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Abstract 

For decades, the serialization constraints imposed by 
true data dependences have been regarded as an absolute 
limit--the dutuflow limit--on the parallel execution of serial 
programs. This paperproposes a new technique--value pre- 
diction--for exceeding that limit that allows data dependent 
instructions to issue and execute in parallel without violat- 
ing program semantics. This technique is built on the con- 
cept of value locality, which descn’bes the likelihood of the 
recurrence of a previously-seen value within a storage loca- 
tion inside u computer system. Value prediction consists of 
predicting entire 32- and 64-bit register values based on 
previously-seen values. We find that such register values 
being written by machine instructions are frequently pre- 
dictable. Furthermore, we show that simple microarchitec- 
tural enhancements to a modem microprocessor 
implementation based on the PowerPC 620 that enable 
value prediction can effectively exploit value locality to col- 
lapse true dependences, reduce average result latency, and 
provide performance gains of 4.5%-23% (depending on 
machine model) by exceeding the dataflow limit. 

1. Motivation and Related Work 

There are two fundamental restrictions that limit the 
amount of instruction level parallelism (ILP) that can be 
extracted from sequential programs: controlflow and data 
Jlow. Control$ow limits ILP by imposing serialization con- 
straints at forks and joins in a program’s control flow graph 
[I 1. Data Jaw limits ILP by imposing serialization con- 
straints on pairs of instructions that are data dependent (i.e. 
one needs the result of another to compute its own result, and 
hence must wait for the other to complete before beginning 
to execute). Examining the extent and effect of these limits 
has been a popular and important area of research, particu- 
larly in the case of control flow [2,3,4,5]. Continuing 
advances in the development of accurate branch predictors 
(e.g. [6]) have led to increasingly-aggressive control-spec- 
ulative microarchitectures (e.g. the Intel Pentium Pro [7]), 
which undertake aggressive measures to overcome control- 
flow restrictions by using branch prediction and speculative 
execution to bypass control dependences and expose addi- 
tional instruction-level parallelism to the microarchitecture. 

Meanwhile, numerous mechanisms have been proposed and 
implemented to eliminate false data dependences and toler- 
ate the latencies induced by true data dependences by allow- 
ing instructions to execute out of program order (see [8] for 
an overview). 

Surprisingly, in light of the extensive energies focused on 
eliminating control-flow restrictions on parallel instruction 
issue, less attention has been paid to eliminating data-flow 
restrictions on parallel issue. Recent work has focused pri- 
marily on reducing the latency of specific types of instruc- 
tions (usually loads from memory) by rearranging pipeline 
stages [9, IO], initiating memory accesses earlier [l 11, or 
speculating that dependences to earlier stores do not exist 
[12, 13, 14, 151. 

The most relevant prior work in the area of eliminating 
data-flow dependences consists of the Tree Machine 
[ 16,171, which uses a value cache to store and look up the 
results of recurring arithmetic expressions to eliminate 
redundant computation (the value cache, in effect, performs 
common subexpression elimination [l] in hardware). Rich- 
ardson follows up on this concept in [ 181 by introducing the 
concepts of trivial computation, which is defined as the triv- 
ialization of potentially complex operations by the occur- 
rence of simple operands; and redundant computation, 
where an operation repeatedly performs the same computa- 
tion because it sees the same operands. He proposes a hard- 
ware mechanism (the result cache) which reduces the 
latency of such trivial or redundant complex arithmetic 
operations by storing and looking up their results in the 
result cache. In [ 191, we introduced value locality, aconcept 
related to redundant computation, and demonstrated a tech- 
nique--Load Value Prediction, or LVP--for predicting the 
results of load instructions at dispatch by exploiting the 
affinity between load instruction addresses and the values 
the loads produce. LVP differs from Harbison’s value cache 
and Richardson’s result cache in two important ways: first, 
the LVP table is indexed by instruction address, and hence 
value lookups can occur very early in the pipeline; second, 
it is speculative in nature, and relies on a verification mech- 
anism to guarantee correctness. In contrast, both Harbison 
and Richardson use table indices that are only available later 
in the pipeline (Harbison uses data addresses, while Rich- 
ardson uses actual operand values); and require their predic- 
tions to be correct, hence requiring mechanisms for keeping 
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their tables coherent with all other computation. 
In this paper, we extend the LVP approach for predicting 

the results of load instructions to apply to all instructions that 
write an integer or floating point register; show that a sig- 
nificant proportion of such writes are trivially predictable; 
describe a value-prediction hardware mechanism that allows 
dependent instructions to execute in parallel; and present 
results that demonstrate significant performance increases 
over our baseline machine models. 

2. Taxonomy of Speculative Execution 

In order to place our work on value prediction into a 
meaningful historical context, we introduce a taxonomy of 
speculative execution. This taxonomy, summarized in 
Figure 1, categorizes ours as well as previously-introduced 
techniques based on which types of dependences are being 
bypassed (control vs. data), whether the speculation relates 
to storage location or value, and what type of decision must 
be made to enable the speculation (binary vs. multi-valued). 

Speculative Executio 

Control Speculation b 

FIGURE 1. Taxonomy of Speculative Execution 
Techniques. 

