Alternative Representations Propositions and State-Variables

Literature

 Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning – Theory and Practice, chapter 2. Elsevier/Morgan Kaufmann, 2004.

Alternative Representations

Representing World States						
	STRIPS	propositional	state-variable			
state	set of atoms					
atom	first-order atom	proposition	state-variable expression			
relations	yes	no	functions			
objects/types	yes/maybe	no/no	yes/maybe			
static relations	yes	not necessary	no			

7

DWR Example: State-Variable State Descriptions

- simplified: no cranes, no piles
- state-variable functions:
 - rloc: robots× $S \rightarrow$ locations
 - rolad: robots×S→containers ∪ {nil}
 - cpos: containers× $S \rightarrow$ locations \cup robots
- sample state-variable state descriptions:
 - {rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, cpos(c2)=loc2, cpos(c3)=loc2}
 - {rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, cpos(c2)=loc2, cpos(c3)=loc2}

Alternative Representations

11

Alternative Representations

- What types of actions are there?
 - example: move robots, load containers, ...
- For each action type, and each relation, what must (not) hold for the action to be applicable?
 - preconditions
- For each action type, and each relation, what relations will (no longer) hold due to the action?
 - effects (must be consistent)
- For each action type, what objects are involved in performing the action?
 - any object mentioned in the preconditions and effects
 - preconditions should mention all objects

13

Representing Operators					
	STRIPS	propositional	state-variable		
name	n(x ₁ ,,x _k)	name	n(x ₁ ,,x _k)		
preconditions (set of)	first-order literals	propositions	state-variable expressions		
applicability	precond⁺(a)⊆s ∧ precond⁻(a)∩s={}	precond(<i>a</i>) ⊆ <i>s</i>	precond(<i>a</i>) ⊆ <i>s</i>		
effects (set of)	first-order literals	propositional literals	X _s ←V		
γ(<i>s</i> , <i>a</i>)	(<i>s</i> – effects⁻(<i>a</i>)) ∪ effects⁺(<i>a</i>)	(<i>s</i> – effects⁻(<i>a</i>)) ∪ effects⁺(<i>a</i>)	$ \{x_s = c \mid x \in X\} \text{ where } \\ x_s \leftarrow c \in \text{effects}(a) \text{ or } \\ x_s = c \in s \text{ otherwise } $		

Alternative Representations

15

а	precond(a)	effects ⁻ (<i>a</i>)	effects+(a)
take	{onpallet}	{onpallet}	{holding}
put	{holding}	{holding}	{onpallet}
load	{holding,at1}	{holding}	{onrobot}
unload	{onrobot,at1}	{onrobot}	{holding}
move1	{at2}	{at2}	{at1}
move2	{at1}	{at1}	{at2}

Alternative Representations

Representing Planning Problems

	STRIPS	propositional	state- variable
initial state	world state in respective representation		
domain	domain (set of operators) in respective representation		
goal	same as preconditions in respective representation		

Alternative Representations

19

Grounding a STRIPS Planning Problem

- Let P=(O,s_i,g) be the statement of a STRIPS planning problem and C the set of all the constant symbols that are mentioned in s_i. Let ground(O) be the set of all possible instantiations of operators in O with constant symbols from C consistently replacing variables in preconditions and effects.
- Then P'=(ground(O),s_i,g) is a statement of a STRIPS planning problem and P' has the same solutions as P.

Alternative Representations

Translation: Propositional Representation to Ground STRIPSLet *P*=(*A*, *s_i*, *g*) be a statement of a propositional planning problem. In the actions *A*:
replace every action (precond(*a*), effects⁻(*a*), effects⁺(*a*)) with an operator *o* with
some unique name(*o*),
precond(*o*) = precond(*a*), and
effects(*o*) = effects⁺(*a*) ∪ {¬*p* | *p*∈effects⁻(*a*)}.

Alternative Representations

26

- planning problem. In the operators O, in the initial state s_i , and in the goal g:
 - replace every positive literal p(t₁,...,t_n) with a statevariable expression p(t₁,...,t_n)=1 or p(t₁,...,t_n)←1 in the operators' effects, and
 - replace every negative literal $\neg p(t_1,...,t_n)$ with a statevariable expression $p(t_1,...,t_n)=0$ or $p(t_1,...,t_n) \leftarrow 0$ in the operators' effects.

Translation: State-Variable to STRIPS Representation

- Let $P=(O,s_i,g)$ be a statement of a statevariable planning problem. In the operators' preconditions, in the initial state s_i , and in the goal g:
 - replace every state-variable expression $p(t_1,...,t_n)=v$ with an atom $p(t_1,...,t_n,v)$, and
- in the operators' effects:
 - replace every state-variable assignment $p(t_1,...,t_n) \leftarrow v$ with a pair of literals $p(t_1,...,t_n,v)$, $\neg p(t_1,...,t_n,w)$, and add $p(t_1, ..., t_n, w)$ to the respective operators preconditions.

Alternative Representations

