
Exceeding the Dataflow Limit via Value Prediction

Mikko H. Lipasti and John Paul Shen
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh PA, 152 13

{ mhl,shen} @ece.cmu.edu

Abstract

For decades, the serialization constraints imposed by
true data dependences have been regarded as an absolute
limit--the dutuflow limit--on the parallel execution of serial
programs. This paperproposes a new technique--value pre-
diction--for exceeding that limit that allows data dependent
instructions to issue and execute in parallel without violat-
ing program semantics. This technique is built on the con-
cept of value locality, which descn’bes the likelihood of the
recurrence of a previously-seen value within a storage loca-
tion inside u computer system. Value prediction consists of
predicting entire 32- and 64-bit register values based on
previously-seen values. We find that such register values
being written by machine instructions are frequently pre-
dictable. Furthermore, we show that simple microarchitec-
tural enhancements to a modem microprocessor
implementation based on the PowerPC 620 that enable
value prediction can effectively exploit value locality to col-
lapse true dependences, reduce average result latency, and
provide performance gains of 4.5%-23% (depending on
machine model) by exceeding the dataflow limit.

1. Motivation and Related Work

There are two fundamental restrictions that limit the
amount of instruction level parallelism (ILP) that can be
extracted from sequential programs: controlflow and data
Jlow. Control$ow limits ILP by imposing serialization con-
straints at forks and joins in a program’s control flow graph
[I 1. Data Jaw limits ILP by imposing serialization con-
straints on pairs of instructions that are data dependent (i.e.
one needs the result of another to compute its own result, and
hence must wait for the other to complete before beginning
to execute). Examining the extent and effect of these limits
has been a popular and important area of research, particu-
larly in the case of control flow [2,3,4,5]. Continuing
advances in the development of accurate branch predictors
(e.g. [6]) have led to increasingly-aggressive control-spec-
ulative microarchitectures (e.g. the Intel Pentium Pro [7]),
which undertake aggressive measures to overcome control-
flow restrictions by using branch prediction and speculative
execution to bypass control dependences and expose addi-
tional instruction-level parallelism to the microarchitecture.

Meanwhile, numerous mechanisms have been proposed and
implemented to eliminate false data dependences and toler-
ate the latencies induced by true data dependences by allow-
ing instructions to execute out of program order (see [8] for
an overview).

Surprisingly, in light of the extensive energies focused on
eliminating control-flow restrictions on parallel instruction
issue, less attention has been paid to eliminating data-flow
restrictions on parallel issue. Recent work has focused pri-
marily on reducing the latency of specific types of instruc-
tions (usually loads from memory) by rearranging pipeline
stages [9, IO], initiating memory accesses earlier [l 11, or
speculating that dependences to earlier stores do not exist
[12, 13, 14, 151.

The most relevant prior work in the area of eliminating
data-flow dependences consists of the Tree Machine
[16,171, which uses a value cache to store and look up the
results of recurring arithmetic expressions to eliminate
redundant computation (the value cache, in effect, performs
common subexpression elimination [l] in hardware). Rich-
ardson follows up on this concept in [181 by introducing the
concepts of trivial computation, which is defined as the triv-
ialization of potentially complex operations by the occur-
rence of simple operands; and redundant computation,
where an operation repeatedly performs the same computa-
tion because it sees the same operands. He proposes a hard-
ware mechanism (the result cache) which reduces the
latency of such trivial or redundant complex arithmetic
operations by storing and looking up their results in the
result cache. In [191, we introduced value locality, aconcept
related to redundant computation, and demonstrated a tech-
nique--Load Value Prediction, or LVP--for predicting the
results of load instructions at dispatch by exploiting the
affinity between load instruction addresses and the values
the loads produce. LVP differs from Harbison’s value cache
and Richardson’s result cache in two important ways: first,
the LVP table is indexed by instruction address, and hence
value lookups can occur very early in the pipeline; second,
it is speculative in nature, and relies on a verification mech-
anism to guarantee correctness. In contrast, both Harbison
and Richardson use table indices that are only available later
in the pipeline (Harbison uses data addresses, while Rich-
ardson uses actual operand values); and require their predic-
tions to be correct, hence requiring mechanisms for keeping

1072-4451196 $5.00 0 1996 IEEE
226

their tables coherent with all other computation.
In this paper, we extend the LVP approach for predicting

the results of load instructions to apply to all instructions that
write an integer or floating point register; show that a sig-
nificant proportion of such writes are trivially predictable;
describe a value-prediction hardware mechanism that allows
dependent instructions to execute in parallel; and present
results that demonstrate significant performance increases
over our baseline machine models.

2. Taxonomy of Speculative Execution

In order to place our work on value prediction into a
meaningful historical context, we introduce a taxonomy of
speculative execution. This taxonomy, summarized in
Figure 1, categorizes ours as well as previously-introduced
techniques based on which types of dependences are being
bypassed (control vs. data), whether the speculation relates
to storage location or value, and what type of decision must
be made to enable the speculation (binary vs. multi-valued).

Speculative Executio

Control Speculation b

FIGURE 1. Taxonomy of Speculative Execution
Techniques.

2.1. Control Speculation

There are essentially two types of control speculation:
speculating on the direction of a branch, which requires a
binary decision (taken vs. not-taken); and speculating on the
target of a branch, which requires a multi-valued decision
(the target can potentially be anywhere in the program’s
address space). Examples of the former are any of the many
branch prediction schemes explored in the literature (e.g.
[20,6]), while examples of the latter are the Branch Target
Buffer (BTB) or Branch Target Address Cache (BTAC) units
included on most modem high-end microprocessors (e.g.
the PowerPC 620 [151 or the Intel Pentium Pro [7]).