2.1. Control Speculation 

There are essentially two types of control speculation: 
speculating on the direction of a branch, which requires a 
binary decision (taken vs. not-taken); and speculating on the 
target of a branch, which requires a multi-valued decision 
(the target can potentially be anywhere in the program’s 
address space). Examples of the former are any of the many 
branch prediction schemes explored in the literature (e.g. 
[20,6]), while examples of the latter are the Branch Target 
Buffer (BTB) or Branch Target Address Cache (BTAC) units 
included on most modem high-end microprocessors (e.g. 
the PowerPC 620 [ 151 or the Intel Pentium Pro [7]). 

2.2. Data Speculation 

Data speculation techniques break down logically into 
two categories: those that speculate on the storage location 
of the data, and those that speculate on the actual value of the 

data. Furthermore, techniques that speculate on the location 
come in two fundamentally different flavors: those that 
speculate on a specific attribute of the storage location (e.g. 
whether or not it is aliased with an earlier definition), and 
those that speculate on the address of the storage location. 
An example of the former is speculative disambiguation, 
which optimistically assumes that an earlier definition does 
not alias with a current use, and provides a mechanism for 
checking the accuracy of that assumption. Speculative dis- 
ambiguation has been implemented both in software [ 131 as 
well as in hardware [12, 14, 151. Another example of this 
type of speculation occurs implicitly in most control-spec- 
ulative processors, whenever execution proceeds specula- 
tively past a join in the control-flow graph where multiple 
reaching definitions for a storage location are live [ 11. By 
speculating past that join, the processor hardware is implic- 
itly speculating that the definition on the predicted path to 
the join in question is in fact the correct one (as opposed to 
the definition on an alternate path). 

There are a large number of techniques that speculate on 
data address. Most prefetching techniques, for example, are 
speculative in nature and rely on some heuristic for gener- 
ating addresses of future memory references (e.g. [21, 22, 
23,24,25]). Of course, since prefetching has no architected 
side effects, no mechanism is needed for verifying the accu- 
racy of the prediction or for recovering from mispredictions. 
Another example of a technique that speculates on data 
address is fast address calculation [26, 111, which enables 
early initiation of memory loads by speculatively generating 
addresses early in the pipeline. 

The final category in our taxonomy, techniques that spec- 
ulate on data value, has received little attention in the liter- 
ature. The only prior work we are aware of is the LVP 
structure described in [ 191. This paper also falls squarely 
into the data-value-speculative category, since it is an exten- 
sion of the LVP approach. Note that neither the Tree 
Machine [ 16,171 or Richardson’s work [ 181 qualify since 
they are not speculative. 

3. Value Locality 

In this paper, we revisit the concept of value locality, 
which we first introduced in [ 191 as the likelihood of a pre- 
viously-seen value recurring repeatedly within a storage 
location. Although the concept is general and can be applied 
to any storage location within a computer system, we have 
limited our current study to examine only the value locality 
of general-purpose or floating point registers immediately 
following instructions that write to those registers. A pleth- 
ora of previous work on static and dynamic branch predic- 
tion (e.g. [20,6]) has focused on an even more restricted 
application of value locality, namely the prediction of a sin- 
gle condition bit based on its past behavior. In [ 191, we 
examined the value locality of registers being targeted by 
loads from memory. This paper can be viewed as a logical 
continuation of that work, extending the prediction of load 
values to the prediction of all integer and floating point reg- 
ister values. 
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TABLE 1. Benchmark Descriptions. 

Bench- I I mark 
Description 

I 
Input Set 

Instr. 

I I Count 

ccl-271 GCC 2.7.1 SPEC95 gen0utput.i 102M 

ccl SPEC92 GCC 1.35 SPEC92 insn-recog.i 146M 
civet JPEG encoder 128x128 BW image 2.8M 

L&mress 1 SPEC92 compression 11 iter. w/ l/2 input ) 38.8M 1 

FiAtott ISPEC92 eqn to tr tbl 1 SPEC92 mod. input I 25.5M 1 
gawk 

gperf 
gw 

GNU awk Parse 1.7M output 25.OM 

GNU hash fn gen -a-k l-13 -D -0 diet 7.8M 

GNU grep -c “st*mo” Same as compress 2.3M 

mpeg 
per1 
auick 

MPEG decoder 4 frames 8.8M 

SPEC95 anagram srch “admits” in l/8 input 105M 

Recursive quick sort 5,000 elements 688K 

SC SPEC92 spreadsheet SPEC92 short input 78.5M 

xlisp SPEC92 LISP 6 queens 52.1M 

doduc SPEC92 Nucl sim SPEC92 tiny input 35.8M 

hvdro2d SPEC92 galactic jets SPEC92 short input 4.3M 

lswm256 1 SPEC92 water model 15 iterations 1 43.7M1 

tomcatv 1 SPEC92 mesh gen 14 iterations (vs. 100) 1 30.OM 
Total I I 1 720M 

Intuitively, it seems that it would be a very difficult task 
to discover any useful amount of value locality in a general 
purpose register. After all, a 32-bit register can contain any 
one of over four billion values--how could one possibly pre- 
dict which of those is even somewhat likely to occur next? 
As it turns out, if we narrow the scope of our prediction 
mechanism by considering each static instruction individu- 
ally, the task becomes much easier and we are able to accu- 
rately predict a significant fraction of register values being 
written by machine instructions. 

