
Module Title: PLAN
Exam Diet (Dec/April/Aug): Dec 2007
Brief notes on answers:

1. (a) AI Planning: Domain-specific planning uses specific representations and tech-
niques adapted to each specific problem. Briefly describe some of the problems
with domain-specific planning that justify the study of domain-independent plan-
ning. [2 marks ]
Answer:

• commonalities to all forms of planning are not addressed

• more costly to address each domain anew

• no good for study and design of autonomous intelligent machines

(b) Situation Calculus: A problem that was encountered by planners early on is
the so-called frame problem. Consider a theory in the situation calculus describ-
ing the Blocks World in which there is just a single action move defined by the
applicability axiom ∆a and effect axioms ∆e:

applicable(move(x, y, z), s)↔ clear(x, s) ∧ clear(z, s) ∧ on(x, y, s)
applicable(move(x, y, z), s)→ on(x, z, result(move(x, y, z), s))
applicable(move(x, y, z), s)→ clear(y, result(move(x, y, z), s))

Note that there are no frame axioms ∆f in this theory. Suppose the initial state
depicted below is described by some formula Σsi

.

Table

A

E

BD

C

Give a logical formula F that does not follow from this theory due to the lack
of frame axioms, i.e. give F such that:

Σsi
∧∆a ∧∆e 2 F , but

Σsi
∧∆a ∧∆e ∧∆f � F .

[2 marks ]
Answer:
For example: on(B, C, result(move(A, B, D), si)), i.e. B is still on C after mov-
ing A from B onto D.

(c) State-Space Search: One of the earliest AI planners was the strips planner.
While the planning algorithm turned out to be incomplete, the strips represen-
tation for planning operators and actions is still used. Formally define strips
planning operators and actions. [4 marks ]
Answer:

1



• A planning operator in a strips planning domain is a triple o =
(name(o),precond(o),effects(o)) where:

– the name of the operator name(o) is a syntactic expression of the form
n(x1, . . . , xk) where n is a (unique) symbol and x1, . . . , xk are all the
variables that appear in o, and

– the preconditions precond(o) and the effects effects(o) of the operator
are sets of literals.

• An action in a strips planning domain is a ground instance of a planning
operator.

(d) Plan-Space Search: In plan-space search the nodes in the search space are
partial plans that the planner has to refine into a solution plan. Formally define
the components that make up a partial plan. [4 marks ]
Answer:
A partial plan is a tuple π = (A,≺, B, L), where:

• A = {a1, . . . , ak} is a set of partially instantiated planning operators;

• ≺ is a set of ordering constraints on A of the form (ai ≺ aj);

• B is a set of binding constraints on the variables of actions in A of the form
x = y, x 6= y, or x ∈ Dx;

• L is a set of causal links of the form 〈ai
p→ aj〉 such that:

– ai and aj are actions in A;

– the constraint (ai ≺ aj) is in ≺;

– proposition p is an effect of ai and a precondition of aj; and

– the binding constraints for variables in ai and aj appearing in p are in
B.

(e) Graphplan: The planning graph developed by Graphplan consists of action and
proposition layers. Under what condition is a set of independent actions π (in
one action layer) applicable to a state s? What is the result, γ(s, π), of applying
this set of independent actions? [4 marks ]
Answer:

• A set π of independent actions is applicable in a state s if and only if⋃
a∈π

precond(a) ⊆ s.

• The result of applying the set π in s is defined as: γ(s, π) =
(s−effects−(π))∪effects+(π), where:

– effects+ =
⋃

a∈π

effects+(a), and

– effects− =
⋃

a∈π

effects−(a).

