
1

The Graphplan Planner

Searching the Planning
Graph

The Graphplan Planner
•Searching the Planning Graph

2

The Graphplan Planner 2

Literature

Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning – Theory
and Practice, chapter 6. Elsevier/Morgan
Kaufmann, 2004.

Literature
•Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning –
Theory and Practice, chapter 6. Elsevier/Morgan Kaufmann, 2004.

3

The Graphplan Planner 3

Neoclassical Planning
concerned with restricted state-transition
systems
representation is usually restricted to
propositional STRIPS
neoclassical vs. classical planning
• classical planning: search space consists of nodes

containing partial plans
• neoclassical planning: nodes can be seen as sets of

partial plans
resulted in significant speed-up and revival of
planning research

Neoclassical Planning
•concerned with restricted state-transition systems
•representation is usually restricted to propositional STRIPS

•no loss in expressive ness due to lack of functions in
STRIPS, but loss of potential

•neoclassical vs. classical planning
•classical planning: search space consists of nodes
containing partial plans

•every action in a partial plan will appear in the final
plan

•neoclassical planning: nodes can be seen as sets of partial
plans

•actions may appear in final plan; disjunctive planning
•resulted in significant speed-up and revival of planning research

•speed-up: blocks world: less than 10 blocks to hundreds

4

The Graphplan Planner 4

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm

Overview
The Propositional Representation

now: the restricted representation used by most
neoclassical planning algorithms: propositional STRIPS

•The Planning-Graph Structure
•The Graphplan Algorithm

5

The Graphplan Planner 5

Classical Representations

propositional representation
• world state is set of propositions
• action consists of precondition propositions,

propositions to be added and removed
STRIPS representation
• like propositional representation, but first-order literals

instead of propositions
state-variable representation
• state is tuple of state variables {x1,…,xn}
• action is partial function over states

Classical Representations
•propositional representation

•world state is set of propositions
•action consists of precondition propositions,
propositions to be added and removed

•STRIPS representation
•named after STRIPS planner
•like propositional representation, but first-order literals
instead of propositions
•most popular for restricted state-transitions systems

•state-variable representation
•state is tuple of state variables {x1,…,xn}
•action is partial function over states
•useful where state is characterized by attributes over finite
domains

•equally expressive: planning domain in one representation can
also be represented in the others

6

The Graphplan Planner 6

Propositional Planning Domains
Let L={p1,…,pn} be a finite set of proposition
symbols. A propositional planning domain on L
is a restricted state-transition system Σ=(S,A,γ)
such that:
• S ⊆ 2L, i.e. each state s is a subset of L
• A ⊆ 2L×2L×2L, i.e. each action a is a triple

(precond(a), effects-(a), effects+(a)) where effects-(a)
and effects+(a) must be disjoint

• γ:S×A→2L where
• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if precond(a) ⊆ s
• γ(s,a)=undefined otherwise

• S is closed under γ

Propositional Planning Domain
• Let L={p1,…,pn} be a finite set of proposition symbols. A

propositional planning domain on L is a restricted state-
transition system Σ=(S,A,γ) such that:

• S ⊆ 2L, i.e. each state s is a subset of L
• s is set of propositions that currently hold, i.e. p is

true is s iff p∈s (closed world)
• A ⊆ 2L×2L×2L, i.e. each action a is a triple (precond(a),

effects-(a), effects+(a)) where effects-(a) and
effects+(a) must be disjoint

• preconditions, negative effects, and positive effects
• a is applicable in s iff precond(a) ⊆ s

• γ:S×A→2L where
• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if precond(a)

⊆ s
• γ(s,a)=undefined otherwise

• S is closed under γ
• if s∈S then for every applicable action a γ(s,a)∈S

7

The Graphplan Planner 7

s0

DWR Example: State Space

location1 location2

palletcont.

crane s2

location1 location2

palletcont.

crane

s1

location1 location2

pallet

cont.

crane s3

location1 location2

pallet

cont.

crane s4

location1 location2

pallet

crane

robot robot

robot

robot

robot

cont.

s5

location1 location2

pallet

crane

robot
cont.

take put

move1

move2

move2

move1

take put

load

unload

move2move1

DWR Example: State Space
•from introduction

8

The Graphplan Planner 8

DWR Example: Propositional
States

L={onpallet,onrobot,holding,at1,at2}
S={s0,…,s5}
• s0={onpallet,at2}
• s1={holding,at2}
• s2={onpallet,at1}
• s3={holding,at1}
• s4={onrobot,at1}
• s5={onrobot,at2}

s0

location1 location2

palletcont.

crane

robot

DWR Example: Propositional States
•L={onpallet,onrobot,holding,at1,at2}

•meaning: container is on the ground, container on the robot,
crane is holding the container, robot is at location1, robot is
at location2

•S={s0,…,s5}
•as shown in graph
•s0={onpallet,at1}
•s1={holding,at1}
•s2={onpallet,at1}
•s3={holding,at1}
•s4={onrobot,at1}
•s5={onrobot,at2}

9

The Graphplan Planner 9

DWR Example: Propositional
Actions

{at2}{at1}{at1}move2

{at1}{at2}{at2}move1

{holding}{onrobot}{onrobot,at1}unload

{onrobot}{holding}{holding,at1}load

{onpallet}{holding}{holding}put

{holding}{onpallet}{onpallet}take

effects+(a)effects-(a)precond(a)a

DWR Example: Propositional Actions
•a : precond(a), effects-(a), effects+(a)

•a is action name
•take : {onpallet}, {onpallet}, {holding}

•put : {holding}, {holding}, {onpallet}

•load : {holding,at1}, {holding}, {onrobot}

•unload : {onrobot,at1}, {onrobot}, {holding}

•move1 : {at2}, {at2}, {at1}

•move2 : {at1}, {at1}, {at2}

10

The Graphplan Planner 10

DWR Example: Propositional
State Transitions

s5s3s2move2

s4s1s0move1

s3unload

s4load

s2s0put

s3s1take

s5s4s3s2s1s0

DWR Example: Propositional State Transitions
•columns: action a; rows: state s; table cell entry: γ(s,a) or empty
if action not applicable

•example: γ(s0,take)=s1

11

The Graphplan Planner 11

Propositional Planning Problems

A propositional planning problem is a
triple P=(Σ,si,g) where:
• Σ=(S,A,γ) is a propositional planning domain

on L={p1,…,pn}
• si∈S is the initial state
• g⊆L is a set of goal propositions that define

the set of goal states Sg={s∈S | g⊆s}

Propositional Planning Problems
•A propositional planning problem is a triple P=(Σ,si,g)
where:

•Σ=(S,A,γ) is a propositional planning domain on
L={p1,…,pn}
•si∈S is the initial state
•g⊆L is a set of goal propositions that define the set of goal
states Sg={s∈S | g⊆s}

•gaol states are implicit in the problem

12

The Graphplan Planner 12

DWR Example: Propositional
Planning Problem

Σ: propositional planning domain for
DWR domain
si: any state
• example: initial state = s0∈S

g: any subset of L
• example: g={onrobot,at2}, i.e. Sg={s5}

DWR Example: Propositional Planning Problem
•Σ: propositional planning domain for DWR domain

•see previous slides
•si: any state

•example: initial state = s0∈S
•note: s0 is not necessarily initial state

•g: any subset of L
•example: g={onrobot,at2}, i.e. Sg={s5}

13

The Graphplan Planner 13

Classical Plans

A plan is any sequence of actions π=〈a1,…,ak〉,
where k≥0.
• The length of plan π is |π|=k, the number of actions.
• If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their

concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
• The extended state transition function for plans is

defined as follows:
• γ(s,π)=s if k=0 (π is empty)
• γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
• γ(s,π)=undefined otherwise

Classical Plans
•note: exactly as for STRIPS case
•A plan is any sequence of actions π=〈a1,…,ak〉, where k≥0.