2.2. Data Speculation

Data speculation techniques break down logically into
two categories: those that speculate on the storage location
of the data, and those that speculate on the actual value of the

data. Furthermore, techniques that speculate on the location
come in two fundamentally different flavors: those that
speculate on a specific attribute of the storage location (e.g.
whether or not it is aliased with an earlier definition), and
those that speculate on the address of the storage location.
An example of the former is speculative disambiguation,
which optimistically assumes that an earlier definition does
not alias with a current use, and provides a mechanism for
checking the accuracy of that assumption. Speculative dis-
ambiguation has been implemented both in software [131 as
well as in hardware [12, 14, 151. Another example of this
type of speculation occurs implicitly in most control-spec-
ulative processors, whenever execution proceeds specula-
tively past a join in the control-flow graph where multiple
reaching definitions for a storage location are live [11. By
speculating past that join, the processor hardware is implic-
itly speculating that the definition on the predicted path to
the join in question is in fact the correct one (as opposed to
the definition on an alternate path).

There are a large number of techniques that speculate on
data address. Most prefetching techniques, for example, are
speculative in nature and rely on some heuristic for gener-
ating addresses of future memory references (e.g. [21, 22,
23,24,25]). Of course, since prefetching has no architected
side effects, no mechanism is needed for verifying the accu-
racy of the prediction or for recovering from mispredictions.
Another example of a technique that speculates on data
address is fast address calculation [26, 111, which enables
early initiation of memory loads by speculatively generating
addresses early in the pipeline.

The final category in our taxonomy, techniques that spec-
ulate on data value, has received little attention in the liter-
ature. The only prior work we are aware of is the LVP
structure described in [191. This paper also falls squarely
into the data-value-speculative category, since it is an exten-
sion of the LVP approach. Note that neither the Tree
Machine [16,171 or Richardson’s work [181 qualify since
they are not speculative.

3. Value Locality

In this paper, we revisit the concept of value locality,
which we first introduced in [191 as the likelihood of a pre-
viously-seen value recurring repeatedly within a storage
location. Although the concept is general and can be applied
to any storage location within a computer system, we have
limited our current study to examine only the value locality
of general-purpose or floating point registers immediately
following instructions that write to those registers. A pleth-
ora of previous work on static and dynamic branch predic-
tion (e.g. [20,6]) has focused on an even more restricted
application of value locality, namely the prediction of a sin-
gle condition bit based on its past behavior. In [191, we
examined the value locality of registers being targeted by
loads from memory. This paper can be viewed as a logical
continuation of that work, extending the prediction of load
values to the prediction of all integer and floating point reg-
ister values.

227

TABLE 1. Benchmark Descriptions.

Bench- I I mark
Description

I
Input Set

Instr.

I I Count

ccl-271 GCC 2.7.1 SPEC95 gen0utput.i 102M

ccl SPEC92 GCC 1.35 SPEC92 insn-recog.i 146M
civet JPEG encoder 128x128 BW image 2.8M

L&mress 1 SPEC92 compression 11 iter. w/ l/2 input) 38.8M 1

FiAtott ISPEC92 eqn to tr tbl 1 SPEC92 mod. input I 25.5M 1
gawk

gperf
gw

GNU awk Parse 1.7M output 25.OM

GNU hash fn gen -a-k l-13 -D -0 diet 7.8M

GNU grep -c “st*mo” Same as compress 2.3M

mpeg
per1
auick

MPEG decoder 4 frames 8.8M

SPEC95 anagram srch “admits” in l/8 input 105M

Recursive quick sort 5,000 elements 688K

SC SPEC92 spreadsheet SPEC92 short input 78.5M

xlisp SPEC92 LISP 6 queens 52.1M

doduc SPEC92 Nucl sim SPEC92 tiny input 35.8M

hvdro2d SPEC92 galactic jets SPEC92 short input 4.3M

lswm256 1 SPEC92 water model 15 iterations 1 43.7M1

tomcatv 1 SPEC92 mesh gen 14 iterations (vs. 100) 1 30.OM
Total I I 1 720M

Intuitively, it seems that it would be a very difficult task
to discover any useful amount of value locality in a general
purpose register. After all, a 32-bit register can contain any
one of over four billion values--how could one possibly pre-
dict which of those is even somewhat likely to occur next?
As it turns out, if we narrow the scope of our prediction
mechanism by considering each static instruction individu-
ally, the task becomes much easier and we are able to accu-
rately predict a significant fraction of register values being
written by machine instructions.

What is it that makes these values predictable? After
examining a number of real-world programs, we assert that
value locality exists primarily for the same reason that par-
tial evaluation [27] is such an effective compile-time opti-
mization; namely, that real-world programs, run-time
environments, and operating systems incur severe perfor-
mance penalties because they are general by design. That is,
they are implemented to handle not only contingencies,
exceptional conditions, and erroneous inputs, all of which
occur relatively rarely in real life, but they are also often
designed with future expansion and code reuse in mind. Our
results--which agree with Richardson’s persuasive argu-
ments and results in [18]--show that even code that is
aggressively optimized by modern, state-of-the-art compil-
ers exhibits these tendencies.

The benchmark set we use to explore value locality and
quantify its performance impact is summarized in Table 1.
We have chosen thirteen integer benchmarks, five of them
from SPEC ‘92, one from SPEC ‘95, along with two image-
processing applications (cjpeg and mpeg), two commonly-
used Unix utilities (gawk and grep), GNU’s perfect hash
function generator (gperf), a more recent version of GCC

80.0 L
3 +

; 60.0

8 -I
flj 40.0

z
20.0

FIGURE 2. Register Value Locality. The light
bars show value locality for a history depth of one,
and dark bars show it for a history depth of four.