(f) Temporal Planning: In the Interval Algebra there are 13 different primitive
relations that can relate two intervals. These can be combined using the compo-
sition operator (•). For example, (b • b) can be simplified to b. What relations
are expressed by (d • b) and (m •m)? Explain your answers. [4 marks ]
Answer:

• i1(d • b)i3 can be simplified to i1bi3 (d = during, b = before)

• i1(m •m)i3 can be simplified to i1bi3 (m = meets)

2



i1
i2[i1 d i2]

i3[i2 b i3]
[i1 b i3]

i1
i2[i1 m i2]

i3[i2 m i3]
[i1 b i3]

(g) General: The Situation Calculus was the first approach to AI planning. Dis-
cuss the fundamental differences between this approach and other approaches
attempted since. [5 marks ]
Answer:

• Situation Calculus uses existing algorithms (theorem prover) to solve plan-
ning problems, only needs to solve the problem of how to represent world
states and actions in logic; other approaches develop specific algorithms

• Situation Calculus has to address the frame problem explicitly because of its
choice of representation; other approaches address it implicitly by building
the solution into the algorithm

• first-order logic is more expressive than the representations used by other
approaches

3



2. (a) AI Planning: The following graph represents a state-transition system Σ =
(S, A,E, γ) where α denotes no action (no-op) and ε denotes no event taking
place. Define the 4 components of this state-transition system.

s4 s5 s6

s3s2s1

(α,e1)
(a2,e1)

(α,e1)

(a1,e1)(α,e1)

(a2,ε)(a1,ε)

[4 marks ]
Answer:

• S = {s1, s2, s3, s4, s5, s6}
• A = {a1, a2}
• E = {e1}

•

γ (a1, ε) (a2, ε) (α, e1) (a1, e1) (a2, e1)

s1 {s2} {} {s4} {s5} {}
s2 {} {s3} {s5} {} {s6}
s3 {} {} {s6} {} {}
s4 {} {} {} {} {}
s5 {} {} {} {} {}
s6 {} {} {} {} {}

(b) Situation Calculus: A problem that was encountered by planners early on is
the so-called frame problem. Consider a theory in the situation calculus describ-
ing the Blocks World in which there is just a single action move defined by the
applicability axiom ∆a and effect axioms ∆e:

applicable(move(x, y, z), s)↔ clear(x, s) ∧ clear(z, s) ∧ on(x, y, s)
applicable(move(x, y, z), s)→ on(x, z, result(move(x, y, z), s))
applicable(move(x, y, z), s)→ clear(y, result(move(x, y, z), s))

What frame axioms ∆f need to be added to this theory to allow a theorem
prover to draw all the desired conclusions? [3 marks ]
Answer:
∆f :

• ∀v, w, x, y, z, s : on(v, w, s) ∧ v 6= x→ on(v, w, result(move(x, y, z), s))

• ∀v, x, y, z, s : clear(v, s) ∧ v 6= z → clear(v, result(move(x, y, z), s))

(c) State-Space Search: The planning problem can be seen as a search problem.
In the state-space search approach, what is the search space? What do the nodes
in this search space represent? What do the arcs represent? What does a path

4



in this search space correspond to? [2 marks ]
Answer:

• the search space is a subset of state space

• the nodes correspond to world states

• the arcs correspond to state transitions

• a path in the search space corresponds to a plan

(d) Plan-Space Search: In plan-space search the nodes in the search space are
partial plans which contain explicit causal links between the different actions in
the plan. A potential flaw in a partial plan could be that effect q of action at

threatens a causal link 〈ai
p→ aj〉. How can such a flaw be resolved? Under what

conditions will the different resolvers be applicable? [5 marks ]
Answer:

• order action before threatened link:

– if (at = ai) or (aj ≺ at) then not a resolver

– otherwise: adding (at ≺ ai) is a resolver

• order threatened link before action:

– if (at = ai) or (at ≺ ai) then not a resolver

– otherwise: adding (aj ≺ at) is a resolver

• extend variable bindings such that unification fails:

– for every variable v in p or q
if v 6= σ(v) is consistent with B then

adding v 6= σ(v) is a resolver

(e) Hierarchical Planning: Consider an STN planning domain that contains the
following three methods:

• take-and-put(c, k, l, po, pd, xo, xd)

– task: move-topmost(po, pd)

– preconditions: top(c, po), on(c, xo), attached(po, l), belong(k, l),
attached(pd, l), top(xd, pd)

– subtasks: 〈take(k, l, c, xo, po),put(k, l, c, xd, pd)〉
• recursive-move(po, pd, c, xo)

– task: move-stack(po, pd)

– preconditions: top(c, po), on(c, xo)