What is it that makes these values predictable? After 
examining a number of real-world programs, we assert that 
value locality exists primarily for the same reason that par- 
tial evaluation [27] is such an effective compile-time opti- 
mization; namely, that real-world programs, run-time 
environments, and operating systems incur severe perfor- 
mance penalties because they are general by design. That is, 
they are implemented to handle not only contingencies, 
exceptional conditions, and erroneous inputs, all of which 
occur relatively rarely in real life, but they are also often 
designed with future expansion and code reuse in mind. Our 
results--which agree with Richardson’s persuasive argu- 
ments and results in [18]--show that even code that is 
aggressively optimized by modern, state-of-the-art compil- 
ers exhibits these tendencies. 

The benchmark set we use to explore value locality and 
quantify its performance impact is summarized in Table 1. 
We have chosen thirteen integer benchmarks, five of them 
from SPEC ‘92, one from SPEC ‘95, along with two image- 
processing applications (cjpeg and mpeg), two commonly- 
used Unix utilities (gawk and grep), GNU’s perfect hash 
function generator (gperf), a more recent version of GCC 
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FIGURE 2. Register Value Locality. The light 
bars show value locality for a history depth of one, 
and dark bars show it for a history depth of four. 

(ccl-271), and a recursive quicksort. In addition, we have 
chosen four of the SPEC ‘92 floating-point benchmarks. All 
benchmarks are compiled at full optimization with the IBM 
CSET reference compilers, and are run to completion with 
the input sets described, but do not include supervisor-state 
instructions, which our tracing tool is unable to capture. 

Figure 2 shows the register value locality for all instruc- 
tions that write an integer or floating point register in each 
of the benchmarks. The register value locality for each 
benchmark is measured by counting the number of times 
each static instruction writes a register value that matches a 
previously-seen value for that static instruction and dividing 
by the total number of dynamic register writes in the bench- 
mark. Two sets of numbers are shown, one (light bars) for a 
history depth of one (i.e. we check for matches against only 
the most-recently-written value), while the second set (dark 
bars) has a history depth of four (i.e. we check against the 
last four unique values).’ We see that even with a history 
depth of one, most of the programs exhibit value locality in 
the 40-50% range (average 49%), while extending the his- 
tory depth to four (along with a perfect mechanism for 
choosing the right one of the four values) can improve that 
to the 60-70% range (average 61%). What that means is that 
a majority of static instructions exhibit very little variation 
in the values that they write during the course of a program’s 
execution. 

To further explore the notion of value locality, we col- 
lected value predictability data that classifies register writes 
based on instruction type (the types are summarized in 
Table 2). These results are summarized in Figure 3. Once 

I. The history values are stored in a direct-mapped table with 16K entries 
indexed but not tagged by instruction address, and the values (up to four) 
stored at each entry are replaced with an LRU policy. Hence, the potential 
exists for both constructive and destructive interference between instruc- 
tions that map to the same entry. 
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TABLE 2. Instruction Types. 

Instr I I 5pe 
Description 

Freq I I (%I 
Single-cycle arithmetic, 2 reg. operands 
Single-cycle arithmetic, 1 reg. operand 

Single-cycle logical, 1 reg. operand 
Multi-cycle arithmetic, 2 reg. operands 

MC-A-1 Multi-cycle arithmetic, 1 reg. operand 0.06 
MC-MV Multi-cycle register move 1.86 
I-LD Integer load instructions 33.00 
ST-U Store with base reg. update 5.14 
FP-LD FP load single 3.16 
FPD LD FPloaddouble 4.76 

1 FPLA 1 FP instructions other than multiply 1 3.52 1 

FP div,abs,neg,round to single precision 

again, two sets of numbers are shown; one for a history depth 
of one, and another for a history depth of four. Integer and 
floating-point double loads (I-LD and FPD-LD) are the 
most predictable frequently-occurring instructions. 
FP-OTH, FP-MV, MC-MV are also very predictable but 
make up an insignificant portion of the dynamic instruction 
mix. For the single-cycle instructions, fewer input operands 
(one vs. two) correlate with higher value locality. For the 
multi-cycle instructions, however, the opposite is true. 

The worst value locality is exhibited by the floating- 
point-single instructions. We attribute this to the fact that the 
floating-point benchmarks we used initialize input arrays 
with pseudo-random numbers, resulting in poor value local- 
ity for loads from these arrays. 

The store-with-update (ST-U) instruction type also has 
poor value locality. This makes sense, since the ST-U 
instruction is used to step through an array at a fixed stride 
(hence the base address register is updated with a different 
value every time the instruction executes, and history-based 
value prediction will fail). On the other hand, ST-U is also 
used in function prologues to update the stack frame pointer, 
where, given the same call-depth, the value is predictable 
from one call to the next. Hence, some of our call-intensive 
benchmarks report higher value locality for ST-U. How- 
ever, the former effect dominates and lowers the overall 
value locality for ST-U. 