(ccl-271), and a recursive quicksort. In addition, we have
chosen four of the SPEC ‘92 floating-point benchmarks. All
benchmarks are compiled at full optimization with the IBM
CSET reference compilers, and are run to completion with
the input sets described, but do not include supervisor-state
instructions, which our tracing tool is unable to capture.

Figure 2 shows the register value locality for all instruc-
tions that write an integer or floating point register in each
of the benchmarks. The register value locality for each
benchmark is measured by counting the number of times
each static instruction writes a register value that matches a
previously-seen value for that static instruction and dividing
by the total number of dynamic register writes in the bench-
mark. Two sets of numbers are shown, one (light bars) for a
history depth of one (i.e. we check for matches against only
the most-recently-written value), while the second set (dark
bars) has a history depth of four (i.e. we check against the
last four unique values).’ We see that even with a history
depth of one, most of the programs exhibit value locality in
the 40-50% range (average 49%), while extending the his-
tory depth to four (along with a perfect mechanism for
choosing the right one of the four values) can improve that
to the 60-70% range (average 61%). What that means is that
a majority of static instructions exhibit very little variation
in the values that they write during the course of a program’s
execution.

To further explore the notion of value locality, we col-
lected value predictability data that classifies register writes
based on instruction type (the types are summarized in
Table 2). These results are summarized in Figure 3. Once

I. The history values are stored in a direct-mapped table with 16K entries
indexed but not tagged by instruction address, and the values (up to four)
stored at each entry are replaced with an LRU policy. Hence, the potential
exists for both constructive and destructive interference between instruc-
tions that map to the same entry.

228

TABLE 2. Instruction Types.

Instr I I 5pe
Description

Freq I I (%I
Single-cycle arithmetic, 2 reg. operands
Single-cycle arithmetic, 1 reg. operand

Single-cycle logical, 1 reg. operand
Multi-cycle arithmetic, 2 reg. operands

MC-A-1 Multi-cycle arithmetic, 1 reg. operand 0.06
MC-MV Multi-cycle register move 1.86
I-LD Integer load instructions 33.00
ST-U Store with base reg. update 5.14
FP-LD FP load single 3.16
FPD LD FPloaddouble 4.76

1 FPLA 1 FP instructions other than multiply 1 3.52 1

FP div,abs,neg,round to single precision

again, two sets of numbers are shown; one for a history depth
of one, and another for a history depth of four. Integer and
floating-point double loads (I-LD and FPD-LD) are the
most predictable frequently-occurring instructions.
FP-OTH, FP-MV, MC-MV are also very predictable but
make up an insignificant portion of the dynamic instruction
mix. For the single-cycle instructions, fewer input operands
(one vs. two) correlate with higher value locality. For the
multi-cycle instructions, however, the opposite is true.

The worst value locality is exhibited by the floating-
point-single instructions. We attribute this to the fact that the
floating-point benchmarks we used initialize input arrays
with pseudo-random numbers, resulting in poor value local-
ity for loads from these arrays.

The store-with-update (ST-U) instruction type also has
poor value locality. This makes sense, since the ST-U
instruction is used to step through an array at a fixed stride
(hence the base address register is updated with a different
value every time the instruction executes, and history-based
value prediction will fail). On the other hand, ST-U is also
used in function prologues to update the stack frame pointer,
where, given the same call-depth, the value is predictable
from one call to the next. Hence, some of our call-intensive
benchmarks report higher value locality for ST-U. How-
ever, the former effect dominates and lowers the overall
value locality for ST-U.

4. Exploiting Value Locality

The fact that the register writes in many programs dem-
onstrate a significant degree of value locality opens up excit-
ing new possibilities for the microarchitect. Since the results
of many instructions can be accurately predicted before they
are issued or executed, dependent instructions are no longer
bound by the serialization constraints imposed by operand

80.0
7 6

,i?’ 60.0
Yi
8 -I
2 40.0

z
20.0

FIGURE 3. Register Value Locality by
Instruction Type.

data flow. Instructions can now be scheduled speculatively
with additional degrees of freedom to better utilize existing
functional units and hardware buffers, and are frequently
able to complete execution sooner since the critical paths
through dependence graphs have been collapsed. However,
in order to exploit value locality and bring about all of these
benefits, two mechanisms must be implemented: one for
accurately predicting values--the VP (value prediction)
unit--and one for verifying these predictions.

4.1. The Value Prediction Unit

Value prediction is useful only if it can be done accu-
rately, since incorrect predictions can lead to increased
structural hazards and longer latency (the misprediction
penalty is described in greater detail in Section 5.3). Hence,
we propose a two-level prediction structure for the VP Unit:
the first level is used to generate the prediction values, and
the second level is used to decide whether or not the predic-
tions are likely to be accurate.

The internal structure of the VP Unit is summarized in
Figure 4. The VP Unit consists of two tables: the Clussiji-
cation Table (CT) and the Value Prediction Table (VPT),
both of which are direct-mapped and indexed by the instruc-
tion address (PC) of the instruction being predicted. Entries
in the CT contain two fields: the valid field, which consists
of either a single bit that indicates a valid entry or a partial
or complete tag field that is matched against the upper bits
of the PC to indicate a valid field; and the prediction history,
which is a saturating counter of 1 or more bits. The predic-
tion history is incremented or decremented whenever a pre-
diction is correct or incorrect, respectively, and is used to
classify instructions as either predictable or unpredictable.
This classification is used to decide whether or not the result
of a particular instruction should be predicted. Increasing
the number of bits in the saturating counter adds hysteresis
to the classification process and can help avoid erroneous
classifications by ignoring anomalous values and/or

229

Classification Table Value Prediction Table

Prediction Result Predicted Value Updated Value

FIGURE 4. Value Prediction Unit. The PC of the
instruction being predicted is used to index into the
VPT to find a value to predict. At the same time, the
CT is also indexed with the PC to determine
whether or not a prediction should be made. When
the instruction completes, both the prediction
history and value history are updated.

destructive interference.
The VPT entries also consist of two fields: a valid field,

which, again, can consist of a single valid bit or a full or par-
tial tag; and a value history field, which contains one or more
32- or 64-bit values that are maintained with an LRU policy.
The value history fields are replaced when an instruction is
first encountered (by its result) or whenever a prediction is
incorrect (by the actual result). The VPT replacement policy
is also governed by the CT prediction history to introduce
hysteresis and avoid replacing useful values with less useful
ones.

