
CS4/MSc Parallel Architectures - 2012-2013

Lect. 11: Vector and SIMD Processors

  Many real-world problems, especially in science and engineering,
map well to computation on arrays

  RISC approach is inefficient:
–  Based on loops → require dynamic or static unrolling to overlap computations
–  Indexing arrays based on arithmetic updates of induction variables
–  Fetching of array elements from memory based on individual, and unrelated, loads and

stores
–  Instruction dependences must be identified for each individual instruction

  Idea:
–  Treat operands as whole vectors, not as individual integer of float-point numbers
–  Single machine instruction now operates on whole vectors (e.g., a vector add)
–  Loads and stores to memory also operate on whole vectors
–  Individual operations on vector elements are independent and only dependences

between whole vector operations must be tracked

1

CS4/MSc Parallel Architectures - 2012-2013

Execution Model

  Straightforward RISC code:
–  F2 contains the value of s
–  R1 contains the address of the first element of a
–  R2 contains the address of the first element of b
–  R3 contains the address of the last element of a + 8

2

for (i=0; i<64; i++)
 a[i] = b[i] + s;

loop: L.D F0,0(R2) ;F0=array element of b
 ADD.D F4,F0,F2 ;main computation
 S.D F4,0(R1) ;store result
 DADDUI R1,R1,8 ;increment index
 DADDUI R2,R2,8 ;increment index
 BNE R1,R3,loop ;next iteration

CS4/MSc Parallel Architectures - 2012-2013

Execution Model

  Straightforward vector code:
–  F2 contains the value of s
–  R1 contains the address of the first element of a
–  R2 contains the address of the first element of b
–  Assume vector registers have 64 double precision elements

–  Notes:
  In practice vector registers are not of the exact size of the arrays
  Only 3 instructions executed compared to 6*64=384 executed in the RISC

3

for (i=0; i<64; i++)
 a[i] = b[i] + s;

 LV V1,R2 ;V1=array b
 ADDVS.D V2,V1,F2 ;main computation
 SV V2,R1 ;store result

CS4/MSc Parallel Architectures - 2012-2013

Execution Model (Pipelined)

  With multiple vector units, I2 can execute together with I1
  In practice, the vector units takes several cycles to operate on each

element, but is pipelined

4

IF I1

I1 ID

EXE

MEM

WB

I1.1

I1.1

I1.1

cycle 1 2 3 4 5 6

I1.2

7

I1.2

I1.3

8

I2

I1.2

I1.3

I1.4

I1.3

I1.4

I1.5

I1.4

I1.5

I1.6

CS4/MSc Parallel Architectures - 2012-2013

Pros of Vector Processors

  Reduced pressure on instruction fetch
–  Fewer instructions are necessary to specify the same amount of work

  Reduced pressure on instruction issue
–  Reduced number of branches alleviates branch prediction
–  Much simpler hardware for checking dependences

  More streamlined memory accesses
–  Vector loads and stores specify a regular access pattern
–  High latency of initiating memory access is amortized

5

CS4/MSc Parallel Architectures - 2012-2013

Cons of Vector Processors

  Still requires a traditional scalar unit (integer and FP) for the non-
vector operations

  Difficult to maintain precise interrupts (can’t rollback all the
individual operations already completed)

  Compiler or programmer has to vectorize programs
  Not very efficient for small vector sizes
  Not suitable/efficient for many different classes of applications
  Requires a specialized, high-bandwidth, memory system

–  Usually built around heavily banked memory with data interleaving

6

CS4/MSc Parallel Architectures - 2012-2013

Performance Issues

  Performance of a vector instruction depends on the length of the
operand vectors

  Initiation rate
–  Rate at which individual operations can start in a functional unit
–  For fully pipelined units this is 1 operation per cycle

  Start-up time
–  Time it takes to produce the first element of the result
–  Depends on how deep the pipeline of the functional units are
–  Especially large for load/store unit

7

CS4/MSc Parallel Architectures - 2012-2013

Advanced Features: Masking

  What if the operations involve only some elements of the array,
depending on some run-time condition?

