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Lect. 10: Vector and SIMD Processors
▪ Many real-world problems, especially in science and engineering, map 

well to computation on arrays 
▪ RISC approach is inefficient: 

– Based on loops → require dynamic or static unrolling to overlap computations 
– Indexing arrays based on arithmetic updates of  induction variables 
– Fetching of  array elements from memory based on individual, and unrelated, loads and stores 
– Instruction dependences must be identified for each individual instruction 

▪ Idea: 
– Treat operands as whole vectors, not as individual integer or float-point numbers 
– Single machine instruction now operates on whole vectors (e.g., a vector add) 
– Loads and stores to memory also operate on whole vectors 
– Individual operations on vector elements are independent and only dependences between 

whole vector operations must be tracked
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Execution Model

▪ Straightforward RISC code: 
– F2 contains the value of  s 
– R1 contains the address of  the first element of  a
– R2 contains the address of  the first element of  b
– R3 contains the address of  the last element of  a + 8
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for (i=0; i<64; i++)
a[i] = b[i] + s;

loop: L.D    F0,0(R2)   ;F0=array element of b
      ADD.D  F4,F0,F2   ;main computation
      S.D    F4,0(R1)   ;store result
      DADDUI R1,R1,8    ;increment index
      DADDUI R2,R2,8    ;increment index
      BNE    R1,R3,loop ;next iteration
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Execution Model

▪ Straightforward vector code: 
– F2 contains the value of  s 
– R1 contains the address of  the first element of  a
– R2 contains the address of  the first element of  b
– Assume vector registers have 64 double precision elements 

– Notes: 
▪ In practice vector registers are not of  the exact size of  the arrays 
▪ Only 3 instructions executed compared to 6*64=384 executed in the RISC
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for (i=0; i<64; i++)
a[i] = b[i] + s;

      LV      V1,R2 ;             V1=array b
      ADDVS.D V2,V1,F2 ;  main computation
      SV      V2,R1;              store result
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Execution Model (Pipelined)

▪ In practice, the vector units takes several cycles to operate on each 
element, but is pipelined 

▪ With multiple vector units, I2 can execute together with I1
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Pros of  Vector Processors
▪ Reduced pressure on instruction fetch 

– Fewer instructions are necessary to specify the same amount of  work 

▪ Reduced pressure on instruction issue 
– Reduced number of  branches alleviates branch prediction 
– Much simpler hardware for checking dependences 

▪ More streamlined memory accesses 
– Vector loads and stores specify a regular access pattern 
– High latency of  initiating memory access is amortized
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Cons of  Vector Processors
▪ Still requires a traditional scalar unit (integer and FP) for the non-

vector operations 
▪ Difficult to maintain precise interrupts (can’t rollback all the 

individual operations already completed) 
▪ Compiler or programmer has to vectorize programs 
▪ Not suitable/efficient for many different classes of  applications 
▪ Requires a specialized, high-bandwidth, memory system 

– Usually built around heavily banked memory with data interleaving
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▪ Network of  simple processing elements (PE) 
– PEs operate in lockstep under the control of  a master sequencer 
– PEs can exchange results with a small number of  neighbours via special data-

routing instructions 
– Each PE has its own local memory 
– Very large (up to 64K) number of  PEs 
– Usually operated as co-processors with a host computer to perform I/O and 

to handle external memory 

▪ Intended for use as supercomputers 
▪ Programmed via custom extensions of  common HLL
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SIMD Processors: Original Idea
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Original SIMD Idea
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Example: Equation Solver Kernel
▪ The problem: 

– Operate on a (n+2)x(n+2) matrix 

▪ SIMD implementation: 
– Assign one node to each PE 
– Step 1: all PE’s send their data to their east neighbours and simultaneously 

read the data sent by their west neighbours 
– Steps 2 to 4: same as step 1 for west, south, and north (again, appropriate 

nodes are masked out) 
– Step 5: all PE’s compute the new value using equation above
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A[i,j] = 0.2 x (A[i,j] + A[i,j-1] + A[i-1,j] + 
              A[i,j+1] + A[i+1,j])
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Multimedia SIMD Extensions
▪ Key ideas: 