4. Exploiting Value Locality 

The fact that the register writes in many programs dem- 
onstrate a significant degree of value locality opens up excit- 
ing new possibilities for the microarchitect. Since the results 
of many instructions can be accurately predicted before they 
are issued or executed, dependent instructions are no longer 
bound by the serialization constraints imposed by operand 
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FIGURE 3. Register Value Locality by 
Instruction Type. 

data flow. Instructions can now be scheduled speculatively 
with additional degrees of freedom to better utilize existing 
functional units and hardware buffers, and are frequently 
able to complete execution sooner since the critical paths 
through dependence graphs have been collapsed. However, 
in order to exploit value locality and bring about all of these 
benefits, two mechanisms must be implemented: one for 
accurately predicting values--the VP (value prediction) 
unit--and one for verifying these predictions. 

4.1. The Value Prediction Unit 

Value prediction is useful only if it can be done accu- 
rately, since incorrect predictions can lead to increased 
structural hazards and longer latency (the misprediction 
penalty is described in greater detail in Section 5.3). Hence, 
we propose a two-level prediction structure for the VP Unit: 
the first level is used to generate the prediction values, and 
the second level is used to decide whether or not the predic- 
tions are likely to be accurate. 

The internal structure of the VP Unit is summarized in 
Figure 4. The VP Unit consists of two tables: the Clussiji- 
cation Table (CT) and the Value Prediction Table (VPT), 
both of which are direct-mapped and indexed by the instruc- 
tion address (PC) of the instruction being predicted. Entries 
in the CT contain two fields: the valid field, which consists 
of either a single bit that indicates a valid entry or a partial 
or complete tag field that is matched against the upper bits 
of the PC to indicate a valid field; and the prediction history, 
which is a saturating counter of 1 or more bits. The predic- 
tion history is incremented or decremented whenever a pre- 
diction is correct or incorrect, respectively, and is used to 
classify instructions as either predictable or unpredictable. 
This classification is used to decide whether or not the result 
of a particular instruction should be predicted. Increasing 
the number of bits in the saturating counter adds hysteresis 
to the classification process and can help avoid erroneous 
classifications by ignoring anomalous values and/or 

229 



Classification Table Value Prediction Table 

Prediction Result Predicted Value Updated Value 

FIGURE 4. Value Prediction Unit. The PC of the 
instruction being predicted is used to index into the 
VPT to find a value to predict. At the same time, the 
CT is also indexed with the PC to determine 
whether or not a prediction should be made. When 
the instruction completes, both the prediction 
history and value history are updated. 

destructive interference. 
The VPT entries also consist of two fields: a valid field, 

which, again, can consist of a single valid bit or a full or par- 
tial tag; and a value history field, which contains one or more 
32- or 64-bit values that are maintained with an LRU policy. 
The value history fields are replaced when an instruction is 
first encountered (by its result) or whenever a prediction is 
incorrect (by the actual result). The VPT replacement policy 
is also governed by the CT prediction history to introduce 
hysteresis and avoid replacing useful values with less useful 
ones. 

As a preliminary exploration of the VP Unit design space, 
we analyzed sensitivity to a few key parameters, and then 
selected a specific design point to use with our microarchi- 
tectural studies (see Section 7). However, the intent of this 
paper is not to explore the details of such a design; rather, our 
intent is to explore the larger issue of the impact of value pre- 
diction on microarchitecture and instruction-level parallel- 
ism, and to leave such details to future work. 

In Figure 5, we show the sensitivity of the VPT hit rate to 
size for each of our benchmarks. We see that for most bench- 
marks, the hit rate levels off at or around 4096 entries, 
though in several cases significant improvements are possi- 
ble beyond that size. Nevertheless, we chose 4096 as our 
design point, since going beyond that size (i.e. 4096 entries 
x 8 bytes/entry = 32KB) seemed unreasonable without 
severely impacting processor cycle time. 

The purpose of the CT is to partition instructions into two 
classes: those that are predictable by the VPT, and those that 
are not.To measure its effectiveness at accomplishing this 
purpose, we simulated six different CT configurations, 
which are summarized in Table 3. The state descriptions 
specify the effect of each state on both value prediction as 
well as the replacement of values in the VPT when new val- 

60.0 
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0.0 q 
256 1024 4096 16384 

# VPT Entries 

FIGURE 5. VPT Hit Rate Sensitivity to Size. 

ues are encountered. The results for each configuration are 
summarized in Figure 6. From the results, we conclude that 
the best choice for maximizing both the predictable and 
unpredictable hit rates is the 1024/3-bit configuration (this 
is not surprising, since it has the highest hardware cost). 
However, since the 1024Dbit configuration is only slightly 
worse at identifying predictable instructions and is actually 
better at identifying unpredictable ones (hence minimizing 
misprediction penalty), and is significantly cheaper to 
implement (it uses l/3 fewer bits), we decided to use the lat- 
ter in our microarchitectural simulation studies.t We note 
that the unpredictable hit rates of the 3-bit configurations are 
worse (relative to the l- bit and 2-bit configurations) than 
their predictable hit rates, and conclude that this must be 
because the 3-bit state assignments heavily favor prediction 
(see Table 3). Changing the state assignments might 
improve these hit rates. 

