
Module Title: MODULE TITLE
Exam Diet (Dec/April/Aug): EXAM DIET 2004
Brief notes on answers:

1. (a) AI Planning: Planning is an area that has been researched in Artificial Intel-
ligence for a long time now. What do we mean by “planning”? What is being
studied in “AI planning”? Why do people usually only plan when this is neces-
sary? [5 marks ]
Answer:

• “planning”:

– explicit deliberation process that chooses and organizes actions by an-
ticipating their outcomes (reasoning about actions)

– aims at achieving some pre-stated objectives

• “AI planning”:

– computational study of this deliberation process

• Humans only plan when necessary because planning is complicated and time-
consuming (trade-off: cost vs. benefit).

(b) State-Space Search: Consider the planning domain and problem defined in
appendix 1. The first step in the forward state-space search algorithm computes
the set of applicable actions. What are the applicable actions for the given initial
state? [5 marks ]
Answer:

• (op1 C C A )

• (op1 C B A )

• (op2 C C C )

• (op2 A C C )

• (op2 B C C )

• (op2 C C A )

• (op2 A C A )

• (op2 B C A )

Note that there are other instances of op1 that have their preconditions satisfied
in the initial state. However, they have inconsistent effects.

(c) Hierarchical Planning: When planning with task networks, the aim is not
to achieve some goal state, but to accomplish a given set of tasks. Describe, in
pseudo-code, the ground partial-order forward decomposition algorithm (Ground-
PFD) that takes as input an initial state s, an initial task network w = (U,E),
a set of primitive operators O, and a set of methods M . [5 marks ]
Answer:

i



function Ground-PFD(s, w,O, M)
if w.U = ∅ return 〈〉
task ← {t ∈ U |t has no predecessors in w.E}.chooseOne()
if task.isPrimitive() then

actions← {(a, σ)|a = σ(task) and a applicable in s}
if actions.isEmpty() then return failure
(a, σ)← actions.chooseOne()
plan← Ground-PFD(γ(s, a), σ(w − {task}), O, M)
if plan = failure then return failure
else return 〈a〉 • plan

else
methods← {(m,σ)|σ(m) is relevant for task and m is applicable in s}
if methods.isEmpty() then return failure
(m,σ)← methods.chooseOne()
return Ground-PFD(s, δ(w, task, m, σ), O, M)

(d) Graphplan: The planning problem in appendix 1 can be translated into a
propositional problem by grounding it, i.e. by replacing all variables with all
possible combinations of objects defined in the problem. This results in 12
proposition symbols for states (SA, SB, SC, RAA, RAB, . . ., RCB, RCC) and up to 54
possible actions (op1AAA, op1AAB, . . ., op2CCB, op2CCC). Which of the following
actions are (pairwise) independent?

• op1ABC

• op1CBA

• op2CBA

[5 marks ]
Answer:

• op1ABC and op1CBA are dependent (not independent) because op1ABC deletes
SB which is a precondition of op1CBA

• op1ABC and op2CBA are dependent (not independent) because op2CBA deletes
SC which is also a positive effect of op1ABC

• op1CBA and op2CBA are dependent (not independent) because op1CBA deletes
SC which is a precondition of op2CBA

(e) Scheduling: To apply local neighbourhood search to job shop scheduling prob-
lems, a schedule can be encoded as a sequence of action-machine pairs. Consider
the following scheduling problem:

• j1 : 〈r1(3), r2(3), r1(2)〉
• j2 : 〈r2(3), r1(2)〉
• j3 : 〈r1(1), r2(3)〉

What schedule is encoded by the following sequence of action-machine pairs,
given two machines m1 and m2 of resource types r1 and r2 respectively, and
using the earliest assignable times to create the schedule?

〈(a11, m1)(a12, m2)(a21, m2)(a13, m1)(a22, m1)(a31, m1)(a32, m2)〉
[5 marks ]
Answer:

ii



0 4 8 12 16

m1

m2

a11

a12 a21

a13 a22 a31

a32

iii



2. (a) AI Planning: The following graph represents a state-transition system Σ =
(S, A,E, γ) where a1 and a2 denote actions, e1 and e2 denote events, and ε
denotes no event or action taking place. Define this state-transition system for-
mally. Is this system deterministic? What state will the system be in after the
action and event sequence 〈a1e2a2〉 assuming the initial state is s1?

s2 s4 s6

s5s3s1

e2

a1

e1

a2a1

a2

εe2 e1

[5 marks ]
Answer:

• S = {s1, s2, s3, s4, s5, s6}
• A = {a1, a2}
• E = {e1, e2}

•

γ a1 a2 e1 e2 ε

s1 {s3} {} {s2} {s4} {}
s2 {s4} {} {s1} {} {}
s3 {} {s5} {} {s4} {}
s4 {} {s6} {s5} {s3} {}
s5 {} {} {} {} {s6}
s6 {} {} {} {} {s5}

The system is effectively non-deterministic because of the ε transition. 〈a1e2a2〉
will get the system into s5 or s6.