•The length of plan π is |π|=k, the number of actions.
•If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their
concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
•The extended state transition function for plans is defined
as follows:

•γ(s,π)=s if k=0 (π is empty)
•γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
•γ(s,π)=undefined otherwise

14

The Graphplan Planner 14

Classical Solutions

Let P=(Σ,si,g) be a propositional planning
problem. A plan π is a solution for P if
g⊆γ(si,π).
• A solution π is redundant if there is a proper

subsequence of π is also a solution for P.
• π is minimal if no other solution for P contains

fewer actions than π.

Classical Solutions
•note: exactly as for STRIPS case
•Let P=(Σ,si,g) be a propositional planning problem. A plan π
is a solution for P if g⊆γ(si,π).

•A solution π is redundant if there is a proper subsequence
of π is also a solution for P.
•π is minimal if no other solution for P contains fewer actions
than π.

15

The Graphplan Planner 15

DWR Example: Plans and
Solutions

yesnoyess54〈move1,take,load,move2〉

yesnoyess54〈take,move1,load,move2〉

noyesyess58〈take,move1,put,move2,
take,move1,load,move2〉

--nos32〈take,move1〉

--noundef.2〈move2,move2〉

--nos00〈〉

min.red.sol.γ(si,π)| π |plan π

DWR Example: Plans and Solutions
•as before: si=s0; g={onrobot,at2}, i.e. Sg={s5}

16

The Graphplan Planner 16

Reachable Successor States

The successor function Γm:2S→2S for a
propositional domain Σ=(S,A,γ) is defined as:
• Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
• Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)
• Γ0({s1,…,sn})= {s1,…,sn} s1,…,sn∈S
• Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

The transitive closure of Γ defines the set of all
reachable states:
• Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

Reachable Successor States
•note: exactly as for STRIPS case
•The successor function Γm:2S→2S for a propositional domain
Σ=(S,A,γ) is defined as:

•Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
•Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)
•Γ0({s1,…,sn})= {s1,…,sn}
•Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

•The transitive closure of Γ defines the set of all reachable states:
•Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

17

The Graphplan Planner 17

Relevant Actions and
Regression Sets

Let P=(Σ,si,g) be a propositional planning
problem. An action a∈A is relevant for g if
• g ⋂ effects+(a) ≠ {} and
• g ⋂ effects-(a) = {}.

The regression set of g for a relevant action
a∈A is:
• γ -1(g,a)=(g - effects+(a)) ∪ precond(a)
• note: γ(s,a)∈Sg iff γ -1(g,a)⊆s

Relevant Actions and Regression Sets
•Let P=(Σ,si,g) be a propositional planning problem. An action
a∈A is relevant for g if

•g ⋂ effects+(a) ≠ {} and
•g ⋂ effects-(a) = {}.
•intuition: a is relevant for g if it can contribute toward
producing a state in Sg

•The regression set of g for a relevant action a∈A is:
•γ -1(g,a)=(g - effects+(a)) ∪ precond(a)
•P=(Σ,si,g) has a solution if ∃a∈A : P=(Σ,si,γ -1(g,a))
•note: γ(s,a)∈Sg iff γ -1(g,a)⊆s
•γ -1(g,a): minimal set of propositions that must hold in a
state s from which action a leads to a goal state

18

The Graphplan Planner 18

Regression Function

The regression function Γ-m for a propositional
domain Σ=(S,A,γ) on L is defined as:
• Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

• Γ0({g1,…,gn})= {g1,…,gn}
• Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) g1,…,gn∈2L

• Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))
The transitive closure of Γ-1 defines the set of
all regression sets:
• Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

Regression Function
•note: exactly as for STRIPS case
•The regression function Γ-m for a propositional domain
Σ=(S,A,γ) on L is defined as:

•Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

•Γ0({g1,…,gn})= {g1,…,gn}
•Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk)
•Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))

•The transitive closure of Γ-1 defines the set of all regression sets:
•Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

19

The Graphplan Planner 19

Statement of a Propositional
Planning Problem

A statement of a propositional planning
problem is a triple P=(A,si,g) where:
• A is a set of actions in an appropriate

propositional planning domain Σ=(S,A,γ) on L
• si is the initial state in an appropriate

propositional planning problem P=(Σ,si,g)
• g is a set of goal propositions in the same

propositional planning problem P

Statement of a Propositional Planning Problem
•A statement of a propositional planning problem is a triple
P=(A,si,g) where:

•A is a set of actions in an appropriate propositional
planning domain Σ=(S,A,γ) on L
•si is the initial state in an appropriate propositional
planning problem P=(Σ,si,g)
•g is a set of goal propositions in the same propositional
planning problem P

•advantage: statement does not require explicit enumeration of S and γ
•problem: L, S and γ are ambiguous

20

The Graphplan Planner 20

Example: Ambiguity in Statement of
a Planning Problem

P1=(Σ1,si,g) where
Σ1=(
• {{p1},{p2}}, • {a1}, • {({p1},a1)→{p2}}) on

L1={p1,p2}

statement: P =({a1}, si, g) where
a1=({p1},{p1},{p2}), si={p1}, and g={p2}

P2=(Σ2,si,g) where
Σ2=(
• {{p1},{p2},{p1,p3},{p2,p3}},
• {a1},
• {({p1},a1)→{p2},

({p1,p3},a1)→{p2,p3}}) on
L2={p1,p2,p3}

Example: Ambiguity in Statement of a Planning Problem
•statement: P =({a1}, si, g) where a1=({p1},{p1},{p2}), si={p1},
and g={p2}
•P is statement of planning problem:

•P1=(Σ1,si,g) where
•Σ1=({{p1},{p2}}, {a1}, {({p1},a1)→{p2}}) on
•L1={p1,p2}

•alternative:
•P2=(Σ2,si,g) where
•Σ2=({{p1},{p2},{p1,p3},{p2,p3}}, {a1}, {({p1},a1)→{p2},
({p1,p3},a1)→{p2,p3}}) on
•L2={p1,p2,p3}
•p3 plays no role in P2

•regression sets Γ<({g}) and reachable states Γ>({si}) are identical
in P1 and P2

21

The Graphplan Planner 21

Statement Ambiguity

Proposition: Let P1 and P2 be two
propositional planning problems that
have the same statement. Then both, P1
and P2, have
• the same set of reachable states Γ>({si}) and
• the same set of solutions.

Statement Ambiguity
•Proposition: Let P1 and P2 be two propositional planning
problems that have the same statement. Then both, P1 and
P2, have

•the same set of reachable states Γ>({si}) and
•the same set of solutions.

•statements are unambiguous enough to be acceptable
specifications of planning problems

22

The Graphplan Planner 22

Properties of the Propositional
Representation

Expressiveness: For every propositional
planning domain there is a corresponding
state-transition system, but what about vice
versa?
Conciseness: propositional action
representation is concise because it does not
mention what does not change
Consistency: not every assignment of truth
values to propositions must correspond to a
state in the underlying state-transition system

Properties of the Propositional Representation
•Expressiveness: For every propositional planning domain
there is a corresponding state-transition system, but what
about vice versa?