4.2. Verifying Predictions 

Since value prediction is by nature speculative, we need 
a mechanism for verifying the correctness of the predictions 
and efficiently recovering from mispredictions. This mech- 
anism is summarized in the example of Figure 7, which 

1. Note that we do not claim that the hit rates shown in Figure 6 are a 
reliable predictor of system performance. Just as in branch prediction, 
higher hit rates may not necessarily translate into fewer execution cycles. 
Rather, detailed cycle-by-cycle simulation of the entire microarchitecture 
is needed to verify performance improvements. 
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I I 
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# VPT Entries # VPT Entries 

I 

- H 256/l -bit 
0-O 256/2-bit t 
H 256/3-bit 

-‘4-+ 1024/l -bit 
A-A 1024/2-bit 

- +-d 1024/3-bit 

FIGURE 6. CT Hit Rates.The Predictable Hit Rate 
is the number of correct value predictions that were 
identified as such by the CT divided by the total 
number of correct predictions, while the 
Unpredictable Hit Rate is the number of incorrect 
predictions that were identified as such by the CT 
divided by the number of incorrect predictions. 

TABLE 3. Classification Table Configurations. 

11 
10.1 =no med. 2.3=ured. 3=no reull 

t 

._ ..,.I 1 I 

256/3-bit 1 (O,l=no pred, 2-7=~red, 5-7= no red) 

I 1024/l-bit 1 (O=no pred, l=pred & no repl) 1 

I 1024/2-bit I (O,l=no pred, 2,3=pred, 3=no repl) I 

I 1024/3-bit 1 (O,l=no pred, 2-7=pred, 5-7= no repl) 1 

shows the parallel execution of two data-dependent instruc- 
tions. The producer instruction, shown on the left, has its 
value predicted and written to its rename buffer during the 
fetch and dispatch cycles. The consumer instruction, shown 
on the right, reads the predicted value from the rename 
buffer at the beginning of the execute cycle, and is able to 
issue and execute normally, but is forced to retain its reser- 
vation station. Meanwhile, the predicted instruction also 
executes, and its computed result is compared with the pre- 
dicted result during its completion stage. If the values match, 
the consumer instruction releases its reservation station. If 
not, completion of the first instance of the consumer instruc- 
tion is invalidated, and a second instance reissues with the 
correct value. 

l Unit latency for mispredicted branches with no fetch 
bubble (i.e. instructions following a mispredicted 
branch are able to execute in the cycle following reso- 
lution of the mispredicted branch). 
It is our intent that the infinite model match the SP 

machine model presented in [4], except for the branch pre- 
diction mechanism, which is a 2048-entry BHT design with 
a 2-bit saturating counter per entry, copied exactly from our 
620 model. Table 5 summarizes the performance of each of 
our benchmarks on each of the three baseline machine mod- 
els without value prediction. 

5.1. PowerPC 620 Microarchitecture 

5. Microarchitectural Models 
The microarchitecture of the PowerPC 620 is summa- 

rized in Figure 8. Our model is based on published reports 

In order to validate and quantify the performance impact 1. For reasons of efficiency, the instruction window of our simulator is 
of the Value Prediction Unit, we implemented three cycle- limited to 4096 active instructions. Hence, we did not truly model an in& 
accurate simulation models, two of them based on the Pow- nite number of resources, only one that approaches that number. 

Fetch 

Disp 

Exec 

--- 

Camp/ 
Verify 

Predicted CT PC Dependent 

Committed Value Predicted Value 

FIGURE 7. Example use of Value Prediction 
Mechanism. The dependent instruction shown 
on the right uses the predicted result of the 
instruction on the left, and is able to issue and 
execute in the same cycle. 

erPC 620 [28, 15]--one which matches the current 620 
closely, and one, termed the 620+, which alleviates some of 
its known bottlenecks--and an additional idealized model 
which removes all structural dependences’. The number of 
functional units and issue and result latencies for common 
instruction types on the three machines are summarized in 
Table 4. Our idealized infinite model also implements the 
following assumptions: 
l Perfect caches 
l Perfect alias detection and store-to-load forwarding 
l Perfect instruction fetching (limited to one taken 

branch per cycle). 
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TABLE 4. Machine Model Specifications. 

TABLE 5. Baseline Performance (IPC). 

1 z: 1 620 ( 620+ 1 Infmite I 

ccl-271 1.05540 1.07260 6.40244 
ccl 1.20880 1.30892 6.8 1969 

23-f 1 1.61187 1 1.82027 1 7.00588 
EreD I 1.07909 I 1.06635 1 2.02673 

on the PowerPC 620 [28, 151, and accurately models all 
aspects of the microarchitecture, including branch predic- 
tion, fetching, dispatching, register renaming, out-of-order 
issue and execution, result forwarding, the non-blocking 
cache hierarchy, store-to-load alias detection, and in-order 
completion. To alleviate some of the bottlenecks we found 
in the 620 design, we also modeled an aggressive “next-gen- 
eration” version of the 620, which we termed the 620+. The 
620+ differs from the 620 by doubling the number of reser- 
vation stations, FPR and GPR rename buffers, and comple- 
tion buffer entries; adding an additional load/store unit 
(LSU) without an additional cache port (the base 620 
already has a dual-banked data cache); and relaxing dis- 
patching requirements to allow up to two loads or stores to 
dispatch and issue per cycle. In addition, we added a VP Unit 
that predicts register writes by keeping a value history 
indexed by instruction addresses. 