(b) State-Space Search: In state-space search the nodes in the search space are
world states. Consider the planning domain and problem defined in appendix
1. What state will the world be in after execution of the following plan π in the
initial state defined in the problem?

π = 〈 (op1 C B A), (op1 A A C), (op2 C C C) 〉
[5 marks ]
Answer:

• apply: (op1 C B A)

• result: { (S A) (R A C) (R C A) (R C C) }
• apply: (op1 A A C)

• result: { (S C) (R A C) (R C A) (R C C) }
• apply: (op2 C C C)

iv



• result: { (R A C) (R C A) (R C C) }
(c) Plan-Space Search: In plan-space search the nodes in the search space are

partial-order plans which contain explicit causal links between the different ac-
tions in the plan. Thus, planners that perform a plan-space search must find
the new threats in a partial plan when the plan is refined. For which types of
refinement do the threats need to be detected? For each of these describe in
pseudo-code how the detection is performed. [5 marks ]
Answer:

• in the initial plan π0: no threats

• when adding an action anew to π = (A,≺, B, L):

for every causal link 〈ai
p→ aj〉 ∈ L

if (anew ≺ ai) or (aj ≺ anew) then next link
else for every effect q of anew

if (∃σ : σ(p) = σ(¬q)) then q of anew threatens 〈ai
p→ aj〉

• when adding a causal link 〈ai
p→ aj〉 to π = (A,≺, B, L):

for every action aold ∈ A
if (aold ≺ ai) or (aj = aold) or (aj ≺ aold) then next action
else for every effect q of aold

if (∃σ : σ(p) = σ(¬q)) then q of aold threatens 〈ai
p→ aj〉

(d) Graphplan: The planning graph developed by the Graphplan planner quickly
grows from layer to layer until the proposition layers contain all those propo-
sitions that are eventually achievable. However, propositions that occur in the
same layer may not be achievable simultaneously. Define these so-called mutex
relations for propositions and for actions. [5 marks ]
Answer:
Two propositions p and q in the jth proposition layer Pj are mutex (mutually
exclusive) if:

• every action in the preceding action layer Aj that has p as a positive effect
(incl. no-op actions) is mutex with every action in Aj that has q as a positive
effect, and

• there is no single action in Aj that has both, p and q, as positive effects.

Two actions a1 and a2 in action layer Aj are mutex if:

• a1 and a2 are dependent, or

• a precondition of a1 is mutex with a precondition of a2.

(e) Temporal Planning: The following graph represents a time point network
consisting of four time points t1 . . . t4 and three explicit relations between these
time points. What are the implied constraints in this network? How can we tell
that this network is consistent?

v



t2t1
< t3

t4

≤

=

[5 marks ]
Answer:
The following table lists all the relations in the time point network. Each cell
contains the relation R that must hold between time point x and y, i.e. xRy
must hold.
HH

HHHHx
y

t1 t2 t3 t4

t1 = < < <
t2 > = ≤ =
t3 > ≥ = ≥
t4 > = ≤ =

The network is consistent because no two time points are related by the empty
set (of primitive relations).

vi



3. (a) Situation Calculus: In the situation calculus actions are denoted by function
terms. The definition of these functions is given by a set of axioms, namely the
applicability axiom, the effect axiom, and the frame axioms. Define these axioms
for the action op1 defined as part of the domain in appendix 1. [5 marks ]
Answer:

• applicability:
∀x1, x2, x3, s : applicable(op1(x1, x2, x3), s)↔ S(x1, s)∧S(x2, s)∧R(x3, X1, s)

• effect axiom:
∀x1, x2, x3, s : applicable(op1(x1, x2, x3), s)→ S(x3, result(op1(x1, x2, x3), s))∧
R(x1, x3, result(op1(x1, x2, x3), s))

• frame axiom:
∀x′, x1, x2, x3, s : S(x′, s)∧(x′ 6= x1∨x′ 6= x2)→ S(x′, result(op1(x1, x2, x3), s))
∀x′, y′, x1, x2, x3, s : R(x′, y′, s)→ R(x′, y′, result(op1(x1, x2, x3), s))

There is no need for frame axioms that carry forward negative conditions as all
preconditions are positive in this domain.