– No network of  processing elements, but an array of  ALU’s 
– No memories associated with ALU’s, but a pool of  relatively wide (64 to 128 

bits) registers that store several narrower operands 
– No direct communication between ALU’s, but via registers and with special 

shuffling/permutation instructions 
– Not co-processors or supercomputers, but tightly integrated into CPU 

pipeline 
– Still lockstep operation of  ALU’s
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Graphics Processing Unit (GPU)

▪ Graphics apps have lot of  parallelism 
▪ Take advantage of  hardware invested to do 

graphics well 
▪ GPU is now ubiquitous! 
▪ Several supercomputers in top500 use GPUs 

– Titan uses Nvidia tesla
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Thanks: Slides from Beyond programmable shading course ACM Siggraph ’10 by Fatahalian
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Compile shader
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<diffuseShader>:

sample(r0,(v4,(t0,(s0

mul((r3,(v0,(cb0[0]

madd(r3,(v1,(cb0[1],(r3

madd(r3,(v2,(cb0[2],(r3

clmp(r3,(r3,(l(0.0),(l(1.0)

mul((o0,(r0,(r3

mul((o1,(r1,(r3

mul((o2,(r2,(r3

mov((o3,(l(1.0)

1 unshaded fragment input record

1 shaded fragment output record

sampler(mySamp;

Texture2D<float3>(myTex;

float3(lightDir;

float4(diffuseShader(float3(norm,(float2(uv)

{

((float3(kd;

((kd(=(myTex.Sample(mySamp,(uv);

((kd(*=(clamp((dot(lightDir,(norm),(0.0,(1.0);

((return(float4(kd,(1.0);(((

}

Thursday, July 29, 2010

Shading a fragment



CPU-style Core
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Slimming down…
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Two cores (two fragments in parallel)
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Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

<diffuseShader>:
sample(r0,(v4,(t0,(s0
mul((r3,(v0,(cb0[0]
madd(r3,(v1,(cb0[1],(r3
madd(r3,(v2,(cb0[2],(r3
clmp(r3,(r3,(l(0.0),(l(1.0)
mul((o0,(r0,(r3
mul((o1,(r1,(r3
mul((o2,(r2,(r3
mov((o3,(l(1.0)

fragment 1

<diffuseShader>:
sample(r0,(v4,(t0,(s0
mul((r3,(v0,(cb0[0]
madd(r3,(v1,(cb0[1],(r3
madd(r3,(v2,(cb0[2],(r3
clmp(r3,(r3,(l(0.0),(l(1.0)
mul((o0,(r0,(r3
mul((o1,(r1,(r3
mul((o2,(r2,(r3
mov((o3,(l(1.0)

fragment 2

Thursday, July 29, 2010

Add cores! 
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Sixteen cores (sixteen fragments in parallel)
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16 cores = 16 simultaneous instruction streams 

Thursday, July 29, 2010

16 cores: 16 fragments in parallel
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Instruction stream sharing
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But ... many fragments 
should be able to share an 
instruction stream!

<diffuseShader>:

sample(r0,(v4,(t0,(s0

mul((r3,(v0,(cb0[0]

madd(r3,(v1,(cb0[1],(r3

madd(r3,(v2,(cb0[2],(r3

clmp(r3,(r3,(l(0.0),(l(1.0)

mul((o0,(r0,(r3

mul((o1,(r1,(r3

mul((o2,(r2,(r3

mov((o3,(l(1.0)

Thursday, July 29, 2010

Instruction stream sharing



Add ALUs (SIMD)…
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

128 fragments in parallel

25

16 cores = 128 ALUs , 16 simultaneous instruction streams 

Thursday, July 29, 2010

128 fragments in parallel!
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

128 [                     ] in parallel

26

vertices/fragments
primitives

OpenCL work items
CUDA threads

fragments

vertices

primitives

Thursday, July 29, 2010
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

But what about branches?