•depends on definition of “corresponding”
•Conciseness: propositional action representation is concise
because it does not mention what does not change

•truth values of propositions not mentioned in an action do
not change through the application of the action, they persist

•Consistency: not every assignment of truth values to
propositions must correspond to a state in the underlying
state-transition system

•example from DWR domain: state {onrobot,holding,at1,at2}
is inconsistent
•if domain definition and initial state are correct, inconsistent
states should not be reachable

•note: state-space and plan-space search still applicable

23

The Graphplan Planner 23

Grounding a STRIPS Planning
Problem

Let P=(O,si,g) be the statement of a STRIPS
planning problem and C the set of all the
constant symbols that are mentioned in si. Let
ground(O) be the set of all possible
instantiations of operators in O with constant
symbols from C consistently replacing
variables in preconditions and effects.
Then P’=(ground(O),si,g) is a statement of a
STRIPS planning problem and P’ has the
same solutions as P.

Grounding a STRIPS Planning Problem
•Let P=(O,si,g) be the statement of a STRIPS planning
problem and C the set of all the constant symbols that are
mentioned in si. Let ground(O) be the set of all possible
instantiations of operators in O with constant symbols from
C consistently replacing variables in preconditions and
effects.

•the number of operators will increase exponentially here
•Then P’=(ground(O),si,g) is a statement of a STRIPS
planning problem and P’ has the same solutions as P.

•the problems are equivalent (except for exponential
increase in size)

24

The Graphplan Planner 24

Translation: Propositional
Representation to Ground STRIPS

Let P=(A,si,g) be a statement of a
propositional planning problem. In the
actions A:
• replace every action (precond(a), effects-(a),

effects+(a)) with an operator o with
• some unique name(o),
• precond(o) = precond(a), and
• effects(o) = effects+(a) ∪ {¬p | p∈effects-(a)}.

Translation: Propositional Representation to Ground STRIPS
•Let P=(A,si,g) be a statement of a propositional planning
problem. In the actions A:

•replace every action (precond(a), effects-(a), effects+(a))
with an operator o with

•some unique name(o),
•precond(o) = precond(a), and
•effects(o) = effects+(a) ∪ {¬p | p∈effects-(a)}.

•adds negation sign to negative effects
•result is a statement of a ground STRIPS planning problem

25

The Graphplan Planner 25

Translation: Ground STRIPS to
Propositional Representation

Let P=(O,si,g) be a ground statement of a
classical planning problem.
• In the operators O, in the initial state si, and in the goal

g replace every atom P(v1,…,vn) with a propositional
atom Pv1,…,vn.• In every operator o:
• for all ¬p in precond(o), replace ¬p with p’,
• if p in effects(o), add ¬p’ to effects(o),
• if ¬p in effects(o), add p’ to effects(o).

• In the goal replace ¬p with p’.
• For every operator o create an action

(precond(o), effects-(a), effects+(a)).

Translation: Ground STRIPS to Propositional Representation
•Let P=(O,si,g) be a ground statement of a classical planning
problem.

•problem: operators may contain negated preconditions
•In the operators O, in the initial state si, and in the goal
g replace every atom P(v1,…,vn) with a propositional
atom Pv1,…,vn.
•idea: introduce new proposition symbols that represent the
negations of existing propositions
•In every operator o:

•for all ¬p in precond(o), replace ¬p with p’,
•if p in effects(o), add ¬p’ to effects(o),
•if ¬p in effects(o), add p’ to effects(o).

•In the goal replace ¬p with p’.
•For every operator o create an action (precond(o),
effects-(a), effects+(a)).

•result is a statement of a propositional planning problem

26

The Graphplan Planner 26

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm

Overview
The Propositional Representation

just done: the restricted representation used by most
neoclassical planning algorithms: propositional STRIPS

•The Planning-Graph Structure
•now: defining a new graph that is more efficient to generate
and a necessary criterion for solution containment

•The Graphplan Algorithm

27

The Graphplan Planner 27

Example: Simplified DWR
Problem

robots can load and unload autonomously
locations may contain unlimited number of
robots and containers
problem: swap locations of containers

loc1 loc2

conta

robr

contb

robq

Example: Simplified DWR Problem
•[figure]
•initial state:

•2 locations: loc1 and loc2, connected by path
•2 robots: robr and robq, both unloaded initially at loc1 and
loc2 respectively
•2 containers: conta and contb, initially at loc1 and loc2
respectively

•robots can load and unload autonomously
•locations may contain unlimited number of robots and
containers
•problem: swap locations of containers

28

The Graphplan Planner 28

Simplified DWR Problem: STRIPS
Actions

move(r,l,l’)
• precond: at(r,l), adjacent(l,l’)
• effects: at(r,l’), ¬at(r,l)

load(c,r,l)
• precond: at(r,l), in(c,l), unloaded(r)
• effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)

unload(c,r,l)
• precond: at(r,l), loaded(r,c)
• effects: unloaded(r), in(c,l), ¬loaded(r,c)

Simplified DWR Problem: STRIPS Actions
•move(r,l,l’)

•move robot r from location l to adjacent location l’ (4
possible actions; with rigid adjacent relation evaluated)
•precond: at(r,l), adjacent(l,l’)
•effects: at(r,l’), ¬at(r,l)

•load(c,r,l)
•load container c onto robot r at location l (8 possible
actions)
•precond: at(r,l), in(c,l), unloaded(r)
•effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)

•unload(c,r,l)
•unload container c from robot r at location l (8 possible
actions)
•precond: at(r,l), loaded(r,c)
•effects: unloaded(r), in(c,l), ¬loaded(r,c)

29

The Graphplan Planner 29

Simplified DWR Problem: State
Proposition Symbols

robots:
• r1 and r2: at(robr,loc1) and at(robr,loc2)
• q1 and q2: at(robq,loc1) and at(robq,loc2)
• ur and uq: unloaded(robr) and unloaded(robq)

containers:
• a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2),

loaded(conta,robr), and loaded(conta,robq)
• b1, b2, br, and bq: in(contb,loc1), in(contb,loc2),

loaded(contb,robr), and loaded(contb,robq)

initial state: {r1, q2, a1, b2, ur, uq}

Simplified DWR Problem: State Proposition Symbols
•idea: represent each atom that may occur in a state by a single
(short) proposition symbol
•robots:

•r1 and r2: at(robr,loc1) and at(robr,loc2)
•q1 and q2: at(robq,loc1) and at(robq,loc2)
•ur and uq: unloaded(robr) and unloaded(robq)

•containers:
•a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2),
loaded(conta,robr), and loaded(conta,robq)
•b1, b2, br, and bq: in(contb,loc1), in(contb,loc2),
loaded(contb,robr), and loaded(contb,robq)

•14 state propositions
•initial state: {r1, q2, a1, b2, ur, uq}

30

The Graphplan Planner 30

Simplified DWR Problem: Action
Symbols

move actions:
• Mr12: move(robr,loc1,loc2), Mr21:

move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2),
Mq21: move(robq,loc2,loc1)

load actions:
• Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1,

Lbr2, Lbq1, and Lbq2 correspondingly

unload actions:
• Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2,

Uar1, Ubr2, Ubq1, and Ubq2 correspondingly

Simplified DWR Problem: Action Symbols
•move actions:

•Mr12: move(robr,loc1,loc2), Mr21: move(robr,loc2,loc1),
Mq12: move(robq,loc1,loc2), Mq21: move(robq,loc2,loc1)

•load actions:
•Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1,
Lbr2, Lbq1, and Lbq2 correspondingly

•unload actions:
•Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, Uar1,
Ubr2, Ubq1, and Ubq2 correspondingly

•14 state symbols: lower case, italic
•20 action symbols: uppercase, not italic

31

The Graphplan Planner 31

Solution Existence

Proposition: A propositional planning
problem P=(Σ,si,g) has a solution iff
Sg ⋂ Γ>({si}) ≠ {}.

