
CS4/MSc Parallel Architectures - 2017-2018

Lect. 10: Vector and SIMD Processors
▪ Many real-world problems, especially in science and engineering, map

well to computation on arrays
▪ RISC approach is inefficient:

– Based on loops → require dynamic or static unrolling to overlap computations
– Indexing arrays based on arithmetic updates of induction variables
– Fetching of array elements from memory based on individual, and unrelated, loads and stores
– Instruction dependences must be identified for each individual instruction

▪ Idea:
– Treat operands as whole vectors, not as individual integer or float-point numbers
– Single machine instruction now operates on whole vectors (e.g., a vector add)
– Loads and stores to memory also operate on whole vectors
– Individual operations on vector elements are independent and only dependences between

whole vector operations must be tracked

1

CS4/MSc Parallel Architectures - 2017-2018

Execution Model

▪ Straightforward RISC code:
– F2 contains the value of s
– R1 contains the address of the first element of a
– R2 contains the address of the first element of b
– R3 contains the address of the last element of a + 8

2

for (i=0; i<64; i++)
a[i] = b[i] + s;

loop: L.D F0,0(R2) ;F0=array element of b
 ADD.D F4,F0,F2 ;main computation
 S.D F4,0(R1) ;store result
 DADDUI R1,R1,8 ;increment index
 DADDUI R2,R2,8 ;increment index
 BNE R1,R3,loop ;next iteration

CS4/MSc Parallel Architectures - 2017-2018

Execution Model

▪ Straightforward vector code:
– F2 contains the value of s
– R1 contains the address of the first element of a
– R2 contains the address of the first element of b
– Assume vector registers have 64 double precision elements

– Notes:
▪ In practice vector registers are not of the exact size of the arrays
▪ Only 3 instructions executed compared to 6*64=384 executed in the RISC

3

for (i=0; i<64; i++)
a[i] = b[i] + s;

 LV V1,R2 ; V1=array b
 ADDVS.D V2,V1,F2 ; main computation
 SV V2,R1; store result

CS4/MSc Parallel Architectures - 2017-2018

Execution Model (Pipelined)

▪ In practice, the vector units takes several cycles to operate on each
element, but is pipelined

▪ With multiple vector units, I2 can execute together with I1

4

IF I1

I1ID

EXE

MEM

WB

I1.1

I1.1

I1.1

cycle 1 2 3 4 5 6

I1.2

7

I1.2

I1.3

8

I2

I1.2

I1.3

I1.4

I1.3

I1.4

I1.5

I1.4

I1.5

I1.6

CS4/MSc Parallel Architectures - 2017-2018

Pros of Vector Processors
▪ Reduced pressure on instruction fetch

– Fewer instructions are necessary to specify the same amount of work

▪ Reduced pressure on instruction issue
– Reduced number of branches alleviates branch prediction
– Much simpler hardware for checking dependences

▪ More streamlined memory accesses
– Vector loads and stores specify a regular access pattern
– High latency of initiating memory access is amortized

5

CS4/MSc Parallel Architectures - 2017-2018

Cons of Vector Processors
▪ Still requires a traditional scalar unit (integer and FP) for the non-

vector operations
▪ Difficult to maintain precise interrupts (can’t rollback all the

individual operations already completed)
▪ Compiler or programmer has to vectorize programs
▪ Not suitable/efficient for many different classes of applications
▪ Requires a specialized, high-bandwidth, memory system

– Usually built around heavily banked memory with data interleaving

6

CS4/MSc Parallel Architectures - 2017-2018

▪ Network of simple processing elements (PE)
– PEs operate in lockstep under the control of a master sequencer
– PEs can exchange results with a small number of neighbours via special data-

routing instructions
– Each PE has its own local memory
– Very large (up to 64K) number of PEs
– Usually operated as co-processors with a host computer to perform I/O and

to handle external memory

▪ Intended for use as supercomputers
▪ Programmed via custom extensions of common HLL

7

SIMD Processors: Original Idea

CS4/MSc Parallel Architectures - 2017-2018 8

Original SIMD Idea

Instr.
Sequencer

M M M M

M M M M

M M M M

CS4/MSc Parallel Architectures - 2017-2018

Example: Equation Solver Kernel
▪ The problem:

– Operate on a (n+2)x(n+2) matrix

▪ SIMD implementation:
– Assign one node to each PE
– Step 1: all PE’s send their data to their east neighbours and simultaneously

read the data sent by their west neighbours
– Steps 2 to 4: same as step 1 for west, south, and north (again, appropriate

nodes are masked out)
– Step 5: all PE’s compute the new value using equation above