– subtasks: 〈move-topmost(po, pd), move-stack(po, pd)〉
• no-move(po, pd)

– task: move-stack(po, pd)

– preconditions: top(pallet, po)

– subtasks: 〈〉
Let the initial state si be as follows: belong(crane,loc), attached(p1,loc),
attached(p2,loc), attached(p3,loc), top(c1,p1), top(pallet,p2),
top(pallet,p3), on(c1,c2), on(c2,c3), on(c3,pallet). Finally, let the
current task be:

move-stack(p1, q)

5



where q is a variable. Which of the above methods are applicable and which
are relevant here? Justify your answer. Show how an applicable and relevant
method can be used to decompose the above task. [7 marks ]
Answer:

• take-and-put(c1,crane,loc,p1, q,c2, xd):

– applicable because precond+(m) ⊆ si and precond−(m) ∩ si = ∅
– not relevant because move-topmost(p1, q) 6= move-stack(p1, q)

• recursive-move(p1, q,c1,c2)

– applicable because precond+(m) ⊆ si and precond−(m) ∩ si = ∅
– relevant because task(m) = move-stack(p1, q)

• no-move(p2, pd) and no-move(p3, pd)

– applicable because precond+(m) ⊆ si and precond−(m) ∩ si = ∅
– not relevant because move-stack(p2, pd) 6= move-stack(p1, q) and move-

stack(p3, pd) 6= move-stack(p1, q)

Decomposition:

move-stack(p1,q)

move-stack(p1,p2)move-topmost(p1,p2)

{q←p2}: recursive-move(p1,p2,c1,c2)

(f) Temporal Planning: Temporal Databases can be augmented with domain
axioms to express facts that are always true. Write domain axioms to express
the following facts:

• no object can be in two places at the same time

• at any given time, each location can be occupied by only one robot

[4 marks ]
Answer:

• no object can be in two places at the same time:
{at(o, l)@[tb, te[,at(o, l′)@[t′b, t

′
e[} → (l = l′) ∨ (te ≤ t′b) ∨ (t′e ≤ tb)

• every location can be occupied by one robot only:
{at(r, l)@[tb, te[,at(r′, l)@[t′b, t

′
e[} → (r = r′) ∨ (te ≤ t′b) ∨ (t′e ≤ tb)

6



3. (a) AI Planning: A number of restricting assumptions are often made in AI plan-
ning to simplify the problem. One of these assumptions is that an objective is
given as a restricted goal. What does this assumption mean? In what type of
domain do we want to drop this assumption? What issues will arise as a result?
[3 marks ]
Answer:
Restricted goals: the planner handles only goals that are given as an explicit
goal state sg or set of goal states Sg.

• Must be relaxed if: need to handle constraints on states and plans, utility
functions, or tasks.

• Issues: representation and reasoning over constraints, utility, and tasks.

(b) Situation Calculus: Consider a theory in the situation calculus describing
the Blocks World in which there is just a single action move defined by the
applicability axiom ∆a and effect axioms ∆e:

applicable(move(x, y, z), s)↔ clear(x, s) ∧ clear(z, s) ∧ on(x, y, s)
applicable(move(x, y, z), s)→ on(x, z, result(move(x, y, z), s))
applicable(move(x, y, z), s)→ clear(y, result(move(x, y, z), s))

Now suppose we want to extend this domain with a new fluent colour(v, w) to
represent that the colour of block v is w, and a new action paint(x, y) represent-
ing the action of painting block x in colour y. How many additional frame axioms
will be necessary as a result of this extension? Justify your answer. [3 marks ]
Answer:
Four new frame axioms are required. In general, we need (nr. of actions) times
(nr. of fluents) frame axioms. Thus, the original domain required two frame
axioms, and the extended domain requires six frame axioms, i.e. four more.

