
Module Title: Automated Planning
Exam Diet (Dec/April/Aug): December 2004
Brief notes on answers:

1. (a) AI Planning: A number of restricting assumptions are often made in AI
planning to simplify the problem. One of these assumptions is that the state-
transition system Σ is fully observable. What does this assumption mean? In
what type of domain do we want to drop this assumption? What issues will arise
as a result? [5 marks ]

Answer:
Fully observable Σ: the observation function η is the identity function.

• Must be relaxed if: need to handle states in which not every aspect is or can
be known.

• Issues: if η(s) = o, η−1(o) usually contains more than one state (ambiguity)
and the successor state is undefined.

(b) State-Space Search: To show that an algorithm is sound and complete, it is
necessary to formally define the problem that the algorithm solves and what con-
stitutes a solution to such a problem. Give the formal definition of the planning
problem for the strips representation. Furthermore, define when a (total-order)
plan constitutes a solution to a planning problem. [5 marks ]

Answer:
A strips planning problem is a triple P = (Σ, si, g) where:

• Σ = (S, A, γ) is a strips planning domain on some first-order language L
• si ∈ S is the initial state

• g is a set of ground literals describing the goal such that the set of goal
states is: Sg = {s ∈ S|s satisfies g}

A plan π is a solution to a planning problem P = (Σ, si, g) if γ(si, π) satisfies g.

(c) Plan-Space Search: In plan-space search the nodes in the search space are
partial plans that are refined until a solution plan is found. Partial plans that
are not solutions may contain threats. Construct an example that explains the
concept of a threat using the operators given in the planning domain defined in
appendix 1. [5 marks ]

Answer:

• partially instantiated actions in the plan:

– (op0 obj1 ?x2 ?x3)

– (op1 ?x1 ?x2 obj1)

– (op0 ?x1 ?x2 obj1)

• with (op0 obj1 ?x2 ?x3) before (op1 ?x1 ?x2 obj1)

• and causal link (op0 obj1 ?x2 ?x3)
P1(obj1)→ (op1 ?x1 ?x2 obj1)
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Then the effect (not (P1 obj1)) of (op0 ?x1 ?x2 obj1) constitutes a threat
to the causal link. That is, if this operator was executed between the two con-
nected by the causal link, it would undo the condition protected by the causal
link.

(d) Representation: The strips representation, the propositional representation,
and the state-variable representation can be shown to be equally expressive. This
is done by providing methods that can translate back and forth between the
different representations. Translate the following operator in the state-variable
representation into the strips representation. How many operators in the propo-
sitional representation would be required to represent this operator?

• name: svop(x, y, z)

• precondition: Sv1(x, y) = z

• effects: Sv1(x, y)← y, Sv2(x)← z

[5 marks ]

Answer:

• name: svop(x, y, z, v)

• preconditions: Sv1(x, y, z), Sv2(x, v)

• effects: Sv1(x, y, y),¬Sv1(x, y, z), Sv2(x, z),¬Sv2(x, v)

Assume there are n objects in the domain. Then 4n propositional operators are
required.

(e) Temporal Planning: In the Interval Algebra there are 13 different primitive
relations that can relate two intervals. These can be combined using the compo-
sition operator (•). For example, (b • b) can be simplified to b. What relations
are expressed by (b • s) and (m • d)? Explain your answers. [4 marks ]

Answer:

• i1(b • s)i3 can be simplified to i1bi3 (b = before, s = starts)

• i1(m • d)i3 can be simplified to i1{o, s, d}i3 (m = meets, d = during, o =
overlaps)

i1
i2[i1 b i2]

i3[i2 s i3]
[i1 b i3]

i1
i2[i1 m i2]

i3[i2 d i3]
[i1 {o,s,d} i3]
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2. (a) Situation Calculus: In the situation calculus actions are denoted by function
terms. The definition of these functions is given by a set of axioms, namely
the applicability axioms, the effect axioms, and the frame axioms. Define these
axioms for the action op1 defined as part of the domain in appendix 1. [5 marks ]

Answer:

• applicability:
∀x, y, z, s : applicable(op1(x, y, z), s)↔ P1(z, s) ∧ P0(x, y, s) ∧ ¬P0(z, x, s)

• effect axiom:
∀x, y, z, s : applicable(op1(x, y, z), s)→ P0(y, z, result(op1(x, y, z), s))

• frame axiom:
∀x, x′, y, y′, z, s : P0(x′, y′, s)∧(x′ 6= z∨y′ 6= x)→ P0(x′, y′, result(op1(x, y, z), s))

• frame axiom:
∀x, x′, y, y′, z, s : ¬P0(x′, y′, s)∧(x′ 6= x∨y′ 6= y)→ ¬P0(x′, y′, result(op1(x, y, z), s))

• frame axiom:
∀x, x′, y, z, s : P1(x′, s)↔ P1(x′, result(op1(x, y, z), s))

(b) State-Space Search: Consider the planning domain and problem defined in
appendix 1. The first step in the forward state-space search algorithm computes
the set of applicable actions. What are the applicable actions for the given initial
state? [5 marks ]

Answer:

• op0( obj2 obj0 obj1 )

• op0( obj2 obj2 obj1 )

• op1( obj2 obj1 obj1 )

• op1( obj0 obj1 obj1 )

• op1( obj2 obj1 obj0 )

• op1( obj0 obj1 obj0 )

(c) Plan-Space Search: An alternative to state-space search is plan-space search
in which nodes in the search space are partial plans and arcs correspond to plan
refinements. In plan-space search, what does the initial search state, i.e. the root
node of the search tree, look like for a planning problem P = (O, si, g)? [5 marks ]

Answer:

• represent initial state si and goal g as dummy actions

– action init: no preconditions, initial state si as effects

– action goal: goal conditions g as preconditions, no effects

• initial search state: empty plan π0 = ({init, goal}, (init ≺ goal), {}, {}):
– two dummy actions init and goal;

– one ordering constraint: init before goal;

– no variable bindings; and

– no causal links.
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(d) Task Networks: When planning with task networks, the aim is not to achieve
some goal state, but to accomplish a given set of tasks. Describe, in pseudo code,
the ground partial-order forward decomposition algorithm (Ground-PFD) that
takes an initial state s, an initial task network w = (U,E), a set of primitive
operators O, and a set of methods M . [5 marks ]

function Ground-PFD(s, w,O, M)
if w.U = ∅ return 〈〉
task ← {t ∈ U |t has no predecessors in w.E}.chooseOne()
if task.isPrimitive() then

actions← {(a, σ)|a = σ(task) and a applicable in s}
if actions.isEmpty() then return failure
(a, σ)← actions.chooseOne()
plan← Ground-PFD(γ(s, a), σ(w − {task}), O, M)
if plan = failure then return failure
else return 〈a〉 • plan

else
methods← {(m,σ)|σ(m) is relevant for task and m is applicable in s}
if methods.isEmpty() then return failure
(m,σ)← methods.chooseOne()
return Ground-PFD(s, δ(w, task, m, σ), O, M)

(e) SAT Planning: One approach to solving a bounded planning problem is to
transform it into a satisfiability problem and use a SAT solver to find a plan.
How are the actions in a planning domain encoded in this approach? When the
SAT solver has finished, how can we extract the solution plan from the SAT
solver’s output? [5 marks ]

Answer: Let A be the set of action propositions and a ∈ A.

• encoding actions:
for 0 ≤ i ≤ n−1 : ai ⇒ (

∧
f∈precond(a) fi∧

∧
f∈effects+(a) fi+1∧

∧
f∈effects−(a) ¬fi+1)

where n is the size of the bounded problem

• if the SAT solver finds ai to be true then a is the ith action in the plan
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3. (a) AI Planning: The following graph represents a state-transition system Σ =
(S, A,E, γ) where a1 and a2 denote actions, e1 and e2 denote events, and ε
denotes no event or action taking place. Define this state-transition system for-
mally. Is this system deterministic? What state will the system be in after the
action sequence 〈a1a2〉 assuming the initial state is s1 and no events occur?