Proposition: A propositional planning
problem P=(Σ,si,g) has a solution iff
∃s∈Γ<({g}) : s⊆si.

Solution Existence
•Proposition: A propositional planning problem P=(Σ,si,g) has
a solution iff Sg ⋂ Γ>({si}) ≠ {}.

•… iff there is a goal state that is also a reachable state
•Proposition: A propositional planning problem P=(Σ,si,g) has
a solution iff ∃s∈Γ<({g}) : s⊆si.

•… iff there is a minimal set of propositions amongst all
regression sets that is a subset of the initial state

32

The Graphplan Planner 32

Reachability Tree
tree structure, where:
• root is initial state si• children of node s are Γ({s})
• arcs are labelled with actions

all nodes in reachability tree are Γ>({si})
• all nodes to depth d are Γd({si}) • solves problems with up to d actions in solution

problem: O(kd) nodes;
k = applicable actions per state

Reachability Tree
•tree structure, where:

•root is initial state si

•children of node s are Γ({s})
•arcs are labelled with actions

•all nodes in reachability tree are Γ>({si})
•all nodes to depth d are Γd({si})
•solves problems with up to d actions in solution

•problem: O(kd) nodes;
k = applicable actions per state

33

The Graphplan Planner 33

DWR Example: Reachability
Tree

r1, q2, a1, b2, ur, uq

r1, q2, a1, bq, ur

r1, q2, ar, b2, ur

r1, q1, a1, b2, ur, uq

r2, q2, a1, b2, ur, uq

r2, q2, a1, bq, ur

r2, q2, a1, br, uq

r2, q1, a1, b2, ur, uq

r1, q2, a1, b2, ur, uq

Mq21Mr12
Lar1

Lbq2

Mr21 Mq21
Lbq2

Lbr2

DWR Example: Reachability Tree
•[figure]
•corresponds directly to forward-search search tree
•actually: should be graph (corresponding to state space)

34

The Graphplan Planner 34

Planning Graph: Nodes

layered directed graph G=(N,E):
• N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …

• state proposition layers: P0, P1, …
• action layers: A1, A2, …

first proposition layer P0:
• propositions in initial state si: P0=si

action layer Aj:
• all actions a where: precond(a)⊆Pj-1

proposition layer Pj:
• all propositions p where: p∈Pj-1 or ∃a∈Aj: p∈effects+(a)

Planning Graph: Nodes
•layered directed graph G=(N,E):

•layered = each node belongs to exactly one layer
•N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …

•proposition and action layers alternate
•state proposition layers: P0, P1, …
•action layers: A1, A2, …

•first proposition layer P0:
•propositions in initial state si: P0=si

•action layer Aj:
•all actions a where: precond(a)⊆Pj-1

•proposition layer Pj:
•all propositions p where: p∈Pj-1 or ∃a∈Aj: p∈effects+(a)
•propositions at layer Pj are all propositions in the union of all
nodes in the reachability tree at depth j

•note: negative effects are not deleted from next layer
•note: Pj-1 ⊆ Pj; propositions in the graph monotonically increase
from one proposition layer to the next

35

The Graphplan Planner 35

Planning Graph: Arcs

from proposition p∈Pj-1 to action a∈Aj:
• if: p ∈ precond(a)

from action a∈Aj to layer p∈Pj:
• positive arc if: p ∈ effects+(a)
• negative arc if: p ∈ effects-(a)

no arcs between other layers

Planning Graph: Arcs
•directed and layered = arcs only from one layer to the next
•from proposition p∈Pj-1 to action a∈Aj:

•if: p ∈ precond(a)
•from action a∈Aj to layer p∈Pj:

•positive arc if: p ∈ effects+(a)
•negative arc if: p ∈ effects-(a)

•no arcs between other layers
•note: Aj-1 ⊆ Aj; actions in the graph monotonically increase from
one action layer to the next

36

The Graphplan Planner 36

Planning Graph Example

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

r1
r2
q1
q2
a1

ar

b2

bq
ur
uq

aq

br

a2

b1

Mr12

Mq21

Lbq2

Lar1

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1

Ubq2

Uar2

Ubq1

Uaq1
Ubr2

P0 A1 P3P2P1 A3A2

Planning Graph Example
•[figure]

•start with initial proposition layer
•next action layer: applicable action; links from preconditions
(black)
•next proposition layer: previous proposition plus positive
effects; links to positive effects (green); links to negative
effects (red)
•next action layer (A2); precondition links; next proposition
layer (P2); effect links
•next action layer (A3); precondition links; next proposition
layer (P3); effect links

•action layers contain “inclusive disjunctions” of actions

37

The Graphplan Planner 37

Reachability in the Planning
Graph

reachability analysis:
• if a goal g is reachable from initial state si

• then there will be a proposition layer Pg in the planning
graph such that g⊆Pg

necessary condition, but not sufficient
low complexity:
• planning graph is of polynomial size and
• can be computed in polynomial time

Reachability in the Planning Graph
•reachability analysis:

•if a goal g is reachable from initial state si

•then there will be a proposition layer Pg in the planning
graph such that g⊆Pg

•or: if no proposition layer contains g then g is not reachable
•necessary condition, but not sufficient

•necessary vs. sufficient:
•reachability tree:

•nodes contain propositions that must necessarily
hold
•propositions in one node are consistent

•planning graph:
•proposition layers contains propositions that may
possibly hold
•propositions in one layer usually inconsistent (e.g.
robots/containers in two places at once)
•similarly, incompatible actions in one layer may
interfere with each other

•low complexity:
•planning graph is of polynomial size and
•can be computed in polynomial time

•need more conditions (for sufficient criterion)

38

The Graphplan Planner 38

Independent Actions: Examples
Mr12 and Lar1:
• cannot occur together
• Mr12 deletes precondition r1

of Lar1
Mr12 and Mr21:
• cannot occur together
• Mr12 deletes positive effect

r1 of Mr21
Mr12 and Mq21:
• may occur in same action

layer

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

P2P1 A2

Independent Actions: Examples
•Mr12 and Lar1:

•cannot occur together
•Mr12 deletes precondition r1 of Lar1

•Mr12 and Mr21:
•cannot occur together
•Mr12 deletes positive effect r1 of Mr21

•Mr12 and Mq21:
•may occur in same action layer

39

The Graphplan Planner 39

Independent Actions

Two actions a1 and a2 are independent
iff:
• effects-(a1) ∩ (precond(a2) ∪ effects+(a2)) = {}

and
• effects-(a2) ∩ (precond(a1) ∪ effects+(a1)) = {}.

A set of actions π is independent iff
every pair of actions a1,a2∈π is
independent.

Independent Actions
•idea: independent actions can be executed in any order (in same
layer)
•Two actions a1 and a2 are independent iff:

•effects-(a1) ∩ (precond(a2) ∪ effects+(a2)) = {} and
•effects-(a2) ∩ (precond(a1) ∪ effects+(a1)) = {}.
•two actions are dependent iff:

•one deletes a precondition of the other or
•one deletes a positive effect of the other

•A set of actions π is independent iff every pair of actions
a1,a2∈π is independent.
•note: independence does not depend on planning problem; can
be pre-computed
•note: independence relation is symmetrical (follows from
definition)

40

The Graphplan Planner 40

Pseudo Code: independent

function independent(a1,a2)
for all p∈effects-(a1)

if p∈precond(a2) or p∈effects+(a2) then
return false

for all p∈effects-(a2)
if p∈precond(a1) or p∈effects+(a1) then

return false
return true

Pseudo Code: independent
•function independent(a1,a2)

•returns true iff the two given actions are independent
•for all p∈effects-(a1)
•if p∈precond(a2) or p∈effects+(a2) then
•return false
•for all p∈effects-(a2)
•if p∈precond(a1) or p∈effects+(a1) then
•return false
•return true
•complexity:

•let b be max. number of preconditions, positive, and
negative effects of any action
•element test in hash-set takes constant time
•complexity: O(b)

41

The Graphplan Planner 41

Applying Independent Actions

A set π of independent actions is applicable to
a state s iff
∪a∈πprecond(a) ⊆ s.
The result of applying the set π in s is defined
as:
γ(s,π) = (s - effects-(π)) ∪ effects+(π), where:
• precond(π) = ∪a∈πprecond(a),

• effects+(π) = ∪a∈πeffects+(a), and

• effects-(π) = ∪a∈πeffects-(a).