9

A[i,j] = 0.2 x (A[i,j] + A[i,j-1] + A[i-1,j] +
 A[i,j+1] + A[i+1,j])

CS4/MSc Parallel Architectures - 2017-2018

Multimedia SIMD Extensions
▪ Key ideas:

– No network of processing elements, but an array of ALU’s
– No memories associated with ALU’s, but a pool of relatively wide (64 to 128

bits) registers that store several narrower operands
– No direct communication between ALU’s, but via registers and with special

shuffling/permutation instructions
– Not co-processors or supercomputers, but tightly integrated into CPU

pipeline
– Still lockstep operation of ALU’s

10

Graphics Processing Unit (GPU)

▪ Graphics apps have lot of parallelism
▪ Take advantage of hardware invested to do

graphics well
▪ GPU is now ubiquitous!
▪ Several supercomputers in top500 use GPUs

– Titan uses Nvidia tesla

CS4/MSc Parallel Architectures - 2017-2018 11

Thanks: Slides from Beyond programmable shading course ACM Siggraph ’10 by Fatahalian

12

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Compile shader

6

<diffuseShader>:

sample(r0,(v4,(t0,(s0

mul((r3,(v0,(cb0[0]

madd(r3,(v1,(cb0[1],(r3

madd(r3,(v2,(cb0[2],(r3

clmp(r3,(r3,(l(0.0),(l(1.0)

mul((o0,(r0,(r3

mul((o1,(r1,(r3

mul((o2,(r2,(r3

mov((o3,(l(1.0)

1 unshaded fragment input record

1 shaded fragment output record

sampler(mySamp;

Texture2D<float3>(myTex;

float3(lightDir;

float4(diffuseShader(float3(norm,(float2(uv)

{

((float3(kd;

((kd(=(myTex.Sample(mySamp,(uv);

((kd(*=(clamp((dot(lightDir,(norm),(0.0,(1.0);

((return(float4(kd,(1.0);(((

}

Thursday, July 29, 2010

Shading a fragment

CPU-style Core

CS4/MSc Parallel Architectures - 2017-2018 13

Slimming down…

CS4/MSc Parallel Architectures - 2017-2018 14

15

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Two cores (two fragments in parallel)

16

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

<diffuseShader>:
sample(r0,(v4,(t0,(s0
mul((r3,(v0,(cb0[0]
madd(r3,(v1,(cb0[1],(r3
madd(r3,(v2,(cb0[2],(r3
clmp(r3,(r3,(l(0.0),(l(1.0)
mul((o0,(r0,(r3
mul((o1,(r1,(r3
mul((o2,(r2,(r3
mov((o3,(l(1.0)

fragment 1

<diffuseShader>:
sample(r0,(v4,(t0,(s0
mul((r3,(v0,(cb0[0]
madd(r3,(v1,(cb0[1],(r3
madd(r3,(v2,(cb0[2],(r3
clmp(r3,(r3,(l(0.0),(l(1.0)
mul((o0,(r0,(r3
mul((o1,(r1,(r3
mul((o2,(r2,(r3
mov((o3,(l(1.0)

fragment 2

Thursday, July 29, 2010

Add cores!

16

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Sixteen cores (sixteen fragments in parallel)

18

16 cores = 16 simultaneous instruction streams

Thursday, July 29, 2010

16 cores: 16 fragments in parallel

1707/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Instruction stream sharing

19

But ... many fragments
should be able to share an
instruction stream!

<diffuseShader>:

sample(r0,(v4,(t0,(s0

mul((r3,(v0,(cb0[0]

madd(r3,(v1,(cb0[1],(r3

madd(r3,(v2,(cb0[2],(r3

clmp(r3,(r3,(l(0.0),(l(1.0)

mul((o0,(r0,(r3

mul((o1,(r1,(r3

mul((o2,(r2,(r3

mov((o3,(l(1.0)

Thursday, July 29, 2010

Instruction stream sharing

Add ALUs (SIMD)…

CS4/MSc Parallel Architectures - 2017-2018 18

19

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

128 fragments in parallel

25

16 cores = 128 ALUs , 16 simultaneous instruction streams

Thursday, July 29, 2010

128 fragments in parallel!