  Solution: masking
–  Add a new boolean vector register (the vector mask register)
–  The vector instruction then only operates on elements of the vectors whose

corresponding bit in the mask register is 1
–  Add new vector instructions to set the mask register

  E.g., SNEVS.D V1,F0 sets to 1 the bits in the mask registers whose
corresponding elements in V1 are not equal to the value in F0

  CVM instruction sets all bits of the mask register to 1

8

for (i=0; i<64; i++)
 if (b[i] != 0)
 a[i] = b[i] + s;

CS4/MSc Parallel Architectures - 2012-2013

Advanced Features: Masking

  Vector code:
–  F2 contains the value of s and F0 contains zero
–  R1 contains the address of the first element of a
–  R2 contains the address of the first element of b
–  Assume vector registers have 64 double precision elements

9

for (i=0; i<64; i++)
 if (b[i] != 0)
 a[i] = b[i] + s;

 LV V1,R2 ;V1=array b
 SNEVS.D V1,F0 ;mask bit is 1 if b !=0
 ADDVS.D V2,V1,F2 ;main computation
 CVM
 SV V2,R1 ;store result

CS4/MSc Parallel Architectures - 2012-2013

Advanced Features: Scatter-Gather
  How can we handle sparse matrices?

  Solution: scatter-gather
–  Use the contents of an auxiliary vector to select which elements of the main

vector are to be used
–  This is done by pointing to the address in memory of the elements to be

selected
–  Add new vector instruction to load memory values based on this auxiliary

vector
  E.g. LVI V1,(R1+V2) loads the elements of a user array from memory locations
R1+V2(i)

  Also SVI store counterpart

10

for (i=0; i<64; i++)
 a[K[i]] = b[K[i]] + s;

CS4/MSc Parallel Architectures - 2012-2013

Advanced Features: Scatter-Gather

  Vector code:
–  F2 contains the value of s
–  R1 contains the address of the first element of a
–  R2 contains the address of the first element of b
–  V3 contains the indices of a and b that need to be used
–  Assume vector registers have 64 double precision elements

11

for (i=0; i<64; i++)
 a[K[i]] = b[K[i]] + s;

 LVI V1,(R2+V3) ;V1=array b indexed by V3
 ADDVS.D V2,V1,F2 ;main computation
 SVI V2,(R1+V3) ;store result

CS4/MSc Parallel Architectures - 2012-2013

Advanced Features: Chaining

  Forwarding in pipelined RISC processors allow dependent
instructions to execute as soon as the result of the previous
instruction is available

12

IF add mul

add mul ID

EXE

MEM

WB

add mul

add mul

add mul

I3 I6

cycle 1 2 3 4 5 6

I3

I3

I5

I3

I4

I4

I4

I5

ADD.D R1,R2,R3 # R1=R2+R3
MUL.D R4,R5,R1 # R4=R5+R1

value

CS4/MSc Parallel Architectures - 2012-2013

Advanced Features: Chaining

  Similar idea applies to vector instructions and is called chaining
–  Difference is that chaining of vector instructions requires multiple functional

units as the same unit cannot be used back-to-back

13

IF add mul

add mul ID

EXE

MEM

MEM

A.1 A.2

A.1

I3

cycle 1 2 3 4 5 6

A.3 A.4

ADDV.D V1,V2,V3 # V1=V2+V3
MULV.D V4,V5,V1 # V4=V5+V1

value

EXE M.1 M.2 M.3

M.1 M.2

A.2 A.3

WB

CS4/MSc Parallel Architectures - 2012-2013

  Network of simple processing elements (PE)
–  PEs operate in lockstep under the control of a master sequencer
–  PEs can exchange results with a small number of neighbours via special data-

routing instructions
–  Each PE has its own local memory
–  PEs operate on narrow operands
–  Very large (up to 64K) number of PEs
–  Usually operated as co-processors with a host computer to perform I/O and

to handle external memory

  Intended for use as supercomputers
  Programmed via custom extensions of common HLL

14

Original SIMD Idea

CS4/MSc Parallel Architectures - 2012-2013
15

Original SIMD Idea

Instr.
Sequencer

M M M M

M M M M

M M M M

CS4/MSc Parallel Architectures - 2012-2013

Example: Equation Solver Kernel
  The problem:

–  Operate on a (n+2)x(n+2) matrix

  SIMD implementation:
–  Assign one node to each PE
–  Step 1: all PE’s send their data to their east neighbors and simultaneously

read the data sent by their west neighbors
–  Steps 2 to 4: same as step 1 for west, south, and north (again, appropriate

nodes are masked out)
–  Step 5: all PE’s compute the new value using equation above