Applying Independent Actions
•A set π of independent actions is applicable to a state s iff
∪a∈πprecond(a) ⊆ s.
•note: applying a set of independent actions can be done in any
order
•The result of applying the set π in s is defined as:
γ(s,π) = (s - effects-(π)) ∪ effects+(π), where:

•precond(π) = ∪a∈πprecond(a),

•effects+(π) = ∪a∈πeffects+(a), and

•effects-(π) = ∪a∈πeffects-(a).

42

The Graphplan Planner 42

Execution Order of Independent
Actions

Proposition: If a set π of independent
actions is applicable in state s then, for
any permutation 〈a1,…,ak〉 of the
elements of π:
• the sequence 〈a1,…,ak〉 is applicable to s, and
• the state resulting from the application of π to

s is the same as from the application of
〈a1,…,ak〉, i.e.:
γ(s,π) = γ(s,〈a1,…,ak〉).

Execution Order of Independent Actions
•Proposition: If a set π of independent actions is applicable
in state s then, for any permutation 〈a1,…,ak〉 of the elements
of π:

•the sequence 〈a1,…,ak〉 is applicable to s, and
•the state resulting from the application of π to s is the
same as from the application of 〈a1,…,ak〉, i.e.:
γ(s,π) = γ(s,〈a1,…,ak〉).

43

The Graphplan Planner 43

Layered Plans

Let P = (A,si,g) be a statement of a
propositional planning problem and G = (N,E),
N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …, the
corresponding planning graph.
A layered plan over G is a sequence of sets of
actions: ∏ = 〈π1,…,πk〉 where:
• πi ⊆ Ai ⊆ A,
• πi is applicable in state Pi-1, and
• the actions in πi are independent.

Layered Plans
•Let P = (A,si,g) be a statement of a propositional planning problem
and G = (N,E), N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …, the corresponding
planning graph.
•A layered plan over G is a sequence of sets of actions: ∏ = 〈π1,…,πk〉
where:

•πi ⊆ Ai ⊆ A,
•πi is applicable in state Pi-1, and
•the actions in πi are independent.

44

The Graphplan Planner 44

Layered Solution Plan

A layered plan ∏ = 〈π1,…,πk〉 is a
solution to a to a planning problem
P=(A,si,g) iff:
• π1 is applicable in si,
• for j∈{2…k}, πj is applicable in state
γ(…γ(γ(si,π1), π2), … πj-1), and

• g ⊆ γ(…γ(γ(si,π1), π2), …, πk).

Layered Solution Plan
•A layered plan ∏ = 〈π1,…,πk〉 is a solution to a to a planning
problem P=(A,si,g) iff:

•π1 is applicable in si,
•for j∈{2…k}, πj is applicable in state γ(…γ(γ(si,π1), π2), …
πj-1), and
•g ⊆ γ(…γ(γ(si,π1), π2), …, πk).

•note: independence of actions still not sufficient criterion for
solution

45

The Graphplan Planner 45

Execution Order in Layered
Solution Plans

Proposition: If ∏ = 〈π1,…,πk〉 is a solution to a
to a planning problem P=(A,si,g), then:
• a sequence of actions corresponding to any

permutation of the elements of π1,
• followed by a sequence of actions corresponding to

any permutation of the elements of π2,
• …
• followed by a sequence of actions corresponding to

any permutation of the elements of πk

is a path from si to a goal state.

Execution Order in Layered Solution Plans
•Proposition: If ∏ = 〈π1,…,πk〉 is a solution to a to a planning
problem P=(A,si,g), then:

• a sequence of actions corresponding to any
permutation of the elements of π1,
•followed by a sequence of actions corresponding to
any permutation of the elements of π2,
•…
•followed by a sequence of actions corresponding to
any permutation of the elements of πk

•is a path from si to a goal state.

46

The Graphplan Planner 46

Problem: Dependent
Propositions: Example

r2 and ar:
• r2: positive effect of Mr12
• ar: positive effect of Lar1
• but: Mr12 and Lar1 not

independent
• hence: r2 and ar incompatible

in P1

r1 and r2:
• positive and negative effects

of same action: Mr12
• hence: r1 and r2 incompatible

in P1

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

P0 A1 P1

Mr12

Mq21

Lbq2

Lar1

Problem: Dependent Propositions: Example
•r2 and ar:

•r2: positive effect of Mr12
•ar: positive effect of Lar1
•but: Mr12 and Lar1 not independent

•dependent actions cannot occur together same set of
actions in a layered plan, e.g. in π1

•hence: r2 and ar incompatible in P1

•r1 and r2:
•positive and negative effects of same action: Mr12
•hence: r1 and r2 incompatible in P1

•both cases: compatible if they are also
•two positive effects of one action
•the positive effects of two independent actions

•incompatible propositions: cannot be reached through preceding
action layer (A1)

47

The Graphplan Planner 47

Mr12

Mq21

Lbq2

Lar1

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

No-Operation Actions
No-Op for proposition p:
• name: Ap
• precondition: p
• effect: p

r1 and r2:
• r1: positive effect of Ar1
• r2: positive effect of Mr12
• but: Ar1 and Mr12 not

independent
• hence: r1 and r2 incompatible

in P1

only one incompatibility test

r1
q2
a1
b2
ur
uq

P0 A1 P1

Ar1

No-Operation Actions
•No-Op for proposition p:

•for every action layer and every proposition that may persist

•name: Ap
•precondition: p
•effect: p

•r1 and r2:
•r1: positive effect of Ar1
•r2: positive effect of Mr12
•but: Ar1 and Mr12 not independent
•hence: r1 and r2 incompatible in P1

•only one incompatibility test

•previous slide: two types of incompatibility (positive effects of
dependent actions + positive and negative effects of same action)

•with no-ops: only first type needed (simplification)

48

The Graphplan Planner 48

Mutex Propositions

Two propositions p and q in proposition
layer Pj are mutex (mutually exclusive) if:
• every action in the preceding action layer Aj

that has p as a positive effect (incl. no-op
actions) is mutex with every action in Aj that
has q as a positive effect, and

• there is no single action in Aj that has both, p
and q, as positive effects.

notation: μPj = { (p,q) | p,q∈Pj are mutex}

Mutex Propositions
•Two propositions p and q in proposition layer Pj are mutex
(mutually exclusive) if:

•every action in the preceding action layer Aj that has p
as a positive effect (incl. no-op actions) is mutex with
every action in Aj that has q as a positive effect, and
•need to define when two actions are mutex

•obvious case: if they are dependent
•there is no single action in Aj that has both, p and q, as
positive effects.