FIGURE 8. PPC 820 and 620+ Block Diagram. 
Buffer sizes are shown as (620/620+). 

5.2. VP Unit Operation 

The VP Unit predicts the values during fetch and dis- 
patch, then forwards them speculatively to subsequent 
dependent instructions via the 620’s rename buffers. Up to 
four predictions can be made per cycle on our 620/620+ 
models, while the infinite model can make up to 4096 pre- 
dictions per cycle. Dependent instructions are able to issue 
and execute immediately, but are prevented from complet- 
ing architecturally and are forced to retain possession of 
their reservation stations until their inputs are no longer 
speculative. Speculatively forwarded values are tagged with 
the uncommitted register writes they depend on, and these 
tags are propagated to the results of any subsequent depen- 
dent instructions. Meanwhile, uncommitted instructions 
execute in their respective functional units, and the pre- 
dicted values are verified by a comparison against the actual 
values computed by the instructions. Once a prediction is 
verified, its tag gets broadcast to all active instructions, and 
all the dependent instructions can either release their reser- 
vation stations and proceed into the completion unit (in the 
case of a correct prediction), or restart execution with the 
correct register values (if the prediction was incorrect). 
Since a large number of instructions can be in flight at the 
same time (16 on the base 620,32 on the 620+, and up to 
4096 in our infinite model), verifying a predicted value can 
take dozens of cycles or more, allowing the processor to 
speculate multiple levels down the dependence chain 
beyond the write, executing instructions and resolving 
branches that would otherwise be blocked by data-flow 
dependences. 

5.3. Misprediction Penalty 

The worst-case penalty for an incorrect value prediction 
in this scheme, as compared to not predicting the value in 
question, is one additional cycle of latency along with struc- 
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FIGURE 9. 620 Speedups. 

tural hazards that might not have occurred otherwise. The 
penalty occurs only when a dependent instruction has 
already executed speculatively, but is waiting in its reserva- 
tion station for one of its predicted inputs to be verified. 
Since the value comparison takes an extra cycle beyond the 
pipeline result latency, the dependent instruction will reissue 
and execute with the correct value one cycle later than it 
would have had there been no prediction. In addition, the 
earlier incorrect speculative issue may have caused a struc- 
tural hazard that prevented other useful instructions from 
dispatching or executing. In those cases where the depen- 
dent instruction has not yet executed (due to structural or 
other unresolved data dependences), there is no penalty, 
since the dependent instruction can issue as soon as the 
actual computed value is available, in parallel with the value 
comparison that verifies the prediction. In any case, due to 
the CT which accurately prevents incorrect predictions (see 
Figure 6), the misprediction penalty does not significantly 
affect performance. 

There can also be a structural hazard penalty even in the 
case of a correct prediction. Since speculative values are not 
verified until one cycle after the actual values become avail- 
able, speculatively issued dependent instructions end up 
occupying their reservation stations for one cycle longer 
than they would have had there been no prediction. 

6. Experimental Framework 

Our experimental framework consists of three main 
phases: trace generation, VP Unit simulation, and microar- 
chitectural simulation. Traces are collected and generated 
with the TRIP6000 instruction tracing tool, which is an early 

version of a software tool developed for the IBM RS/60 
that captures all instruction, value and address references 
made by the CPU while in user state. Supervisor state ref- 
erences between the initiating system call and the corre- 
sponding return to user state are lost. The instruction, 
address, and value traces are fed to a model of the VP Unit 
described earlier, which annotates each instruction in the 
trace with one of three value prediction states: no prediction, 
incorrect prediction, or correct prediction. The annotated 
trace is then fed to a cycle-accurate microarchitectural sim- 
ulator that correctly accounts for the behavior of each type 
of instruction. All of our microarchitectural models are 
implemented using the VMW framework [29], which 
enables significant productivity gains by allowing us to 
reuse and retarget existing models. The VP Unit model is 
separated from the microarchitectural models for two rea- 
sons: to shift complexity out of the microarchitectural mod- 
els and thus better distribute our simulations across multiple 
CPUs; and to conserve trace bandwidth by passing only two 
bits of state per instruction to the microarchitectural simu- 
lator, rather than the full 32164 bit values being written. 

One of the well-known shortcomings of trace-driven 
simulation is that the non-architected side effects of specu- 
lative instructions that never complete are not accurately 
modeled. For our machine models, these side effects include 
instruction and data cache perturbation due to speculative 
fetches and loads as well as perturbation of the branch his- 
tory table, return address stack, and branch target address 
cache by speculative branch instructions. Fortunately, the 
VPT and CT structures are modeled accurately since they 
are never updated until completion. Our model also properly 
accounts for all other structural resource contention caused 
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by speculative execution. 