s2 s4 s6

s5s3s1

e2

a1

e1

a2a1

a2

ε

[5 marks ]

Answer:

• S = {s1, s2, s3, s4, s5, s6}
• A = {a1, a2}
• E = {e1, e2}

•

γ a1 a2 e1 e2 ε

s1 {s3} {} {s2} {} {}
s2 {s4} {} {s1} {} {}
s3 {} {s5} {} {s4} {}
s4 {} {s6} {} {s3} {}
s5 {} {} {} {} {s6}
s6 {} {} {} {} {s5}

The system is effectively non-deterministic because of the ε transition. 〈a1a2〉
will get the system into s5 or s6.

(b) Situation Calculus: The first approach to planning was to use theorem provers
to solve planning problems. For this, planning problems were written as first-
order theories in the situation calculus. However, this gave rise to the frame
problem, i.e. the need to explicitly represent frame axioms in the theory. What
are the three principal ways in which the frame problem as it appears in the
situation calculus has been addressed in AI planning? [5 marks ]

Answer:

• use a different style of representation in first-order logic (same formalism)

• use a different logical formalism, e.g. non-monotonic logic

• write a procedure that generates the right conclusions and forget about the
frame problem
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(c) State-Space Search: Consider the planning domain and problem defined in
appendix 1. The first step in the ground backward state-space search algorithm
computes the set of relevant actions. What are the relevant actions for the given
goal? [5 marks ]

Answer:

• op0( obj2 obj1 obj0 )

• op0( obj2 obj2 obj0 )

• op0( obj1 obj2 obj0 )

• op1( obj0 obj2 obj1 )

• op1( obj1 obj2 obj1 )

• op1( obj2 obj2 obj1 )

(d) Task Networks: Another search space is searched by STN planners. Here, a
node in the search space is a task network. A possible plan refinement operator
selects a task t in the network and chooses an applicable and relevant method
m to decompose t. Give definitions for:

• applicability of a method instance m,

• relevance of a method instance m, and

• the decomposition function δ.

[5 marks ]

Answer:

• A method instance m is applicable in a state s if

– precond+(m) ⊆ s and precond−(m) ∩ s = ∅.
• A method instance m is relevant for a task t if

– there is a substitution σ such that σ(t) = task(m).

• The decomposition of a task t by a relevant method m under σ is

– δ(t,m, σ) = σ(network(m)) or

– δ(t,m, σ) = σ(〈subtasks(m)〉) if m is totally ordered.

(e) Graphplan: The planning graph developed by Graphplan consists of action and
proposition layers. Under what condition is a set of independent actions π (in
one action layer) applicable to a state s? What is the result, γ(s, π), of applying
this set of independent actions? [5 marks ]

Answer:

• A set π of independent actions is applicable in a state s if and only if⋃
a∈π

precond(a) ⊆ s.

• The result of applying the set π in s is defined as: γ(s, π) = (s−effects−(π))∪effects+(π),
where:

– effects+ =
⋃

a∈π

effects+(a), and

– effects− =
⋃

a∈π

effects−(a).
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Appendix 1

The following is definition of a planning domain and a statement of a planning problem in
PDDL:

(define (domain random-domain)

(:requirements :strips)

(:action op0

:parameters (?x1 ?x2 ?x3)

:precondition (and

(P1 ?x3) (P0 ?x1 ?x3) (P0 ?x2 ?x3)

(not (P1 ?x1)))

:effect (and

(P1 ?x1) (P1 ?x2) (not (P1 ?x3))

(not (P0 ?x1 ?x3)) (not (P0 ?x2 ?x3))))

(:action op1

:parameters (?x1 ?x2 ?x3)

:precondition (and

(P1 ?x3) (P0 ?x1 ?x2)

(not (P0 ?x3 ?x1)))

:effect (and (P0 ?x2 ?x3)))

)

(define (problem problem1)

(:domain random-domain)

(:init

(P0 obj0 obj1)

(P0 obj1 obj1)

(P0 obj2 obj1)

(P1 obj0)

(P1 obj1))

(:goal

(and (P0 obj2 obj1) (P1 obj2)))

)
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