As a preliminary exploration of the VP Unit design space,
we analyzed sensitivity to a few key parameters, and then
selected a specific design point to use with our microarchi-
tectural studies (see Section 7). However, the intent of this
paper is not to explore the details of such a design; rather, our
intent is to explore the larger issue of the impact of value pre-
diction on microarchitecture and instruction-level parallel-
ism, and to leave such details to future work.

In Figure 5, we show the sensitivity of the VPT hit rate to
size for each of our benchmarks. We see that for most bench-
marks, the hit rate levels off at or around 4096 entries,
though in several cases significant improvements are possi-
ble beyond that size. Nevertheless, we chose 4096 as our
design point, since going beyond that size (i.e. 4096 entries
x 8 bytes/entry = 32KB) seemed unreasonable without
severely impacting processor cycle time.

The purpose of the CT is to partition instructions into two
classes: those that are predictable by the VPT, and those that
are not.To measure its effectiveness at accomplishing this
purpose, we simulated six different CT configurations,
which are summarized in Table 3. The state descriptions
specify the effect of each state on both value prediction as
well as the replacement of values in the VPT when new val-

60.0

T ,~::::.-..----*-----+-----+ l -• xl@

0.0 q
256 1024 4096 16384

VPT Entries

FIGURE 5. VPT Hit Rate Sensitivity to Size.

ues are encountered. The results for each configuration are
summarized in Figure 6. From the results, we conclude that
the best choice for maximizing both the predictable and
unpredictable hit rates is the 1024/3-bit configuration (this
is not surprising, since it has the highest hardware cost).
However, since the 1024Dbit configuration is only slightly
worse at identifying predictable instructions and is actually
better at identifying unpredictable ones (hence minimizing
misprediction penalty), and is significantly cheaper to
implement (it uses l/3 fewer bits), we decided to use the lat-
ter in our microarchitectural simulation studies.t We note
that the unpredictable hit rates of the 3-bit configurations are
worse (relative to the l- bit and 2-bit configurations) than
their predictable hit rates, and conclude that this must be
because the 3-bit state assignments heavily favor prediction
(see Table 3). Changing the state assignments might
improve these hit rates.

4.2. Verifying Predictions

Since value prediction is by nature speculative, we need
a mechanism for verifying the correctness of the predictions
and efficiently recovering from mispredictions. This mech-
anism is summarized in the example of Figure 7, which

1. Note that we do not claim that the hit rates shown in Figure 6 are a
reliable predictor of system performance. Just as in branch prediction,
higher hit rates may not necessarily translate into fewer execution cycles.
Rather, detailed cycle-by-cycle simulation of the entire microarchitecture
is needed to verify performance improvements.

230

,oo.o , Prdictaple , Unpredictable
I I

70.0

60.0 - -
256 1K 4K 16K 256 1K 4K 16K

VPT Entries # VPT Entries

I

- H 256/l -bit
0-O 256/2-bit t
H 256/3-bit

-‘4-+ 1024/l -bit
A-A 1024/2-bit

- +-d 1024/3-bit

FIGURE 6. CT Hit Rates.The Predictable Hit Rate
is the number of correct value predictions that were
identified as such by the CT divided by the total
number of correct predictions, while the
Unpredictable Hit Rate is the number of incorrect
predictions that were identified as such by the CT
divided by the number of incorrect predictions.

TABLE 3. Classification Table Configurations.

11
10.1 =no med. 2.3=ured. 3=no reull

t

._ ..,.I 1 I

256/3-bit 1 (O,l=no pred, 2-7=~red, 5-7= no red)

I 1024/l-bit 1 (O=no pred, l=pred & no repl) 1

I 1024/2-bit I (O,l=no pred, 2,3=pred, 3=no repl) I

I 1024/3-bit 1 (O,l=no pred, 2-7=pred, 5-7= no repl) 1

shows the parallel execution of two data-dependent instruc-
tions. The producer instruction, shown on the left, has its
value predicted and written to its rename buffer during the
fetch and dispatch cycles. The consumer instruction, shown
on the right, reads the predicted value from the rename
buffer at the beginning of the execute cycle, and is able to
issue and execute normally, but is forced to retain its reser-
vation station. Meanwhile, the predicted instruction also
executes, and its computed result is compared with the pre-
dicted result during its completion stage. If the values match,
the consumer instruction releases its reservation station. If
not, completion of the first instance of the consumer instruc-
tion is invalidated, and a second instance reissues with the
correct value.

l Unit latency for mispredicted branches with no fetch
bubble (i.e. instructions following a mispredicted
branch are able to execute in the cycle following reso-
lution of the mispredicted branch).
It is our intent that the infinite model match the SP

machine model presented in [4], except for the branch pre-
diction mechanism, which is a 2048-entry BHT design with
a 2-bit saturating counter per entry, copied exactly from our
620 model. Table 5 summarizes the performance of each of
our benchmarks on each of the three baseline machine mod-
els without value prediction.