TABLE 6. VP Unit Configurations. 

I I VPT I CT I 
Config- - 
uration Entries 

History 
Entries 

Bits/ 
Depth Entry 

c I 
Simple 1 4096 1 1024 1 2 

IPerfCT I 4096 1 00 1 Perfect 
4PerfCT I 4096 1 4iPerfect 1 00 1 Perfect 
8PerfCT 1 4096 1 g/Perfect 1 00 1 Perfect 

Perfect 00 1 Perfect 1 00 1 Perfect 1 

7. Experimental Results 

We collected performance results for each of the three 
machine models described in Section 5 (base 620, enhanced 
620+, and infinite) in conjunction with five different VP 
Unit configurations, which are summarized in Table 6. 
Attributes that are marked perfect in Table 6 indicate behav- 
ior that is analogous to perfect caches; that is, a mechanism 
that always produces the right result is assumed. More spe- 
cifically, in the lPerfCT, 4PerfCT and 8PerfCT configura- 
tions, we assume an oracle CT that is able to correctly 
identify all predictable and unpredictable register writes. 
Furthermore, in the 4PerfCT and 8PerfCT configurations, 
we assume a perfect mechanism for choosing which of the 
4 (or 8) values stored in the value history is the correct one. 
Moreover, we assume that the Perfect configuration can 

always correctly predict a value for every regrster write. we 
point out that the only VP Unit configuration that we know 
how to build today is the Simple one, while the other four are 
merely included to measure the potential contribution of 
improvements to both VPT and CT prediction accuracy. 

7.1. PowerPC 620 Machine Model Speedups 

In Figure 9 we show the speedups that the VP Unit con- 
figurations of Table 6 obtain over the base PowerPC 620 
machine model. The Simple configuration achieves an aver- 
age speedup of 4.5% (geometric mean), the IPerfCT con- 
figuration improves that to 5.6%, 4PerfCTto 6.7%, 8PerfCT 
to 7.1%, and Perfect all the way to 11.6%. Two benchmarks, 
gawk and grep, demonstrate outstanding performance gains, 
even with the imperfect configurations, while the gains for 
cjpeg and compress are nonexistent, even with perfect CTs. 
We attribute the poor showing of cjpeg and compress to their 
lack of register value locality (see Figure 2). 

Detailed profiling of grep and gawk revealed that both 
spend a significant portion of their time in the bmexeco and 
dfaexecf] routines, which implement string search routines 
in loops with long dependence chains. For both benchmarks, 
value prediction is frequently able to break these depen- 
dence chains, resulting in significant additional parallelism. 

The speedups for several benchmarks (~~1-271, grep 
perl, doduc, and hydro2d) are quite sensitive to CT accuracy 
(i.e. a perfect CT produces significantly more speedup), 
indicating a need for a more accurate classification mecha- 
nism. In general, however, we are pleased with our results, 
which show that value prediction is able to produce measur- 
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able speedups on a current-generation microprocessor 
design. 

7.2. PowerPC 620+ Machine Model Speedups 

In Figure 10 we show the value prediction speedups over 
the baseline 620+ machine model. The Simple configuration 
achieves an average speedup of 6.8% (geometric mean), the 
IPerfCT configuration improves that to 8.4%, 4PerfCT to 
9.7%, 8PerfCT to 10.2%, and Perfect all the way to 15.1%. 
While the trends are similar to the speedups for the base 620 
model, the speedups are higher across the board. We 
attribute this to the fact that the increased machine parallel- 
ism and additional hardware resources provided by this 
model better match the additional instruction-level parallel- 
ism exposed by value prediction. Furthermore, the hardware 
is better able to tolerate the increase in structural hazards 
caused by value prediction 

Perhaps the most interesting observation about Figure 10 
(which applies to Figure 9 as well) is the lack of any obvious 
correlation to Figure 2, which shows the value locality for 
each benchmark. This underscores our earlier point that a 
high hit rate (i.e. high value locality) does not necessarily 
translate into a proportional reduction in execution cycles. 
This follows from the fact that benchmarks with high value 
locality may not necessarily be sensitive to result latency 
(i.e. they are not data-flow-limited), whereas benchmarks 
with lower value locality may be very sensitive, and hence 
may derive significant performance benefits even if only a 
small fraction of register writes are predictable. For exam- 
ple, eqntott has significantly better value locality than grep, 
yet grep obtains significantly more speedup from value pre- 
diction.. 

7.3. Infinite Machine Model Speedups 

In Figure 11 we show the value prediction speedups over 

the Infinite machine model. The Simple configuration 
achieves an average speedup of 22.7% (geometric mean), 
the IPerfCTconfiguration improves that to 34.0%, 4PerfCT 
to 36.970, 8PerfCT to 38.070, and Pelfect all the way to 
69.8%. These numbers are very encouraging to us, since 
they demonstrate that the ultimate performance potential of 
value prediction remains largely untapped by current and 
even reasonably-extrapolated next generation processors, 
and that much work remains to be done to find more effec- 
tive ways to apply it to realistic microarchitectures. 