•notation: μPj = { (p,q) | p,q∈Pj are mutex}
•note: mutex relation for propositions is symmetrical (follows from
definition)
•proposition layer P1 contains 8 mutex pairs

49

The Graphplan Planner 49

Pseudo Code: mutex for
Propositions

function mutex(p1,p2,μAj)
for all a1∈p1.producers()

for all a2∈p2.producers()
if (a1,a2)∉μAj then

return false
return true

Pseudo Code: mutex for Propositions
•function mutex(p1,p2, μAj)

•input: two propositions (from same layer), mutex relation
between the actions in the preceding layer

•for all a1∈p1.producers()
•producers: actions in the preceding layer that have p1 as a
positive effect; should be stored with proposition node

•for all a2∈p2.producers()
•producers: see above

•if (a1,a2)∉μAj then
•test whether the action are in the given set of mutually
exclusive actions

•return false
•if not: consistent producers found; propositions are not
mutex

•return true
•no consistent producers found; propositions are mutex

•note: single action producing both is covered: action cannot be
mutex with itself
•complexity: let m be number of actions in domain (incl. no-ops);
O(m2)

50

The Graphplan Planner 50

Mutex Actions: Example

r1 and r2 are mutex in
P1

r1 is precondition for
Lar1 in A2

r2 is precondition for
Mr21 in A2

hence: Lar1 and Mr21
are mutex in A2

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

P2P1 A2

Mutex Actions: Example
•r1 and r2 are mutex in P1

•r1 is precondition for Lar1 in A2

•r2 is precondition for Mr21 in A2

•hence: Lar1 and Mr21 are mutex in A2

•dependency between actions in action layer Aj leads to mutex
between propositions in Pj

•mutex between propositions in Pj leads to mutex between actions
in action layer Aj+1

51

The Graphplan Planner 51

Mutex Actions

Two actions a1 and a2 in action layer Aj
are mutex if:
• a1 and a2 are dependent, or
• a precondition of a1 is mutex with a

precondition of a2.

notation:
μAj = { (a1,a2) | a1,a2 ∈Aj are mutex}

Mutex Actions
•Two actions a1 and a2 in action layer Aj are mutex if:

•a1 and a2 are dependent, or
•dependent actions are necessarily mutex

•a precondition of a1 is mutex with a precondition of a2.
•dependency is domain-specific, i.e. not problem-specific
•mutex-relation is problem specific

•pair of actions/propositions may be mutex in one layer
but not so in another

•notation:
μAj = { (a1,a2) | a1,a2 ∈Aj are mutex}
•action layer A1 contains 2 mutex (dependent) pairs
•action layer A2 contains 24 mutex pairs (not all dependent)
•note: mutex relation (for actions and propositions) is symmetrical
(follows from definition)

52

The Graphplan Planner 52

Pseudo Code: mutex for Actions

function mutex(a1,a2,μP)
if ¬independent(a1,a2) then

return true
for all p1∈precond(a1)

for all p2∈precond(a2)
if (p1,p2)∈μP then return true

return false

Pseudo Code: mutex for Actions
•function mutex(a1,a2,μP)

•μP – mutex relations from the preceding proposition layer
•if ¬independant(a1,a2) then
•return true
•for all p1∈precond(a1)
•for all p2∈precond(a2)
•if (p1,p2)∈μP then return true
•return false
•complexity: let b = max number preconditions/pos. effects/neg
effects: O(b2)

53

The Graphplan Planner 53

Decreasing Mutex Relations
Proposition: If p,q∈Pj-1 and (p,q)∉μPj-1 then (p,q)∉μPj.• Proof:

• if p,q∈Pj-1 then Ap,Aq∈Aj• if (p,q)∉μPj-1 then (Ap,Aq)∉μAj
• since Ap,Aq∈Aj and (Ap,Aq)∉μAj, (p,q)∉μPj must hold

Proposition: If a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then
(a1,a2)∉μAj.
• Proof:

• if a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then
• a1 and a2 are independent and
• their preconditions in Pj-1 are not mutex

• both properties remain true for Pj
• hence: a1,a2∈Aj and (a1,a2)∉μAj

Decreasing Mutex Relations
•Proposition: If p,q∈Pj-1 and (p,q)∉μPj-1 then (p,q)∉μPj.

•Proof:
•if p,q∈Pj-1 then Ap,Aq∈Aj

•if (p,q)∉μPj-1 then (Ap,Aq)∉μAj

•since Ap,Aq∈Aj and (Ap,Aq)∉μAj, (p,q)∉μPj must hold
•Proposition: If a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then (a1,a2)∉μAj.

•Proof:
•if a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then

•a1 and a2 are independent and
•their preconditions in Pj-1 are not mutex

•both properties remain true for Pj

•hence: a1,a2∈Aj and (a1,a2)∉μAj

•mutex relations are monotonically decreasing (between layers
with the same propositions)

54

The Graphplan Planner 54

Removing Impossible Actions

actions with mutex
preconditions p and
q are impossible
• example:

preconditions r2 and
ar of Uar2 in A2 are
mutex

can be removed
from the graph
• example: remove

Uar2 from A2

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a2
ar

b2

bq
ur
uq

aq

br

Uar2

P2P1 A2

Removing Impossible Actions
•actions with mutex preconditions p and q are impossible

•example: preconditions r2 and ar of Uar2 in A2 are
mutex

•action with mutex preconditions can never be part of any layered
plan (will violate applicability condition in definition)
•can be removed from the graph

•example: remove Uar2 from A2

•mutex pair of actions must remain in graph because one of the
actions may be used in final plan
•note: still consistent with monotonically increasing actions

55

The Graphplan Planner 55

Reachability in Planning Graphs

Proposition: Let P = (A,si,g) be a
propositional planning problem and G =
(N,E), N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …,
the corresponding planning graph. If
• g is reachable from si

then
• there is a proposition layer Pg such that

• g ⊆ Pg and
• ¬∃ g1,g2∈g: (g1,g2)∈μPg.

Reachability in Planning Graphs
•Proposition: Let P = (A,si,g) be a propositional planning
problem and G = (N,E), N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …, the
corresponding planning graph. If

•g is reachable from si

• then
•there is a proposition layer Pg such that

•g ⊆ Pg and
•¬∃ g1,g2∈g: (g1,g2)∈μPg.

•still only necessary condition, but relatively efficient to compute

56

The Graphplan Planner 56

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm

Overview
The Propositional Representation

•The Planning-Graph Structure
•just done: defining a new graph that is more efficient to
generate and a necessary criterion for solution containment

•The Graphplan Algorithm
•now: an algorithm for searching the planning graph for a
solution plan

57

The Graphplan Planner 57

The Graphplan Algorithm: Basic
Idea

expand the planning graph, one action
layer and one proposition layer at a time
from the first graph for which Pg is the
last proposition layer such that
• g ⊆ Pg and
• ¬∃ g1,g2∈g: (g1,g2)∈μPg

search backwards from the last
(proposition) layer for a solution

The Graphplan Algorithm: Basic Idea
•expand the planning graph, one action layer and one
proposition layer at a time

•similar to iterative deepening: discover new part of the
search space with each iteration

•from the first graph for which Pg is the last proposition layer
such that

•g ⊆ Pg and
•¬∃ g1,g2∈g: (g1,g2)∈μPg

•no need to search for solutions in graph with fewer layers;
see last proposition

•search backwards from the last (proposition) layer for a
solution
•two major steps:

•expansion of planning graph to next proposition layer
•searching a given planning graph for a solution

58

The Graphplan Planner 58

Planning Graph Data Structure
k-th planning graph Gk:• nodes N:

• array of proposition layers P0 … Pk• proposition layer j: set of proposition symbols
• array of action layers A1 … Ak• proposition layer j: set of action symbols