5.1. PowerPC 620 Microarchitecture

5. Microarchitectural Models
The microarchitecture of the PowerPC 620 is summa-

rized in Figure 8. Our model is based on published reports

In order to validate and quantify the performance impact 1. For reasons of efficiency, the instruction window of our simulator is
of the Value Prediction Unit, we implemented three cycle- limited to 4096 active instructions. Hence, we did not truly model an in&
accurate simulation models, two of them based on the Pow- nite number of resources, only one that approaches that number.

Fetch

Disp

Exec

Camp/
Verify

Predicted CT PC Dependent

Committed Value Predicted Value

FIGURE 7. Example use of Value Prediction
Mechanism. The dependent instruction shown
on the right uses the predicted result of the
instruction on the left, and is able to issue and
execute in the same cycle.

erPC 620 [28, 15]--one which matches the current 620
closely, and one, termed the 620+, which alleviates some of
its known bottlenecks--and an additional idealized model
which removes all structural dependences’. The number of
functional units and issue and result latencies for common
instruction types on the three machines are summarized in
Table 4. Our idealized infinite model also implements the
following assumptions:
l Perfect caches
l Perfect alias detection and store-to-load forwarding
l Perfect instruction fetching (limited to one taken

branch per cycle).

231

TABLE 4. Machine Model Specifications.

TABLE 5. Baseline Performance (IPC).

1 z: 1 620 (620+ 1 Infmite I

ccl-271 1.05540 1.07260 6.40244
ccl 1.20880 1.30892 6.8 1969

23-f 1 1.61187 1 1.82027 1 7.00588
EreD I 1.07909 I 1.06635 1 2.02673

on the PowerPC 620 [28, 151, and accurately models all
aspects of the microarchitecture, including branch predic-
tion, fetching, dispatching, register renaming, out-of-order
issue and execution, result forwarding, the non-blocking
cache hierarchy, store-to-load alias detection, and in-order
completion. To alleviate some of the bottlenecks we found
in the 620 design, we also modeled an aggressive “next-gen-
eration” version of the 620, which we termed the 620+. The
620+ differs from the 620 by doubling the number of reser-
vation stations, FPR and GPR rename buffers, and comple-
tion buffer entries; adding an additional load/store unit
(LSU) without an additional cache port (the base 620
already has a dual-banked data cache); and relaxing dis-
patching requirements to allow up to two loads or stores to
dispatch and issue per cycle. In addition, we added a VP Unit
that predicts register writes by keeping a value history
indexed by instruction addresses.

FIGURE 8. PPC 820 and 620+ Block Diagram.
Buffer sizes are shown as (620/620+).

5.2. VP Unit Operation

The VP Unit predicts the values during fetch and dis-
patch, then forwards them speculatively to subsequent
dependent instructions via the 620’s rename buffers. Up to
four predictions can be made per cycle on our 620/620+
models, while the infinite model can make up to 4096 pre-
dictions per cycle. Dependent instructions are able to issue
and execute immediately, but are prevented from complet-
ing architecturally and are forced to retain possession of
their reservation stations until their inputs are no longer
speculative. Speculatively forwarded values are tagged with
the uncommitted register writes they depend on, and these
tags are propagated to the results of any subsequent depen-
dent instructions. Meanwhile, uncommitted instructions
execute in their respective functional units, and the pre-
dicted values are verified by a comparison against the actual
values computed by the instructions. Once a prediction is
verified, its tag gets broadcast to all active instructions, and
all the dependent instructions can either release their reser-
vation stations and proceed into the completion unit (in the
case of a correct prediction), or restart execution with the
correct register values (if the prediction was incorrect).
Since a large number of instructions can be in flight at the
same time (16 on the base 620,32 on the 620+, and up to
4096 in our infinite model), verifying a predicted value can
take dozens of cycles or more, allowing the processor to
speculate multiple levels down the dependence chain
beyond the write, executing instructions and resolving
branches that would otherwise be blocked by data-flow
dependences.

5.3. Misprediction Penalty

The worst-case penalty for an incorrect value prediction
in this scheme, as compared to not predicting the value in
question, is one additional cycle of latency along with struc-

232

FIGURE 9. 620 Speedups.

tural hazards that might not have occurred otherwise. The
penalty occurs only when a dependent instruction has
already executed speculatively, but is waiting in its reserva-
tion station for one of its predicted inputs to be verified.
Since the value comparison takes an extra cycle beyond the
pipeline result latency, the dependent instruction will reissue
and execute with the correct value one cycle later than it
would have had there been no prediction. In addition, the
earlier incorrect speculative issue may have caused a struc-
tural hazard that prevented other useful instructions from
dispatching or executing. In those cases where the depen-
dent instruction has not yet executed (due to structural or
other unresolved data dependences), there is no penalty,
since the dependent instruction can issue as soon as the
actual computed value is available, in parallel with the value
comparison that verifies the prediction. In any case, due to
the CT which accurately prevents incorrect predictions (see
Figure 6), the misprediction penalty does not significantly
affect performance.

There can also be a structural hazard penalty even in the
case of a correct prediction. Since speculative values are not
verified until one cycle after the actual values become avail-
able, speculatively issued dependent instructions end up
occupying their reservation stations for one cycle longer
than they would have had there been no prediction.