Several benchmarks that displayed measurable speedups 
with the finite models show negligible speedup with the infi- 
nite model (e.g. mpeg, perl, SC, xlisp), which leads us to 
believe that they are not dataflow-limited by nature. How- 
ever, the fact that they do show speedups with the finite 
models highlights the fact that value prediction, by remov- 
ing serialization constraints, allows a processor to more effi- 
ciently utilize a limited number of execution resources. 

We included the infinite model results to support our 
assertion that value prediction can be used to exceed the 
dataflow limit. Our infinite machine model measures a data- 
flow limit, since, for all practical purposes (ignoring our 
limit of 4096 active instructions), parallel issue in the infi- 
nite model is restricted only by the following three factors: 
l Branch prediction accuracy 
l Fetch bandwidth (single taken branch per cycle) 
l Data-flow dependences 

Value prediction directly impacts only the last of these, 
and yet we are able to demonstrate average and peak speed- 
ups of 22.7% and 198% (2.98x speedup for gawk) using our 
Simple VP Unit configuration. Hence, we lay claim to 
exceeding the dataflow limit. 

8. VP Unit Implementation 

An exhaustive design study of VP Unit design parame- 
ters and implementation details is beyond the scope of this 
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paper. As stated earlier, some preliminary exploration of the 
design space was conducted by analyzing sensitivity to a 
few key parameters. We realize that the design selected is by 
no means optimal, minimal, or even reasonably efficient, 
and could be improved significantly with some effort. For 
example, we reserve a full 64 bits per value entry in the VPT, 
while most instructions generate only 32 or fewer bits, and 
space in the table could certainly be shared between such 
entries with some clever engineering. 

However, to evaluate the feasibility of implementing a 
VP Unit in a real-world processor, we compare it against one 
alternative approach that consumes roughly the same 
amount of chip space: doubling the first-level data cache to 
64K by increasing the line size from 64 bytes to 128 bytes. 
The results of this comparison, which are shown in 
Figure 12, make clear that, at least for this benchmark set, 
value prediction delivers three to four times more speedup 
than doubling the data cache for both the 620 and 620+ 
machine models. 

Furthermore, the VP Unit has several characteristics that 
make it attractive to a CPU designer. First of all, since the 
VPT and CT lookup indices are available very early, at the 
beginning of the instruction fetch stage, access to these 
tables can be superpipelined over two or more stages. 
Hence, given the necessary chip space, even relatively large 
tables could be built without impacting cycle time. Second, 
the design adds little or no complexity to critical delay paths 
in the microarchitecture. Rather, table lookups and verifica- 
tions are done in parallel with existing activities or are seri- 
alized with a separate pipeline stage (value comparison). 
Hence, it is unlikely that VP would have an adverse effect on 
processor cycle time, whereas doubling the data cache 
would quite likely do just that. 

9. Conclusions and Future Work 

We make four major contributions in this paper. First, we 
present a taxonomy of speculative execution techniques. 

Second, we demonstrate that many instructions that write 
general purpose or floating point registers, when examined 
on a per-instruction-address basis, exhibit significant 
amounts of value locality. Third, we describe value predic- 
tion, a data-speculative microarchitectural technique for 
capturing and exploiting value locality to reduce data-flow 
restrictions on parallel instruction issue. Fourth, we demon- 
strate that value prediction can be used to exceed the data- 
flow limit by 23% (geometric mean), as measured on a 
processor model with no structural hazards. We are very 
encouraged by our results. We have shown that measurable 
(5% on average for the 620,7% on average for the 620+) and 
in some cases dramatic (up to 33% on the 620 and 54% on 
the 620+) performance gains are achievable with simple 
microarchitectural extensions to current-generation and rea- 
sonably-extrapolated next-generation microprocessor 
implementations. 

We envision future work proceeding on several different 
fronts. First of all, we believe that the relatively simple tech- 
niques we employed for capturing value locality could be 
refined and extended to effectively predict a larger share of 
register values. Those refinements and extensions might 
include allowing multiple values per static instruction in the 
prediction table by including branch history bits or other 
readily available processor state in the lookup index; or 
moving beyond history-based prediction to computed pre- 
dictions through techniques like value stride detection. Sec- 
ond, our classification mechanism could also be refined to 
correctly classify more instructions and extended to control 
pollution in the value table (e.g. removing instructions that 
are not latency-critical from the table). Third, significant 
engineering work is needed to optimize our VP Unit design 
and reduce its implementation cost and potential impact on 
processor cycle time. Fourth, the microarchitectural design 
space should be explored more extensively, since value pre- 
diction appears to dramatically alter the available program 
parallelism in ways that may not match current levels of 
machine parallelism very well. Fifth, feedback-directed 
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compiler support for rescheduling instructions for different 
latencies based on their value locality may also prove ben- 
eficial. Finally, more aggressive approaches to value pre- 
diction could be investigated (e.g. speculating down 
multiple paths in the value space, or predicting writes to con- 
dition code and other special purpose registers). In short, 
there is a great deal of interesting future work that is related 
to value prediction and the exploitation of value locality. 
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