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Lect. 11: Vector and SIMD Processors 

  Many real-world problems, especially in science and engineering, 
map well to computation on arrays 

  RISC approach is inefficient: 
–  Based on loops → require dynamic or static unrolling to overlap computations 
–  Indexing arrays based on arithmetic updates of  induction variables 
–  Fetching of  array elements from memory based on individual, and unrelated, loads and 

stores 
–  Instruction dependences must be identified for each individual instruction 

  Idea: 
–  Treat operands as whole vectors, not as individual integer of  float-point numbers 
–  Single machine instruction now operates on whole vectors (e.g., a vector add) 
–  Loads and stores to memory also operate on whole vectors 
–  Individual operations on vector elements are independent and only dependences 

between whole vector operations must be tracked 
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Execution Model 

  Straightforward RISC code: 
–  F2 contains the value of  s 
–  R1 contains the address of  the first element of  a 
–  R2 contains the address of  the first element of  b 
–  R3 contains the address of  the last element of  a + 8 
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for (i=0; i<64; i++) 
 a[i] = b[i] + s; 

loop: L.D    F0,0(R2)   ;F0=array element of b 
      ADD.D  F4,F0,F2   ;main computation 
      S.D    F4,0(R1)   ;store result 
      DADDUI R1,R1,8    ;increment index 
      DADDUI R2,R2,8    ;increment index 
      BNE    R1,R3,loop ;next iteration 
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Execution Model 

  Straightforward vector code: 
–  F2 contains the value of  s 
–  R1 contains the address of  the first element of  a 
–  R2 contains the address of  the first element of  b 
–  Assume vector registers have 64 double precision elements 

–  Notes: 
  In practice vector registers are not of  the exact size of  the arrays 
  Only 3 instructions executed compared to 6*64=384 executed in the RISC 

3 

for (i=0; i<64; i++) 
 a[i] = b[i] + s; 

      LV      V1,R2      ;V1=array b 
      ADDVS.D V2,V1,F2   ;main computation 
      SV      V2,R1      ;store result 
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Execution Model (Pipelined) 

  With multiple vector units, I2 can execute together with I1 
  In practice, the vector units takes several cycles to operate on each 

element, but is pipelined 
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Pros of  Vector Processors 

  Reduced pressure on instruction fetch 
–  Fewer instructions are necessary to specify the same amount of  work 

  Reduced pressure on instruction issue 
–  Reduced number of  branches alleviates branch prediction 
–  Much simpler hardware for checking dependences 

  More streamlined memory accesses 
–  Vector loads and stores specify a regular access pattern 
–  High latency of  initiating memory access is amortized 
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Cons of  Vector Processors 

  Still requires a traditional scalar unit (integer and FP) for the non-
vector operations 

  Difficult to maintain precise interrupts (can’t rollback all the 
individual operations already completed) 

  Compiler or programmer has to vectorize programs 
  Not very efficient for small vector sizes 
  Not suitable/efficient for many different classes of  applications 
  Requires a specialized, high-bandwidth, memory system 

–  Usually built around heavily banked memory with data interleaving 
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Performance Issues 

  Performance of  a vector instruction depends on the length of  the 
operand vectors 

  Initiation rate 
–  Rate at which individual operations can start in a functional unit 
–  For fully pipelined units this is 1 operation per cycle 

  Start-up time 
–  Time it takes to produce the first element of  the result 
–  Depends on how deep the pipeline of  the functional units are 
–  Especially large for load/store unit 
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Advanced Features: Masking 

  What if  the operations involve only some elements of  the array, 
depending on some run-time condition? 

  Solution: masking 
–  Add a new boolean vector register (the vector mask register) 
–  The vector instruction then only operates on elements of  the vectors whose 

corresponding bit in the mask register is 1 
–  Add new vector instructions to set the mask register 

  E.g., SNEVS.D V1,F0  sets to 1 the bits in the mask registers whose 
corresponding elements in V1 are not equal to the value in F0 

  CVM instruction sets all bits of  the mask register to 1 
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for (i=0; i<64; i++) 
   if (b[i] != 0) 
      a[i] = b[i] + s; 
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Advanced Features: Masking 

  Vector code: 
–  F2 contains the value of  s and F0 contains zero 
–  R1 contains the address of  the first element of  a 
–  R2 contains the address of  the first element of  b 
–  Assume vector registers have 64 double precision elements 
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for (i=0; i<64; i++) 
   if (b[i] != 0) 
      a[i] = b[i] + s; 

      LV      V1,R2      ;V1=array b 
      SNEVS.D V1,F0      ;mask bit is 1 if b !=0 
      ADDVS.D V2,V1,F2   ;main computation 
      CVM 
      SV      V2,R1      ;store result 
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Advanced Features: Scatter-Gather 
  How can we handle sparse matrices? 