20

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

128 [] in parallel

26

vertices/fragments
primitives

OpenCL work items
CUDA threads

fragments

vertices

primitives

Thursday, July 29, 2010

21

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

But what about branches?

27

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if((x(>(0)({

}(else({

}

<unconditional
(shader(code>

<resume(unconditional
(shader(code>

y(=(pow(x,(exp);

y(*=(Ks;

refl(=(y(+(Ka;((

x(=(0;(

refl(=(Ka;((

Thursday, July 29, 2010

22

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

But what about branches?

28

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if((x(>(0)({

}(else({

}

<unconditional
(shader(code>

<resume(unconditional
(shader(code>

y(=(pow(x,(exp);

y(*=(Ks;

refl(=(y(+(Ka;((

x(=(0;(

refl(=(Ka;((

T T T F FF F F

Thursday, July 29, 2010

23
07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

But what about branches?

29

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if((x(>(0)({

}(else({

}

<unconditional
(shader(code>

<resume(unconditional
(shader(code>

y(=(pow(x,(exp);

y(*=(Ks;

refl(=(y(+(Ka;((

x(=(0;(

refl(=(Ka;((

T T T F FF F F

Not all ALUs do useful work!
Worst case: 1/8 peak performance

Thursday, July 29, 2010

Stalls!

▪ No caches

▪ No dynamic scheduling

▪ Dependencies and memory accesses can cause
stalls!

CS4/MSc Parallel Architectures - 2017-2018 24

Solution: Multithreading

CS4/MSc Parallel Architectures - 2017-2018 25

26

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Hiding shader stalls

34

Time (clocks) Frag 1 … 8

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

Thursday, July 29, 2010

27

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Hiding shader stalls

35

Time (clocks)

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8

1 2 3 4

1 2

3 4

Thursday, July 29, 2010

28

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Hiding shader stalls

36

Time (clocks)

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8

1 2 3 4

Stall

Runnable

Thursday, July 29, 2010

29

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Hiding shader stalls

37

Time (clocks)

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8

1 2 3 4

Stall

Runnable

Stall

Stall

Stall

Thursday, July 29, 2010

30

07/29/10 Beyond,Programmable,Shading,Course,,ACM,SIGGRAPH,2010

Throughput!

38

Time (clocks)

Frag 9 … 16 Frag 17 … 24 Frag 25 … 32Frag 1 … 8

1 2 3 4

Stall

Runnable

Stall

Runnable

Stall

Runnable

Stall

Runnable

Done!

Done!

Done!

Done!

Start

Start

Start

Increase run time of one group
to increase throughput of many groups

Thursday, July 29, 2010

GPU…

CS4/MSc Parallel Architectures - 2017-2018 31

32

 PhD in
 Pervasive
Parallelism

Program

Apply

Verify

Specify

Design

Optimize

http://pervasiveparallelism.inf.ed.ac.uk

 The End!

CS4/MSc Parallel Architectures - 2017-2018 31

CS4/MSc Parallel Architectures - 2017-2018

Further Reading

33

▪ The first truly successful vector supercomputer:
“The CRAY-1 Computer System”, R. M. Russel, Communications of the ACM,

January 1978.

▪ Vector processor on a chip:
“Vector vs. Superscalar and VLIW Architectures for Embedded Multimedia

Benchmarks”, C. Kozyrakis and D. Patterson, Intl. Symp. on Microarchitecture,
December 2002.

▪ Integrating a vector unit with a state-of-the-art superscalar:
“Tarantula: A Vector Extension to the Alpha Architecture”, R. Espasa, F. Ardanaz, J.

Elmer, S. Felix, J. Galo, R. Gramunt, I. Hernandez, T. Ruan, G. Lowney, M.
Mattina, and A. Seznec, Intl. Symp. on Computer Architecture, June 2002.

CS4/MSc Parallel Architectures - 2017-2018

Further Reading

20

▪ Seminal SIMD work:
“A Model of SIMD Machines and a Comparison of Various Interconnection

Networks”, H. Siegel, IEEE Trans. on Computers, December 1979.
“The Connection Machine”, D. Hillis, Ph.D. dissertation, MIT, 1985.

▪ Two commercial SIMD supercomputers:
“The CM-2 Technical Summary”, Thinking Machines Corporation, 1990.
“The MasPar MP-1 Architecture”, T. Blank, Compcon, 1990.

▪ SIMD co-processor:
“CSX Processor Architecture”, ClearSpeed, Whitepaper, 2006.