27

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if((x(>(0)({

}(else({

}

<unconditional
(shader(code>

<resume(unconditional
(shader(code>

y(=(pow(x,(exp);

y(*=(Ks;

refl(=(y(+(Ka;((

x(=(0;(

refl(=(Ka;((

Thursday, July 29, 2010
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

But what about branches?

28

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if((x(>(0)({

}(else({

}

<unconditional
(shader(code>

<resume(unconditional
(shader(code>

y(=(pow(x,(exp);

y(*=(Ks;

refl(=(y(+(Ka;((

x(=(0;(

refl(=(Ka;((

T T T F FF F F

Thursday, July 29, 2010
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But what about branches?
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ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if((x(>(0)({

}(else({

}

<unconditional
(shader(code>

<resume(unconditional
(shader(code>

y(=(pow(x,(exp);

y(*=(Ks;

refl(=(y(+(Ka;((

x(=(0;(

refl(=(Ka;((

T T T F FF F F

Not all ALUs do useful work!
Worst case: 1/8 peak performance

Thursday, July 29, 2010



Stalls!

▪ No caches 

▪ No dynamic scheduling 

▪ Dependencies and memory accesses can cause 
stalls!
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Solution: Multithreading
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Hiding shader stalls

34

Time (clocks) Frag 1 … 8
 

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

Thursday, July 29, 2010
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07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Hiding shader stalls

35

Time (clocks)

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

   

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8
 

1 2 3 4

1 2

3 4

Thursday, July 29, 2010
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Hiding shader stalls

36

Time (clocks)
   

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8
 

1 2 3 4

Stall

Runnable

Thursday, July 29, 2010
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Hiding shader stalls
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Time (clocks)
   

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8
 

1 2 3 4

Stall

Runnable

Stall

Stall

Stall

Thursday, July 29, 2010



30
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Throughput!
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Time (clocks)
   

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8
 

1 2 3 4

Stall

Runnable

Stall

Runnable

Stall

Runnable

Stall

Runnable

Done!

Done!

Done!

Done!

Start

Start

Start

Increase run time of one group
to increase throughput of many groups

Thursday, July 29, 2010



GPU…
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  PhD in  
  Pervasive  
Parallelism 

Program 

Apply 

Verify 

Specify 

Design 

Optimize 

http://pervasiveparallelism.inf.ed.ac.uk 



                 The End!
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Further Reading
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▪ The first truly successful vector supercomputer: 
“The CRAY-1 Computer System”, R. M. Russel, Communications of  the ACM, 

January 1978. 

▪ Vector processor on a chip: 
“Vector vs. Superscalar and VLIW Architectures for Embedded Multimedia 

Benchmarks”, C. Kozyrakis and D. Patterson, Intl. Symp. on Microarchitecture, 
December 2002. 

▪ Integrating a vector unit with a state-of-the-art superscalar: 
“Tarantula: A Vector Extension to the Alpha Architecture”, R. Espasa, F. Ardanaz, J. 

Elmer, S. Felix, J. Galo, R. Gramunt, I. Hernandez, T. Ruan, G. Lowney, M. 
Mattina, and A. Seznec, Intl. Symp. on Computer Architecture, June 2002.
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Further Reading
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▪ Seminal SIMD work: 
“A Model of  SIMD Machines and a Comparison of  Various Interconnection 

Networks”, H. Siegel, IEEE Trans. on Computers, December 1979. 
“The Connection Machine”, D. Hillis, Ph.D. dissertation, MIT, 1985. 

▪ Two commercial SIMD supercomputers: 
“The CM-2 Technical Summary”, Thinking Machines Corporation, 1990. 
“The MasPar MP-1 Architecture”, T. Blank, Compcon, 1990. 

▪ SIMD co-processor: 
“CSX Processor Architecture”, ClearSpeed, Whitepaper, 2006.