• edges E:
• precondition links: prej ⊆ Pj-1×Aj, j∈{1…k}
• positive effect links: ej

+ ⊆ Aj×Pj, j∈{1…k}
• negative effect links: ej

– ⊆ Aj×Pj, j∈{1…k}
• proposition mutex links: μAj ⊆ Aj×Aj, j∈{1…k}
• action mutex links: μPj ⊆ Pj×Pj, j∈{1…k}

Planning Graph Data Structure
•k-th planning graph Gk:

•nodes N:
•array of proposition layers P0 … Pk

•proposition layer j: set of proposition symbols
•array of action layers A1 … Ak

•proposition layer j: set of action symbols
•edges E:

•precondition links: prej ⊆ Pj-1×Aj, j∈{1…k}
•positive effect links: ej

+ ⊆ Aj×Pj, j∈{1…k}
•negative effect links: ej

– ⊆ Aj×Pj, j∈{1…k}
•proposition mutex links: μAj ⊆ Aj×Aj, j∈{1…k}
•action mutex links: μPj ⊆ Pj×Pj, j∈{1…k}

•note: instance of this data structure does not depend on problem
•initial planning graph: P0=si; rest is empty sets

59

The Graphplan Planner 59

Pseudo Code: expand
function expand(Gk-1)

Ak {a∈A | precond(a)⊆Pk-1 and
{(p1,p2) | p1,p2∈precond(a)} ∩ μPk-1 = {} }

μAk {(a1,a2) | a1,a2∈Ak, a1≠a2, and mutex(a1,a2,μPk-1) }
Pk {p | ∃a∈Ak : p∈effects+(a) }
μPk {(p1,p2) | p1,p2∈Pk, p1≠p2, and mutex(p1,p2,μAk) }
for all a∈Ak

prek prek ∪ ({p | p∈Pk-1 and p∈precond(a)} × a)
ek

+ ek
+ ∪ (a × {p | p∈Pk and p∈effects+(a)})

ek
– ek

– ∪ (a × {p | p∈Pk and p∈effects–(a)})

Pseudo Code: expand
•function expand(Gk-1)
•Ak {a∈A | precond(a)⊆Pk-1 and {(p1,p2) | p1,p2∈precond(a)} ∩
μPk-1 = {} }

•actions with satisfied, non-mutex preconditions (incl. no-
ops)

•μAk {(a1,a2) | a1,a2∈Ak, a1≠a2, and mutex(a1,a2,μPk-1) }
•Pk {p | ∃a∈Ak : p∈effects+(a) }

•union of all positive effects
•μPk {(p1,p2) | p1,p2∈Pk, p1≠p2, and mutex(p1,p2,μAk) }
•for all a∈Ak

•prek prek ∪ ({p | p∈Pk-1 and p∈precond(a)} × a)
•ek

+ ek
+ ∪ (a × {p | p∈Pk and p∈effects+(a)})

•ek
– ek

– ∪ (a × {p | p∈Pk and p∈effects–(a)})

60

The Graphplan Planner 60

Planning Graph Complexity

Proposition: The size of a planning
graph up to level k and the time required
to expand it to that level are polynomial
in the size of the planning problem.
Proof:
• problem size: n propositions and m actions
• |Pj|≤n and |Aj|≤n+m (incl. no-op actions)
• algorithms for generating each layer and all

link types are polynomial in size of layer

Planning Graph Complexity
•Proposition: The size of a planning graph up to level k and
the time required to expand it to that level are polynomial in
the size of the planning problem.
•Proof:

•problem size: n propositions and m actions
•|Pj|≤n and |Aj|≤n+m (incl. no-op actions)
•algorithms for generating each layer and all link types
are polynomial in size of layer

61

The Graphplan Planner 61

Fixed-Point Levels
A fixed-point level in a planning graph G is a
level κ such that for all i, i>κ, level i of G is
identical to level κ, i.e. Pi=Pκ, μPi=μPκ, Ai=Aκ,
and μAi=μAκ.

Proposition: Every planning graph G has a
fixed-point level κ, which is the smallest k such
that |Pk|=|Pk+1| and |μPk|=|μPk+1|.
Proof:
• Pi grows monotonically and μPi shrinks monotonically
• Ai and Pi only depend on Pi-1 and μPi-1

Fixed-Point Levels
•A fixed-point level in a planning graph G is a level κ such
that for all i, i>κ, level i of G is identical to level κ, i.e. Pi=Pκ,
μPi=μPκ, Ai=Aκ, and μAi=μAκ.
•Proposition: Every planning graph G has a fixed-point level
κ, which is the smallest k such that |Pk|=|Pk+1| and
|μPk|=|μPk+1|.

•|Pk|=|Pk+1| implies Pk=Pk+1

•Proof:
•Pi grows monotonically and μPi shrinks monotonically

•μPi shrinks monotonically: for equal Pi

•Ai and Pi only depend on Pi-1 and μPi-1

•time complexity: O(n+m) from fixed point level; only copying
required

62

The Graphplan Planner 62

Searching the Planning Graph

general idea:
• search backwards from the last proposition layer Pk in

the current graph
• let g be the set of goal propositions that need to be

achieved at a given proposition layer Pj (initially the
last layer)

• find a set of actions πj⊆Aj such that these actions are
not mutex and together achieve g

• take the union of the preconditions of πj as the new
goal set to be achieved in proposition layer Pj-1

Searching the Planning Graph
•general idea:

•search backwards from the last proposition layer Pk in
the current graph
•let g be the set of goal propositions that need to be
achieved at a given proposition layer Pj (initially the last
layer)
•find a set of actions πj⊆Aj such that these actions are
not mutex and together achieve g
•take the union of the preconditions of πj as the new
goal set to be achieved in proposition layer Pj-1

63

The Graphplan Planner 63

a2

b1Uar1

Planning Graph Search Example

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

r1
r2
q1
q2
a1

ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbq2

Lar1

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Ubq2

Uar2

Ubq1

Uaq1
Ubr2

P0 A1 P3P2P1 A3A2

Planning Graph Search Example
•initial goal: a2 and b1
•only one incoming positive effect link per goal (but no-ops not shown)
•achievable with Uar2 and Ubq1 (which are not mutex; mutex relations not
shown)
•precondition links indicate sub-goal at next layer
•new sub-goal at P2: r2, q1, ar, bq
•only one incoming positive effect link per goal condition (but no-ops not
shown)

•achieve ar and bq with no-ops
•achieve r2 with Mr12 and q1 with Mq21

•precondition links (for Mr12 and Mq21) indicate some sub-goal at next
layer
•complete sub-goal (incl. preconditions of no-ops) at P1: r1, q2, ar, bq
•only one incoming positive effect link per goal condition (but no-ops not
shown)

•achieve r1 and q2 with no-ops
•achieve ar with Lar1 and bq with Lbq2

•precondition links (for Lar1 and Lbq2) indicate some sub-goal at next layer
•complete sub-goal (incl. preconditions of no-ops) at P0: complete initial
state

64

The Graphplan Planner 64

Planning Graph as AND/OR-
Graph

OR-nodes:
• nodes in proposition layers
• links to actions that support the propositions

AND-nodes:
• nodes in action layers
• k-connectors all preconditions of the action

search:
• AO* not best algorithm because it does not exploit

layered structure

Planning Graph as AND/OR-Graph
•OR-nodes:

•nodes in proposition layers
•links to actions that support the propositions

•AND-nodes:
•nodes in action layers
•k-connectors all preconditions of the action