(c) State-Space Search: To show that an algorithm is sound and complete, it
is necessary to formally define the problem that the algorithm solves. Give
the formal definition of the planning problem for the strips representation.
[3 marks ]
Answer:
A strips planning problem is a triple P = (Σ, si, g) where:

• Σ = (S, A, γ) is a strips planning domain on some first-order language L
• si ∈ S is the initial state

• g is a set of ground literals describing the goal such that the set of goal
states is: Sg = {s ∈ S|s satisfies g}

(d) Plan-Space Search: In plan-space search the nodes in the search space are
partial plans which contain explicit causal links between the different actions in
the plan. Thus, planners that perform a plan-space search must find the new
threats in a partial plan when the plan is refined. For which types of refinement
do the threats need to be detected? For each of these describe in pseudo-code
how the detection is performed. [6 marks ]
Answer:

• in the initial plan π0: no threats

• when adding an action anew to π = (A,≺, B, L):

7



for every causal link 〈ai
p→ aj〉 ∈ L

if (anew ≺ ai) or (aj ≺ anew) then next link
else for every effect q of anew

if (∃σ : σ(p) = σ(¬q)) then q of anew threatens 〈ai
p→ aj〉

• when adding a causal link 〈ai
p→ aj〉 to π = (A,≺, B, L):

for every action aold ∈ A
if (aold ≺ ai) or (aj = aold) or (aj ≺ aold) then next action
else for every effect q of aold

if (∃σ : σ(p) = σ(¬q)) then q of aold threatens 〈ai
p→ aj〉

(e) Hierarchical Planning: Consider the following hierarchical task network w =
(U,C), where:

• U = {t1 = move-stack(p1, q)} and

• C = ∅
Give the result of applying the decomposition function δ to t1, using the method
recursive-move(po, pd, c, xo) defined as follows:

• task: move-stack(po, pd)

• network:

– subtasks: {t1 =move-topmost(po, pd), t2 =move-stack(po, pd)}
– constraints: {t1 ≺ t2,before({t1},top(c, po)),before({t1},on(c, xo))}

Give the result of using the method take-and-put(c, k, l, po, pd, xo, xd) to refine a
task in the result of the previous step, i.e. in:

δ(w, t1,recursive-move(po, pd, c, xo), {po ←p1, pd ← q})
where take-and-put(c, k, l, po, pd, xo, xd) is given as:

• task: move-topmost(po, pd)

• network:

– subtasks: {t1 =take(k, l, c, xo, po), t2 =put(k, l, c, xd, pd)}
– constraints: {t1 ≺ t2, before({t1},top(c, po)), before({t1},on(c, xo)),

before({t1},attached(po, l)), before({t1},belong(k, l)),
before({t2},attached(pd, l)), before({t2},top(xd, pd))}

[6 marks ]
Answer:
δ(w, t1,recursive-move(po, pd, c, xo), {po ←p1, pd ← q}) = w′ = (U ′, C ′) with:

• U ′ = {t2 = move-topmost(p1, q), t3 = move-stack(p1, q)} and

• C ′ = {t2 ≺ t3,before({t2},top(c,p1)),before(t2,on(c, xo))})
δ(w′, t2,take-and-put(c, k, l, po, pd, xo, xd), {po ←p1, pd ← q}) = (U ′′, C ′′) with:

• U ′′ = {t3 = move-stack(p1, q), t4 =take(k, l, c, xo,p1), t5 =put(k, l, c, xd, q)}
and

• C ′′ = {t4 ≺ t3, t5 ≺ t3, before({t4, t5},top(c,p1)),
before({t4, t5},on(c, xo))} ∪ {t4 ≺ t5, before({t4},top(c,p1)),
before({t4},on(c, xo)), before({t4},attached(p1, l)), before({t4},belong(k, l)),
before({t5},attached(q, l)), before({t5},top(xd, q))}

8



(f) Graphplan: The planning graph developed by Graphplan can be described as
an AND/OR-graph. Which nodes are OR-nodes and which nodes are AND-
nodes? What nodes do the k-connectors from the AND-nodes connect to? Why
does Graphplan not simply follow the (provably optimal) AO∗ algorithm to
search this AND/OR-graph? [4 marks ]
Answer:

• OR-nodes:

– nodes in proposition layers

– links to actions that support the propositions

• AND-nodes:

– nodes in action layers

– k-connectors to all preconditions of the action

AO∗ is not the best algorithm to search this AND/OR-graph because it does not
exploit the layered structure of the planning graph.

9