  Solution: scatter-gather 
–  Use the contents of  an auxiliary vector to select which elements of  the main 

vector are to be used 
–  This is done by pointing to the address in memory of  the elements to be 

selected 
–  Add new vector instruction to load memory values based on this auxiliary 

vector 
  E.g. LVI V1,(R1+V2)  loads the elements of  a user array from memory locations 
R1+V2(i) 

  Also SVI store counterpart 
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for (i=0; i<64; i++) 
   a[K[i]] = b[K[i]] + s; 
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Advanced Features: Scatter-Gather 

  Vector code: 
–  F2 contains the value of  s 
–  R1 contains the address of  the first element of  a 
–  R2 contains the address of  the first element of  b 
–  V3 contains the indices of  a and b that need to be used 
–  Assume vector registers have 64 double precision elements 
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for (i=0; i<64; i++) 
   a[K[i]] = b[K[i]] + s; 

      LVI     V1,(R2+V3) ;V1=array b indexed by V3 
      ADDVS.D V2,V1,F2   ;main computation 
      SVI     V2,(R1+V3) ;store result 
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Advanced Features: Chaining 

  Forwarding in pipelined RISC processors allow dependent 
instructions to execute as soon as the result of  the previous 
instruction is available 
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Advanced Features: Chaining 

  Similar idea applies to vector instructions and is called chaining 
–  Difference is that chaining of  vector instructions requires multiple functional 

units as the same unit cannot be used back-to-back 
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  Network of  simple processing elements (PE) 
–  PEs operate in lockstep under the control of  a master sequencer 
–  PEs can exchange results with a small number of  neighbours via special data-

routing instructions 
–  Each PE has its own local memory 
–  PEs operate on narrow operands 
–  Very large (up to 64K) number of  PEs 
–  Usually operated as co-processors with a host computer to perform I/O and 

to handle external memory 

  Intended for use as supercomputers 
  Programmed via custom extensions of  common HLL 
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Original SIMD Idea 
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Example: Equation Solver Kernel 
  The problem: 

–  Operate on a (n+2)x(n+2) matrix 

  SIMD implementation: 
–  Assign one node to each PE 
–  Step 1: all PE’s send their data to their east neighbors and simultaneously 

read the data sent by their west neighbors 
–  Steps 2 to 4: same as step 1 for west, south, and north (again, appropriate 

nodes are masked out) 
–  Step 5: all PE’s compute the new value using equation above 
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A[i,j] = 0.2 x (A[i,j] + A[i,j-1] + A[i-1,j] + 
              A[i,j+1] + A[i+1,j]) 
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Multimedia SIMD Extensions 
  Key ideas: 

–  No network of  processing elements, but an array of  ALU’s 
–  No memories associated with ALU’s, but a pool of  relatively wide (64 to 

128 bits) registers that store several narrower operands 
–  No direct communication between ALU’s, but via registers and with special 

shuffling/permutation instructions 
–  Not co-processors or supercomputers, but tightly integrated into CPU 

pipeline 
–  Still lockstep operation of  ALU’s 
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Example: Intel SSE 
  Streaming SIMD Extensions introduced in 1999 with Pentium III 
  Improved over earlier MMX (1997) 

–  MMX re-used the FP registers 
–  MMX only operated on integer operands 

  70 new machine instructions (SSE2 added 144 more in 2001) and 
8 128bit registers 
–  Registers are part of  the architectural state 
–  Include instructions to move values between SSE and x86 registers 
–  Operands can be: single (32bit) and double (64bit) precision FP; 8, 16, and 

32 bit integer 
–  SSE2 included instructions for handling the cache (recall that streaming 

data does not utilize caches efficiently) 
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Graphics Processing Unit (GPU) 

 Graphics apps have lot of  parallelism 
 Take advantage of  hardware invested to do 

graphics well 
 GPU is now ubiquitous! 
 Several supercomputers in top500 use GPUs 

– Titan uses Nvidia tesla 
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CPU-style Core 
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Slide from Beyond programmable shading course ACM Siggraph ‘10 
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Slimming down… 
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Slide from Beyond programmable shading course ACM Siggraph ‘10 
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Add Cores… 
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Slide from Beyond programmable shading course ACM Siggraph ‘10 
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Add ALUs (SIMD)… 
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Slide from Beyond programmable shading course ACM Siggraph ‘10 
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Stalls! 

 No caches 

 No dynamic scheduling 

 Dependencies and memory accesses can 
cause stalls! 
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Solution: Multithreading 

CS4/MSc Parallel Architectures - 2012-2013 

Slide from Beyond programmable shading course ACM Siggraph ‘10 
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GPU… 
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Slide from Beyond programmable shading course ACM Siggraph ‘10 
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Further Reading 
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  The first truly successful vector supercomputer: 
“The CRAY-1 Computer System”, R. M. Russel, Communications of  the 

ACM, January 1978. 

  Vector processor on a chip: 
“Vector vs. Superscalar and VLIW Architectures for Embedded Multimedia 

Benchmarks”, C. Kozyrakis and D. Patterson, Intl. Symp. on 
Microarchitecture, December 2002. 

  Integrating a vector unit with a state-of-the-art superscalar: 
“Tarantula: A Vector Extension to the Alpha Architecture”, R. Espasa, F. 

Ardanaz, J. Elmer, S. Felix, J. Galo, R. Gramunt, I. Hernandez, T. Ruan, G. 
Lowney, M. Mattina, and A. Seznec, Intl. Symp. on Computer 
Architecture, June 2002. 
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Further Reading 
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  Seminal SIMD work: 
“A Model of  SIMD Machines and a Comparison of  Various Interconnection 

Networks”, H. Siegel, IEEE Trans. on Computers, December 1979. 
“The Connection Machine”, D. Hillis, Ph.D. dissertation, MIT, 1985. 

  Two commercial SIMD supercomputers: 
“The CM-2 Technical Summary”, Thinking Machines Corporation, 1990. 
“The MasPar MP-1 Architecture”, T. Blank, Compcon, 1990. 

  SIMD co-processor: 
“CSX Processor Architecture”, ClearSpeed, Whitepaper, 2006. 