•search:
•AO* not best algorithm because it does not exploit
layered structure

65

The Graphplan Planner 65

Repeated Sub-Goals

P0 Pi Pj Pk

Repeated Sub-Goals
•ultimate goal leads to possible sub-goals at Pj

•possible sub-goals at Pj lead to possible sub-goals at Pi

•search to initial proposition layer to see whether sub-goals
can be achieved
•suppose: sub-goals at Pi cannot be achieved

•backtrack to later layer, say Pj

•possible sub-goals at Pj may lead to same possible sub-goals at
Pi, but in a different way

•no need to repeat search: same sub-goals at same layer
still cannot be achieved
•generalization: same some sub-goals at same or earlier
layer still cannot be achieved

•otherwise no-op would achieve sub-goal at later layer

66

The Graphplan Planner 66

The nogood Table
nogood table (denoted ∇) for planning graph
up to layer k:
• array of k sets of sets of goal propositions

• inner set: one combination of propositions that cannot
be achieved

• outer set: all combinations that cannot be achieved (at
that layer)

before searching for set g in Pj:• check whether g∈∇(j)
when search for set g in Pj has failed:
• add g to ∇(j)

The nogood Table
•nogood table (denoted ∇) for planning graph up to layer k:

•array of k sets of sets of goal propositions
•inner set: one combination of propositions that
cannot be achieved
•outer set: all combinations that cannot be achieved
(at that layer)

•mutex only gives pairs of propositions that cannot be
achieved together, nogood table gives impossible tuples

•before searching for set g in Pj:
•check whether g∈∇(j)
•actually: in j or later layer

•when search for set g in Pj has failed:
•add g to ∇(j)
•or move?

67

The Graphplan Planner 67

Pseudo Code: extract

function extract(G,g,i)
if i=0 then return 〈〉
if g∈∇(i) then return failure
∏ gpSearch(G,g,{},i)
if ∏≠failure then return ∏
∇(i) ∇(i) + g
return failure

Pseudo Code: extract
•function extract(G,g,i)

•inputs: planning graph G, set of propositions (sub-goals) g,
and layer at which sub-goals need to be achieved i
•output: a layered plan 〈π1,…,πi〉 that achieves g at i in G or failure
if there is no such plan

•if i=0 then return 〈〉
•trivial success with empty plan

•if g∈∇(i) then return failure
•sub-goals have resulted in failure before

•πi gpSearch(G,g,{},i)
•perform the search

•if πi≠failure then return πi

•the search was successful
•∇(i) ∇(i) + g

•unsuccessful search: remember unachievable sub-goals
•return failure

68

The Graphplan Planner 68

Pseudo Code: gpSearch
function gpSearch(G,g,π,i)

if g={} then
∏ extract(G,∪a∈πprecond(a),i-1)
if ∏=failure then return failure
return ∏∙〈π〉

p g.selectOne()
resolvers {a∈Ai | p∈effects+(a) and ¬∃a’∈π: (a,a’)∈μAi}
if resolvers={} then return failure
a resolvers.chooseOne()
return gpSearch(G,g-effects+(a),π+a,i)

Pseudo Code: gpSearch
•function gpSearch(G,g,π,i)

•inputs: planning graph G, remaining sub-goals g, and set of
actions already committed to π, both at level i
•outputs: layered plan

•if g={} then
•all actions chosen

•∏ extract(G,∪a∈πprecond(a),i-1)
•if ∏=failure then return failure
•return ∏∙〈π〉
•p g.selectOne()

•no need to backtrack here; order only important for
efficiency

•resolvers {a∈Ai | p∈effects+(a) and ¬∃a’∈π: (a,a’)∈μAi}
•if resolvers={} then return failure
•a resolvers.chooseOne()

•non-deterministic choice point; backtrack to here
•return GPSearch(G,g-effects+(a),π+a,i)

69

The Graphplan Planner 69

Pseudo Code: graphplan
function graphplan(A,si,g)

i 0; ∇ []; P0 si; G (P0,{})
while (g⊈Pi or g2∩μPi≠{}) and ¬fixedPoint(G) do

i i+1; expand(G)
if g⊈Pi or g2∩μPi≠{} then return failure
η fixedPoint(G) ? |∇(κ)| : 0
∏ extract(G,g,i)
while ∏=failure do

i i+1; expand(G)
∏ extract(G,g,i)
if ∏=failure and fixedPoint(G) then

if η=|∇(κ)| then return failure
η |∇(κ)|

return ∏

Pseudo Code: graphplan
•function graphplan(A,si,g)

•given planning problem, return layered solution plan
•i 0; ∇ []; P0 si; G (P0,{})
•while (g⊈Pi or g2∩μPi≠{}) and ¬fixedPoint(G) do
•i i+1; expand(G)

•planning graph expanded until solution possible or fixed point
reached

•if g⊈Pi or g2∩μPi≠{} then return failure
•test necessary criterion

•η fixedPoint(G) ? |∇(κ)| : 0
•used to test when expansion will not work

•∏ extract(G,g,i)
•while ∏=failure do
•i i+1; expand(G)
•∏ extract(G,g,i)
•if ∏=failure and fixedPoint(G) then
•if η=|∇(κ)| then return failure
•η |∇(κ)|
•return ∏

70

The Graphplan Planner 70

Graphplan Properties

Proposition: The Graphplan algorithm is
sound, complete, and always terminates.
• It returns failure iff the given planning problem

has no solution;
• otherwise, it returns a layered plan ∏ that is a

solution to the given planning problem.

Graphplan is orders of magnitude faster
than previous techniques!

Graphplan Properties
•Proposition: The Graphplan algorithm is sound, complete,
and always terminates.

•It returns failure iff the given planning problem has no
solution;
•otherwise, it returns a layered plan ∏ that is a solution to
the given planning problem.

•Graphplan is orders of magnitude faster than previous
techniques!

•caveat: restriction to propositional STRIPS

71

The Graphplan Planner 71

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
Planning-Graph Heuristics

Overview
The Propositional Representation

•The Planning-Graph Structure
•The Graphplan Algorithm

72

The Graphplan Planner 72

Forward State-Space Search

idea: apply standard search algorithms
(breadth-first, depth-first, A*, etc.) to
planning problem:
• search space is subset of state space
• nodes correspond to world states
• arcs correspond to state transitions
• path in the search space corresponds to plan

73

The Graphplan Planner 73

l1 l2

DWR Example State

k1

ca

k2

q2p2

cb

cc

cd

ce

cf

r1

goal: (and
(in ca p2) (in cb q2) (in cc p2) (in cd q2) (in ce q2) (in cf q2))

74

The Graphplan Planner 74

Heuristics

estimate distance to nearest goal state
• number of unachieved goals (not admissible)
• number of unachieved goals / max. number of

positive effects per operator (admissible)

example state (prev. slide):
• actual goal distance: 35 actions
• h(s) = 6
• h(s) = 6 / 4

75

The Graphplan Planner 75

Finding Better Heuristics
solve “relaxed” problem and use solution as
heuristic
planning heuristic:
• planning problem: P=(O,si,g)
• for p ∈ g: min-layer(p) = index of first proposition

layer in planning graph that contains p
• admissible heuristic: max(p ∈ g): min-layer(p)
• not admissible: sum(p ∈ g): min-layer(p)

no need to compute mutex relations
no need to re-compute planning graph for
ground backward search

76

The Graphplan Planner 76

The FF Planner (Basics)

heuristic
• based on planning graph without negative

effects
• backward search possible in polynomial time

search strategy
• enforced hill-climbing: commit to first state

with better f-value

77

The Graphplan Planner 77

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
Planning-Graph Heuristics

Overview
The Propositional Representation

•The Planning-Graph Structure
•The Graphplan Algorithm