6. Experimental Framework

Our experimental framework consists of three main
phases: trace generation, VP Unit simulation, and microar-
chitectural simulation. Traces are collected and generated
with the TRIP6000 instruction tracing tool, which is an early

version of a software tool developed for the IBM RS/60
that captures all instruction, value and address references
made by the CPU while in user state. Supervisor state ref-
erences between the initiating system call and the corre-
sponding return to user state are lost. The instruction,
address, and value traces are fed to a model of the VP Unit
described earlier, which annotates each instruction in the
trace with one of three value prediction states: no prediction,
incorrect prediction, or correct prediction. The annotated
trace is then fed to a cycle-accurate microarchitectural sim-
ulator that correctly accounts for the behavior of each type
of instruction. All of our microarchitectural models are
implemented using the VMW framework [29], which
enables significant productivity gains by allowing us to
reuse and retarget existing models. The VP Unit model is
separated from the microarchitectural models for two rea-
sons: to shift complexity out of the microarchitectural mod-
els and thus better distribute our simulations across multiple
CPUs; and to conserve trace bandwidth by passing only two
bits of state per instruction to the microarchitectural simu-
lator, rather than the full 32164 bit values being written.

One of the well-known shortcomings of trace-driven
simulation is that the non-architected side effects of specu-
lative instructions that never complete are not accurately
modeled. For our machine models, these side effects include
instruction and data cache perturbation due to speculative
fetches and loads as well as perturbation of the branch his-
tory table, return address stack, and branch target address
cache by speculative branch instructions. Fortunately, the
VPT and CT structures are modeled accurately since they
are never updated until completion. Our model also properly
accounts for all other structural resource contention caused

233

1.8

1.7 GM=1.102 8PerfCT

1.6

FIGURE 10. 620+ Speedups.

by speculative execution.

TABLE 6. VP Unit Configurations.

I I VPT I CT I
Config- -
uration Entries

History
Entries

Bits/
Depth Entry

c I
Simple 1 4096 1 1024 1 2

IPerfCT I 4096 1 00 1 Perfect
4PerfCT I 4096 1 4iPerfect 1 00 1 Perfect
8PerfCT 1 4096 1 g/Perfect 1 00 1 Perfect

Perfect 00 1 Perfect 1 00 1 Perfect 1

7. Experimental Results

We collected performance results for each of the three
machine models described in Section 5 (base 620, enhanced
620+, and infinite) in conjunction with five different VP
Unit configurations, which are summarized in Table 6.
Attributes that are marked perfect in Table 6 indicate behav-
ior that is analogous to perfect caches; that is, a mechanism
that always produces the right result is assumed. More spe-
cifically, in the lPerfCT, 4PerfCT and 8PerfCT configura-
tions, we assume an oracle CT that is able to correctly
identify all predictable and unpredictable register writes.
Furthermore, in the 4PerfCT and 8PerfCT configurations,
we assume a perfect mechanism for choosing which of the
4 (or 8) values stored in the value history is the correct one.
Moreover, we assume that the Perfect configuration can

always correctly predict a value for every regrster write. we
point out that the only VP Unit configuration that we know
how to build today is the Simple one, while the other four are
merely included to measure the potential contribution of
improvements to both VPT and CT prediction accuracy.

7.1. PowerPC 620 Machine Model Speedups

In Figure 9 we show the speedups that the VP Unit con-
figurations of Table 6 obtain over the base PowerPC 620
machine model. The Simple configuration achieves an aver-
age speedup of 4.5% (geometric mean), the IPerfCT con-
figuration improves that to 5.6%, 4PerfCTto 6.7%, 8PerfCT
to 7.1%, and Perfect all the way to 11.6%. Two benchmarks,
gawk and grep, demonstrate outstanding performance gains,
even with the imperfect configurations, while the gains for
cjpeg and compress are nonexistent, even with perfect CTs.
We attribute the poor showing of cjpeg and compress to their
lack of register value locality (see Figure 2).

Detailed profiling of grep and gawk revealed that both
spend a significant portion of their time in the bmexeco and
dfaexecf] routines, which implement string search routines
in loops with long dependence chains. For both benchmarks,
value prediction is frequently able to break these depen-
dence chains, resulting in significant additional parallelism.

The speedups for several benchmarks (~~1-271, grep
perl, doduc, and hydro2d) are quite sensitive to CT accuracy
(i.e. a perfect CT produces significantly more speedup),
indicating a need for a more accurate classification mecha-
nism. In general, however, we are pleased with our results,
which show that value prediction is able to produce measur-

234

$2.5
-0
ii
~2.0

FIGURE 11. Infinite Machine Model Speedups.

able speedups on a current-generation microprocessor
design.

7.2. PowerPC 620+ Machine Model Speedups

In Figure 10 we show the value prediction speedups over
the baseline 620+ machine model. The Simple configuration
achieves an average speedup of 6.8% (geometric mean), the
IPerfCT configuration improves that to 8.4%, 4PerfCT to
9.7%, 8PerfCT to 10.2%, and Perfect all the way to 15.1%.
While the trends are similar to the speedups for the base 620
model, the speedups are higher across the board. We
attribute this to the fact that the increased machine parallel-
ism and additional hardware resources provided by this
model better match the additional instruction-level parallel-
ism exposed by value prediction. Furthermore, the hardware
is better able to tolerate the increase in structural hazards
caused by value prediction

Perhaps the most interesting observation about Figure 10
(which applies to Figure 9 as well) is the lack of any obvious
correlation to Figure 2, which shows the value locality for
each benchmark. This underscores our earlier point that a
high hit rate (i.e. high value locality) does not necessarily
translate into a proportional reduction in execution cycles.
This follows from the fact that benchmarks with high value
locality may not necessarily be sensitive to result latency
(i.e. they are not data-flow-limited), whereas benchmarks
with lower value locality may be very sensitive, and hence
may derive significant performance benefits even if only a
small fraction of register writes are predictable. For exam-
ple, eqntott has significantly better value locality than grep,
yet grep obtains significantly more speedup from value pre-
diction..

