mu A_j = \{ (a_1, a_2) \mid a_1, a_2 \in A_j \text{ are mutex} \}$

Pseudo Code: mutex for Actions

```pseudocode
function mutex(a_1, a_2, P)
    if ¬independent(a_1, a_2) then
        return true
    for all $p_1 \in \text{precond}(a_1)$
        for all $p_2 \in \text{precond}(a_2)$
            if $(p_1, p_2) \in P$ then return true
    return false
```
Decreasing Mutex Relations

- **Proposition**: If \(p,q \in P_{j-1} \) and \((p,q) \notin \mu P_{j-1}\) then \((p,q) \notin \mu P_j\).
 - **Proof**:
 - if \(p,q \in P_{j-1} \) then \(Ap,Aq \in A_j \)
 - if \((p,q) \notin \mu P_{j-1}\) then \((Ap,Aq) \notin \mu A_j\)
 - since \(Ap,Aq \in A_j \) and \((Ap,Aq) \notin \mu A_j\), \((p,q) \notin \mu P\) must hold
- **Proposition**: If \(a_1,a_2 \in A_{j-1} \) and \((a_1,a_2) \notin \mu A_{j-1}\) then \((a_1,a_2) \notin \mu A_j\).
 - **Proof**:
 - if \(a_1,a_2 \in A_{j-1} \) and \((a_1,a_2) \notin \mu A_{j-1}\) then
 - \(a_1 \) and \(a_2 \) are independent and
 - their preconditions in \(P_{j-1} \) are not mutex
 - both properties remain true for \(P_j \)
 - hence: \(a_1,a_2 \in A_j \) and \((a_1,a_2) \notin \mu A_j\)

Removing Impossible Actions

- Actions with mutex preconditions \(p \) and \(q \) are impossible
 - example: preconditions \(r_2 \) and \(ar \) of \(Uar2 \) in \(A_2 \) are mutex
 - can be removed from the graph
 - example: remove \(Uar2 \) from \(A_2 \)

The Graphplan Planner 54
Reachability in Planning Graphs

- **Proposition**: Let $P = (A, s_i, g)$ be a propositional planning problem and $G = (N, E)$, $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$, the corresponding planning graph. If
 - g is reachable from s_i
 then
 - there is a proposition layer P_g such that
 - $g \subseteq P_g$ and
 - $\neg \exists g_1, g_2 \in g : (g_1, g_2) \in \mu_{P_g}$.

Overview

- The Propositional Representation
- The Planning-Graph Structure
 - The Graphplan Algorithm
The Graphplan Algorithm: Basic Idea

- expand the planning graph, one action layer and one proposition layer at a time
- from the first graph for which P_g is the last proposition layer such that
 - $g \subseteq P_g$ and
 - $\neg \exists g_1, g_2 \in g: (g_1, g_2) \in \mu P_g$
- search backwards from the last (proposition) layer for a solution

Planning Graph Data Structure

- k-th planning graph G_k:
 - nodes N:
 - array of proposition layers $P_0 \ldots P_k$
 - proposition layer j: set of proposition symbols
 - array of action layers $A_1 \ldots A_k$
 - proposition layer j: set of action symbols
 - edges E:
 - precondition links: $pre_j \subseteq P_j \times A_j$, $j \in \{1 \ldots k\}$
 - positive effect links: $e^+_j \subseteq A_j \times P_j$, $j \in \{1 \ldots k\}$
 - negative effect links: $e^-_j \subseteq A_j \times P_j$, $j \in \{1 \ldots k\}$
 - proposition mutex links: $\mu A_j \subseteq A_j \times A_j$, $j \in \{1 \ldots k\}$
 - action mutex links: $\mu P_j \subseteq P_j \times P_j$, $j \in \{1 \ldots k\}$
Pseudo Code: expand

function expand(G_{k-1})

$A_k \leftarrow \{ a \in A \mid \text{precond}(a) \subseteq P_{k-1} \}$ and

$\{(p_1, p_2) \mid p_1, p_2 \in \text{precond}(a) \} \cap \mu P_{k-1} = \{\} \}

$\mu A_k \leftarrow \{(a_1, a_2) \mid a_1, a_2 \in A_k, a_1 \neq a_2, \text{ and mutex}(a_1, a_2, \mu P_{k-1})\}

$P_k \leftarrow \{ p \mid \exists a \in A_k : p \in \text{effects}^+(a) \}

$\mu P_k \leftarrow \{(p_1, p_2) \mid p_1, p_2 \in P_k, p_1 \neq p_2, \text{ and mutex}(p_1, p_2, \mu A_k)\}

for all $a \in A_k$

$pre_k \leftarrow pre_k \cup \{(p \mid p \in P_{k-1} \text{ and } p \in \text{precond}(a)) \times a\}

$e_k^+ \leftarrow e_k^+ \cup (a \times \{p \mid p \in P_k \text{ and } p \in \text{effects}^+(a)\})

$e_k^- \leftarrow e_k^- \cup (a \times \{p \mid p \in P_k \text{ and } p \in \text{effects}^-(a)\})

Planning Graph Complexity

- **Proposition:** The size of a planning graph up to level k and the time required to expand it to that level are polynomial in the size of the planning problem.