16

A[i,j] = 0.2 x (A[i,j] + A[i,j-1] + A[i-1,j] +
 A[i,j+1] + A[i+1,j])

CS4/MSc Parallel Architectures - 2012-2013

Multimedia SIMD Extensions
  Key ideas:

–  No network of processing elements, but an array of ALU’s
–  No memories associated with ALU’s, but a pool of relatively wide (64 to

128 bits) registers that store several narrower operands
–  No direct communication between ALU’s, but via registers and with special

shuffling/permutation instructions
–  Not co-processors or supercomputers, but tightly integrated into CPU

pipeline
–  Still lockstep operation of ALU’s

17

CS4/MSc Parallel Architectures - 2012-2013

Example: Intel SSE
  Streaming SIMD Extensions introduced in 1999 with Pentium III
  Improved over earlier MMX (1997)

–  MMX re-used the FP registers
–  MMX only operated on integer operands

  70 new machine instructions (SSE2 added 144 more in 2001) and
8 128bit registers
–  Registers are part of the architectural state
–  Include instructions to move values between SSE and x86 registers
–  Operands can be: single (32bit) and double (64bit) precision FP; 8, 16, and

32 bit integer
–  SSE2 included instructions for handling the cache (recall that streaming

data does not utilize caches efficiently)

18

Graphics Processing Unit (GPU)

 Graphics apps have lot of parallelism
 Take advantage of hardware invested to do

graphics well
 GPU is now ubiquitous!
 Several supercomputers in top500 use GPUs

– Titan uses Nvidia tesla

CS4/MSc Parallel Architectures - 2012-2013
19

CPU-style Core

CS4/MSc Parallel Architectures - 2012-2013

Slide from Beyond programmable shading course ACM Siggraph ‘10

20

Slimming down…

CS4/MSc Parallel Architectures - 2012-2013

Slide from Beyond programmable shading course ACM Siggraph ‘10

21

Add Cores…

CS4/MSc Parallel Architectures - 2012-2013

Slide from Beyond programmable shading course ACM Siggraph ‘10

22

Add ALUs (SIMD)…

CS4/MSc Parallel Architectures - 2012-2013

Slide from Beyond programmable shading course ACM Siggraph ‘10

23

Stalls!

 No caches

 No dynamic scheduling

 Dependencies and memory accesses can
cause stalls!

CS4/MSc Parallel Architectures - 2012-2013
24

Solution: Multithreading

CS4/MSc Parallel Architectures - 2012-2013

Slide from Beyond programmable shading course ACM Siggraph ‘10

25

GPU…

CS4/MSc Parallel Architectures - 2012-2013

Slide from Beyond programmable shading course ACM Siggraph ‘10

26

CS4/MSc Parallel Architectures - 2012-2013

Further Reading

27

  The first truly successful vector supercomputer:
“The CRAY-1 Computer System”, R. M. Russel, Communications of the

ACM, January 1978.

  Vector processor on a chip:
“Vector vs. Superscalar and VLIW Architectures for Embedded Multimedia

Benchmarks”, C. Kozyrakis and D. Patterson, Intl. Symp. on
Microarchitecture, December 2002.

  Integrating a vector unit with a state-of-the-art superscalar:
“Tarantula: A Vector Extension to the Alpha Architecture”, R. Espasa, F.

Ardanaz, J. Elmer, S. Felix, J. Galo, R. Gramunt, I. Hernandez, T. Ruan, G.
Lowney, M. Mattina, and A. Seznec, Intl. Symp. on Computer
Architecture, June 2002.

CS4/MSc Parallel Architectures - 2012-2013

Further Reading

28

  Seminal SIMD work:
“A Model of SIMD Machines and a Comparison of Various Interconnection

Networks”, H. Siegel, IEEE Trans. on Computers, December 1979.
“The Connection Machine”, D. Hillis, Ph.D. dissertation, MIT, 1985.

  Two commercial SIMD supercomputers:
“The CM-2 Technical Summary”, Thinking Machines Corporation, 1990.
“The MasPar MP-1 Architecture”, T. Blank, Compcon, 1990.

  SIMD co-processor:
“CSX Processor Architecture”, ClearSpeed, Whitepaper, 2006.