(b) State-Space Search: In classical planning, a planning problem is solved by
searching for a solution plan. Define, in pseudo-code, the non-deterministic
ground backward state-space search algorithm for a given statement of a strips
planning problem P = (O, si, g). [5 marks ]
Answer:

function groundBwdSearch(O, si, g)
subgoal← g
plan← 〈〉
loop

if si.satisfies(subgoal) then return plan
applicables← {ground instances from O relevant for subgoal}
if applicables.isEmpty() then return failure
action← applicables.chooseOne()
subgoal← γ−1(subgoal, action)
plan← 〈action〉 • plan

(c) Plan-Space Search: In plan-space search the nodes in the search space are
partial plans that are refined until a solution plan is found. Partial plans that
are not solutions may contain threats. Construct an example that explains the
concept of a threat using the operators given in the planning domain defined in
appendix 1. [5 marks ]
Answer:

• partially instantiated actions in the plan:

– (op1 ?x1 ?x2 A)

– (op1 A ?x1 ?x2)

– (op2 A ?x1 ?x2)

• with (op1 ?x1 ?x2 A) before (op1 A ?x1 ?x2)

• and causal link (op1 ?x1 ?x2 A)
(SA)→ (op1 A ?x1 ?x2)

Then the effect (not (S A)) of (op2 A ?x1 ?x2) constitutes a threat to the
causal link. That is, if this operator was executed between the two connected
by the causal link, it would undo the condition protected by the causal link.

vii



(d) SAT-Based Planning: SAT-based planning is quite similar to the idea used
in the situation calculus: the planning problem is reformulated as a theorem
proving problem. Show how the actions of a propositional planning problem
P = (A, si, g) can be represented as part of the SAT encoding of a bounded
planning problem, i.e. what are the propositional formulas that encode the
preconditions, effects and frame axioms? [5 marks ]
Answer:
Let F (the fluents) be the set of all the proposition symbols that occur in P =
(A, si, g) (in preconditions, positive and negative effects, in the initial state,
or in the goal) and let n be the length of the plan sought (bounded planning
problem). Then the actions can be represented by formulas for every a ∈ A and
0 ≤ i ≤ n− 1:
ai → (

∧
f∈precond(a) fi) ∧

∧
f∈effects+(a) fi+1) ∧

∧
f∈effects−(a) ¬fi+1)

and the frame axioms can be represented (using explanation closure axioms) by
formulas for every fluent f ∈ F and 0 ≤ i ≤ n− 1:
(fi ∧ ¬fi+1)→ (

∨
a∈A∧f∈effects−(a) ai) ∧ (¬fi ∧ fi+1)→ (

∨
a∈A∧f∈effects+(a) ai)

(e) Temporal Planning: In the Interval Algebra there are 13 different primitive
relations that can relate two intervals. These can be combined using the compo-
sition operator (•). For example, (b • b) can be simplified to b. What relations
are expressed by (b • s) and (m • d)? Explain your answers. [5 marks ]
Answer:

• i1(b • s)i3 can be simplified to i1bi3 (b = before, s = starts)

• i1(m • d)i3 can be simplified to i1{o, s, d}i3 (m = meets, d = during, o =
overlaps)

i1
i2[i1 b i2]

i3[i2 s i3]
[i1 b i3]

i1
i2[i1 m i2]

i3[i2 d i3]
[i1 {o,s,d} i3]

viii



Appendix 1

The following is definition of a planning domain and a statement of a planning problem in
PDDL:

(define (domain random-domain)

(:requirements :strips)

(:action op1

:parameters (?x1 ?x2 ?x3)

:precondition

(and (S ?x1) (S ?x2) (R ?x3 ?x1))

:effect (and

(S ?x3) (R ?x1 ?x3)

(not (S ?x1)) (not (S ?x2))))

(:action op2

:parameters (?x1 ?x2 ?x3)

:precondition

(and (S ?x1)(R ?x3 ?x2))

:effect (and

(R ?x3 ?x1) (R ?x3 ?x3)

(not (S ?x1)))))

)

(define (problem problem1)

(:domain random-domain)

(:init

(S A) (S B) (S C)

(R A C) (R C C))

(:goal

(and (R C B) (R B A)))

)

ix