7.3. Infinite Machine Model Speedups

In Figure 11 we show the value prediction speedups over

the Infinite machine model. The Simple configuration
achieves an average speedup of 22.7% (geometric mean),
the IPerfCTconfiguration improves that to 34.0%, 4PerfCT
to 36.970, 8PerfCT to 38.070, and Pelfect all the way to
69.8%. These numbers are very encouraging to us, since
they demonstrate that the ultimate performance potential of
value prediction remains largely untapped by current and
even reasonably-extrapolated next generation processors,
and that much work remains to be done to find more effec-
tive ways to apply it to realistic microarchitectures.

Several benchmarks that displayed measurable speedups
with the finite models show negligible speedup with the infi-
nite model (e.g. mpeg, perl, SC, xlisp), which leads us to
believe that they are not dataflow-limited by nature. How-
ever, the fact that they do show speedups with the finite
models highlights the fact that value prediction, by remov-
ing serialization constraints, allows a processor to more effi-
ciently utilize a limited number of execution resources.

We included the infinite model results to support our
assertion that value prediction can be used to exceed the
dataflow limit. Our infinite machine model measures a data-
flow limit, since, for all practical purposes (ignoring our
limit of 4096 active instructions), parallel issue in the infi-
nite model is restricted only by the following three factors:
l Branch prediction accuracy
l Fetch bandwidth (single taken branch per cycle)
l Data-flow dependences

Value prediction directly impacts only the last of these,
and yet we are able to demonstrate average and peak speed-
ups of 22.7% and 198% (2.98x speedup for gawk) using our
Simple VP Unit configuration. Hence, we lay claim to
exceeding the dataflow limit.

8. VP Unit Implementation

An exhaustive design study of VP Unit design parame-
ters and implementation details is beyond the scope of this

235

paper. As stated earlier, some preliminary exploration of the
design space was conducted by analyzing sensitivity to a
few key parameters. We realize that the design selected is by
no means optimal, minimal, or even reasonably efficient,
and could be improved significantly with some effort. For
example, we reserve a full 64 bits per value entry in the VPT,
while most instructions generate only 32 or fewer bits, and
space in the table could certainly be shared between such
entries with some clever engineering.

However, to evaluate the feasibility of implementing a
VP Unit in a real-world processor, we compare it against one
alternative approach that consumes roughly the same
amount of chip space: doubling the first-level data cache to
64K by increasing the line size from 64 bytes to 128 bytes.
The results of this comparison, which are shown in
Figure 12, make clear that, at least for this benchmark set,
value prediction delivers three to four times more speedup
than doubling the data cache for both the 620 and 620+
machine models.

Furthermore, the VP Unit has several characteristics that
make it attractive to a CPU designer. First of all, since the
VPT and CT lookup indices are available very early, at the
beginning of the instruction fetch stage, access to these
tables can be superpipelined over two or more stages.
Hence, given the necessary chip space, even relatively large
tables could be built without impacting cycle time. Second,
the design adds little or no complexity to critical delay paths
in the microarchitecture. Rather, table lookups and verifica-
tions are done in parallel with existing activities or are seri-
alized with a separate pipeline stage (value comparison).
Hence, it is unlikely that VP would have an adverse effect on
processor cycle time, whereas doubling the data cache
would quite likely do just that.

9. Conclusions and Future Work

We make four major contributions in this paper. First, we
present a taxonomy of speculative execution techniques.

Second, we demonstrate that many instructions that write
general purpose or floating point registers, when examined
on a per-instruction-address basis, exhibit significant
amounts of value locality. Third, we describe value predic-
tion, a data-speculative microarchitectural technique for
capturing and exploiting value locality to reduce data-flow
restrictions on parallel instruction issue. Fourth, we demon-
strate that value prediction can be used to exceed the data-
flow limit by 23% (geometric mean), as measured on a
processor model with no structural hazards. We are very
encouraged by our results. We have shown that measurable
(5% on average for the 620,7% on average for the 620+) and
in some cases dramatic (up to 33% on the 620 and 54% on
the 620+) performance gains are achievable with simple
microarchitectural extensions to current-generation and rea-
sonably-extrapolated next-generation microprocessor
implementations.

We envision future work proceeding on several different
fronts. First of all, we believe that the relatively simple tech-
niques we employed for capturing value locality could be
refined and extended to effectively predict a larger share of
register values. Those refinements and extensions might
include allowing multiple values per static instruction in the
prediction table by including branch history bits or other
readily available processor state in the lookup index; or
moving beyond history-based prediction to computed pre-
dictions through techniques like value stride detection. Sec-
ond, our classification mechanism could also be refined to
correctly classify more instructions and extended to control
pollution in the value table (e.g. removing instructions that
are not latency-critical from the table). Third, significant
engineering work is needed to optimize our VP Unit design
and reduce its implementation cost and potential impact on
processor cycle time. Fourth, the microarchitectural design
space should be explored more extensively, since value pre-
diction appears to dramatically alter the available program
parallelism in ways that may not match current levels of
machine parallelism very well. Fifth, feedback-directed

236

compiler support for rescheduling instructions for different
latencies based on their value locality may also prove ben-
eficial. Finally, more aggressive approaches to value pre-
diction could be investigated (e.g. speculating down
multiple paths in the value space, or predicting writes to con-
dition code and other special purpose registers). In short,
there is a great deal of interesting future work that is related
to value prediction and the exploitation of value locality.

Acknowledgments
This work was supported in part by ONR grant no.

NGOO14-96-1-0928. We also gratefully acknowledge the
generosity of the Intel Corporation for donating numerous
fast Pentium Pro-based workstations for our use. These sys-
tems reduced our simulation turnaround-time by more than
an order of magnitude. We also wish to thank the IBM Cor-
poration for letting us use the TRIP6000 instruction tracing
tool in our work.