- **Proof:**
 - problem size: n propositions and m actions
 - $|P| \leq n$ and $|A| \leq n + m$ (incl. no-op actions)
 - algorithms for generating each layer and all link types are polynomial in size of layer
Fixed-Point Levels

- A fixed-point level in a planning graph G is a level κ such that for all $i, i > \kappa$, level i of G is identical to level κ, i.e. $P_i = P_\kappa$, $\mu P_i = \mu P_\kappa$, $A_i = A_\kappa$, and $\mu A_i = \mu A_\kappa$.

- **Proposition**: Every planning graph G has a fixed-point level κ, which is the smallest k such that $|P_k| = |P_{k+1}|$ and $|\mu P_k| = |\mu P_{k+1}|$.

- **Proof**:
 - P_i grows monotonically and μP_i shrinks monotonically
 - A_i and P_i only depend on P_{i-1} and μP_{i-1}

Searching the Planning Graph

- **general idea**:
 - search backwards from the last proposition layer P_k in the current graph
 - let g be the set of goal propositions that need to be achieved at a given proposition layer P_j (initially the last layer)
 - find a set of actions $\pi_j \subseteq A_j$ such that these actions are not mutex and together achieve g
 - take the union of the preconditions of π_j as the new goal set to be achieved in proposition layer P_{j-1}
Planning Graph Search Example

Planning Graph as AND/OR-Graph

- OR-nodes:
 - nodes in proposition layers
 - links to actions that support the propositions

- AND-nodes:
 - nodes in action layers
 - k-connectors all preconditions of the action

- search:
 - AO^* not best algorithm because it does not exploit layered structure
Repeated Sub-Goals

The Graphplan Planner

The nogood Table

- *nogood* table (denoted \(\nabla \)) for planning graph up to layer \(k \):
 - array of \(k \) sets of sets of goal propositions
 - inner set: one combination of propositions that cannot be achieved
 - outer set: all combinations that cannot be achieved (at that layer)

- before searching for set \(g \) in \(P_j \):
 - check whether \(g \in \nabla(j) \)
- when search for set \(g \) in \(P_j \) has failed:
 - add \(g \) to \(\nabla(j) \)
Pseudo Code: extract

```plaintext
function extract(G,g,i)
    if i=0 then return ∅
    if g∈∇(i) then return failure
    Π ← gpSearch(G,g,{},i)
    if Π≠failure then return Π
    ∇(i) ← ∇(i) + g
    return failure
```

Pseudo Code: gpSearch

```plaintext
function gpSearch(G,g,π,i)
    if g={} then
        Π ← extract(G,∪a∈π precond(a),i-1)
        if Π=failure then return failure
        return Π⊙⟨π⟩
    p ← g.selectOne()
    resolvers ← {a∈Ai | p∈effects+{a} and ¬∃a′∈π: (a,a′)∈μAi}
    if resolvers={} then return failure
    a ← resolvers.chooseOne()
    return gpSearch(G,g-effects+(a),π+a,i)
```
Pseudo Code: graphplan

function graphplan(A,s,g)
 i ← 0; ; P_0 ← s; G ← (P_0,();
 while (g ∉ P, or g ∉ P) and ¬fixedPoint(G) do
 i ← i + 1; expand(G)
 if g ∉ P, or g ∉ P then return failure
 η ← fixedPoint(G) ? |∇(κ)| : 0
 |[i] ← extract(G,g,i)
 while |[i]|=failure do
 i ← i + 1; expand(G)
 |[i] ← extract(G,g,i)
 if |[i]|=failure and fixedPoint(G) then
 if r|∇(κ)| then return failure
 η ← |∇(κ)|
 return |[i]

Graphplan Properties

- **Proposition**: The Graphplan algorithm is sound, complete, and always terminates.
 - It returns failure iff the given planning problem has no solution;
 - otherwise, it returns a layered plan |[i] that is a solution to the given planning problem.

- Graphplan is orders of magnitude faster than previous techniques!
Overview

- The Propositional Representation
- The Planning-Graph Structure
- The Graphplan Algorithm
- Planning-Graph Heuristics

Forward State-Space Search

- idea: apply standard search algorithms (breadth-first, depth-first, A*, etc.) to planning problem:
 - search space is subset of state space
 - nodes correspond to world states
 - arcs correspond to state transitions
 - path in the search space corresponds to plan
DWR Example State

goal: (and
 (in ca p2) (in cb q2) (in cc p2) (in cd q2) (in ce q2) (in cf q2))

Heuristics

• estimate distance to nearest goal state
 • number of unachieved goals (not admissible)
 • number of unachieved goals / max. number of positive effects per operator (admissible)

• example state (prev. slide):
 • actual goal distance: 35 actions
 • h(s) = 6
 • h(s) = 6 / 4
Finding Better Heuristics

- solve “relaxed” problem and use solution as heuristic
- planning heuristic:
 - planning problem: \(P = (O, s_i, g) \)
 - for \(p \in g \): \(\text{min-layer}(p) = \text{index of first proposition layer in planning graph that contains } p \)
 - admissible heuristic: \(\max(p \in g): \text{min-layer}(p) \)
 - not admissible: \(\sum(p \in g): \text{min-layer}(p) \)
- no need to compute mutex relations
- no need to re-compute planning graph for ground backward search

The FF Planner (Basics)

- heuristic
 - based on planning graph without negative effects
 - backward search possible in polynomial time
- search strategy
 - enforced hill-climbing: commit to first state with better f-value
Overview

- The Propositional Representation
- The Planning-Graph Structure
- The Graphplan Algorithm
- Planning-Graph Heuristics