References
[II

PI

131

[41

VI

El

[71

181

PI

A. Aho, R. Sethi, and J. Ullman. Compilers principles, tech-
niques, and tools. Addison-Wesley, Reading, MA, 1986.
E. M. Riseman and C. C. Foster. ‘The inhibition of potential
parallelism by conditional jumps.” IEEE Transactions on
Computers, pages 1405-1411, December 1972.
D. W. Wall. “Limits of instruction-level parallelism.” In em
Proceedings of the Fourth International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, pages 176-189, Santa Clara, California, 1991.
M. Lam and R. Wilson. “Limits of control flow on parallel-
ism.” In Proceedings of the 19th International Symposium on
Computer Architecture, pages 46-57, 1992.
K. B. Theobald, G. R. Gaoyand L. J. He&en. “On the limits
of nroeram uarallelism and its smoothabilitv.” In Proceed-
ing> of-the 23th Annual ACM/IEEE Internati&al Symposium
on Microarchitecture. December 1992.
T. Y. Yeh and Y. N. Patt. ‘“Two-level adaptive training
branch prediction.” In Proceedings of the 24th Annual Inter-
national Symposium on Microarchitecture, pages 5 l-6 1, No-
vember 199 1.
R. P. Colwell and R. Steck. “A 0.6um BiCMOS process with
Dynamic Eexecution.” In Proceedings of ISSCC, 1995.
M. Johnson. Superscalar Microprocessor Design. Prentice
Hall, Englewood Cliffs, NJ, 1991.
N. P. Jouppi. “Architectural and organizational tradeoffs in
the design of the MultiTitan CPU.” Technical Report TN-8,
DEC-wrl, December 1988.

[lo] M. Golden and T. Mudge. “Hardware support for hiding
cache latencv.” Technical report. Universitv of Michigan.
1993. -

-

I1 11 T. M. Austin and G. S. Sohi. “Zero-cvcle loads: Microarchi-
tecture support for reducing load latency.” In Proceedings of
the 28th Annual ACM/IEEE International Svmnosium on Mi-
croarchitecture, pages 82-92, December 1995:

[12] M. Franklin. The Multiscalar Architecture. PhD thesis, Uni-
versity of Wisconsin-Madison, 1993.

[131 A. S. Huang, G. Slavenburg, and J. P. Shen. “Speculative dis-
ambiguation: A compilation technique for dynamic memory
disambiguation.” In Proceedings of the 21st International
Symposium on Computer Architecture, pages 200-210, Chi-
cago, IL, April 1994.

Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
183-193, San Jose, California, October 4-7, 1994.

[151 D. Levitan, T. Thomas, and P. Tu. ‘The PowerPC 620 micro-
processor: A high performance superscalar RISC processor.”
COMPCON 95, 1995.

[161 S. P. Harbison. A Computer Architecture for the Dynamic
Optimization of High-Level Language Programs. PhD thesis,
Carnegie Mellon University, September 1980.

[171 S. P. Harbison. “An architectural alternative to optimizing
compilers.” In em Proceedings of the Symposium on Archi-
tectural Supportfor Programming Languages and Operating
Systems, pages 57-65, Palo Alto, California, 1982.

[181 S. E. Richardson. “Caching function results: Faster arithmetic
by avoiding unnecessary computation.” Technical report, Sun
Microsystems Laboratories, 1992.

[19] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. ‘Value local-
ity and load value prediction.” In Proceedings of the Seventh
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-VII),
October 1996.

[20] J. E. Smith. “A study of branch prediction techniques.” In
Proceedings of the 8th Annual Symposium on Computer Ar-
chitecture, pages 135-147, June 198 1.

[21] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W.-M. Hwu.
“Data access microarchitecture for superscalar processors
with compiler-assisted data prefetching.” In Proceedings of
the 24th International Symposium on Microarchitecture,
1991.

[22] T.-F. Chen and J.-L. Baer. “A performance study of software
and hardware data prefetching schemes.” In 21st Annual In-
ternational Symposium on Computer Architecture, pages
223-232, 1994.

[23] D. Callahan, K. Kennedy, and A. Porterfield. “Software
prefetching.” In Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 40-52, Santa Clara, April 1991.

[24] T. C. Mowry, M. S. Lam, and A. Gupta. “Design and evalua-
tion of a compiler algorithm for prefetching.” In Fifth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems, pages 62-
73, 1992.

[25] M. H. Lip&i, W. J. Schmidt, R. R. Roediger, and S. R.
Kunkel. “SPAID: Software orefetchine in in oointer- and
call-intensive environments.“‘In Proceedings of>he 28th An-
nual ACM/IEEE International Symposium on Microarchitec-
ture, 1995.

[26] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. “Stream-
lining data cache access with fast address calculation.” In
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 369-380, Santa Margherita
Ligure, Italy, June 22-24, 1995.

[27] SIGPLAN. Proceedings of the Symposium on Partial Evalu-
ation and Semantics-Based Program Manipulation,
volume 26, Cambridge, MA, September 1991. SIGPLAN
Notices.

[28] T. A. Diep, C. Nelson, and J. P. Shen. “Performance evalua-
tion of the PowerPC 620 microarchitecture.” In Proceedinps ”
of the 22nd International Symposium on Computer Architec-
ture, Santa Margherita Ligure, Italy, June 1995.

[29] T. A. Diep and J. P. Shen. “VMW: A visualization-based mi-
croarchitecture workbench.” IEEE Computer, 28(12):57-64,
1995.

[14] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllen-
haal, and W. mei W. Hwu. “Dynamic memory disambigua-
tion using the memory conflict buffer.” In Proceedings of the

237

