
CS4/MSc Parallel Architectures - 2017-2018

▪ Synchronization is necessary to ensure that operations in a parallel
program happen in the correct order

– Condition synchronization
– Mutual exclusion

▪ Different primitives are used at different levels of abstraction
– High-level (e.g. monitors, parallel sections and loops): supported in languages

themselves or language extensions (e.g, Java threads, OpenMP)
– Middle-level (e.g., locks, barriers, and condition variables): supported in libraries

(e.g., POSIX threads)
– Low-level (e.g., compare&swap, test&set, load-link & store-conditional,

transactional memory): supported in hardware

▪ Higher level primitives can be constructed from lower level ones
▪ Things to consider: deadlock, livelock, starvation

1

Lect. 8: Synchronization

CS4/MSc Parallel Architectures - 2017-2018

Example: Sync. in Java Threads

2

▪ Synchronized Methods
– Concurrent calls to the method on the same object have to be serialized
– All data modified during one call to the method becomes atomically visible to all

calls to other methods of the object
– E.g.:

– Can be implemented with locks

public class SynchronizedCounter {
 private int c = 0;

 public synchronized void increment() {
 c++;
 }
}

SynchronizedCounter myCounter;

CS4/MSc Parallel Architectures - 2017-2018

Example: Sync. in OpenMP

3

▪ Doall loops
– Iterations of the loop can be executed concurrently
– After the loop, all processors have to wait and a single one continues with the

following code
– All data modified during the loop is visible after the loop
– E.g.:

– Can be implemented with barrier

#pragma omp parallel for \
 private(i,s) shared (A,B)\
 schedule(static)
for (i=0; i<N; i++) {
 s = …

 A[i] = B[i] + s;
}

CS4/MSc Parallel Architectures - 2017-2018

Example: Sync. in POSIX Threads

4

▪ Locks
– Only one thread can own the lock at any given time
– Unlocking makes all the modified data visible to all threads and locking forces the

thread to obtain fresh copies of all data
– E.g.:

– Can be implemented with hardware atomic RMW (e.g. test&set)

pthread_mutex_t mylock;

pthread_mutex_init(&mylock, NULL);
pthread_mutex_lock(&mylock);

Count++;

pthread_mutex_unlock(&mylock);

CS4/MSc Parallel Architectures - 2017-2018

Example: Building Locks from Ld/St?

5

▪ E.g., Peterson’s algorithm
Processor 0

int A, B, C;
Int flag[2], turn;

flag[0]=0; flag[1]=0;
turn = 0;

/* lock */
flag[0] = 1; turn = 1;
While(flag[1]&&turn==1);

/* unlock */
flag[0] = 0;

Processor 1

/* lock */
flag[1] = 1; turn = 0;
While(flag[0]&&turn==0);

/* unlock*/
flag[1] = 0;

in
iti

al
iz

at
io

n
pa

ra
lle

l

Example: Building Locks from Ld/St?

▪ Requires SC.
– Relaxed models need to use fences.

▪ Works for only 2 processors
▪ A general N processor solution (for e.g.

Bakery algorithms) requires O(N) flag
variables and it also slow.

CS4/MSc Parallel Architectures - 2017-2018 6

CS4/MSc Parallel Architectures - 2017-2018

Building Locks with Hdw. Primitives

7

▪ Example: Test&Set

int lock(int *mylock) {

 int value;

 value = test&set(mylock,1);
 if (value)
 return FALSE;
 else
 return TRUE;
}

void unlock(int *mylock) {
 *mylock = 0;
 return;
}

CS4/MSc Parallel Architectures - 2017-2018

Hardware Primitives

8

▪ Hardware’s job is to provide atomic memory operations, which
involves read and write to a memory location atomically.

▪ Also called as a Read-Modify-Write (RMW) instructions.
▪ Implemented in the IS, but usually encapsulated in library

function calls by manufacturers
▪ At a minimum, hardware must provide an atomic swap (or

test&set), but there are more sophisticated ones

CS4/MSc Parallel Architectures - 2017-2018

Compare&Swap

9

– Compare&Swap (e.g., Sun Sparc): if value in memory is equal to value in register
R2 then swap memory value with the value in R3

▪ Can implement more complex conditions for synchronization
▪ The compare and the swap must be performed atomically

 CAS (R1),R2,R3 : if (MEM[R1]==R2)
 MEM[R1]<->R3;

 int compare_and_swap(int *addr, int value, int new_value)
 {
 ATOMIC_BEGIN();
 int old_value = *addr;
 if(old_value == value) *addr = new_value;
 ATOMIC_END();
 return old_value;
 }

CS4/MSc Parallel Architectures - 2017-2018

Fetch&Add

10

– Fetch&Increment (e.g., Intel x86) (in general Fetch&Op): increment the value in
memory and return the old value in register

▪ Less flexible than Compare&Swap
▪ The fetch and addition must be done atomically.

 int fetch_and_add(int *addr, int increment)
 {
 ATOMIC_BEGIN();
 int old_value = *addr;
 *addr = *addr + increment;
 ATOMIC_END();
 return old_value;
 }

 lock; ADD (R1),R2, R3 : R3 = MEM[R1]; MEM[R1]=MEM[R1]+R2

CS4/MSc Parallel Architectures - 2017-2018

Test&Set (or Swap)

11

– Swap (test-and-set): swap the values in memory and in a register
▪ Less flexible of all
▪ swap must be performed atomically

 int test_and_set(int *addr, int new_value)
 {
 ATOMIC_BEGIN();
 int old_value = *addr;
 *addr = new_value;
 ATOMIC_END();
 return old_value;
 }

 lock; ADD (R1),R2, R3 : R3 = MEM[R1]; MEM[R1]=R2

CS4/MSc Parallel Architectures - 2017-2018

Why a bunch of Read-modify-Write instr.?

12

▪ Are each of these instructions equal in “power” in
synchronisation situations?

▪ Or are some instructions more powerful than others?

Consensus

▪ Bunch of threads from 1..n, each thread proposes a value, propose[i]
▪ Consensus problem: can the threads agree on a value?

▪ Need to select a winner thread
▪ The winner must know.
▪ The losers must also know the identity of the winner
▪ Abstracts the mutual exclusion problem

▪ With Compare&Swap:
▪ The winner can swap their own thread id into consensus variable.
▪ Losers can’t modify the consensus variable.
▪ The losers will know who won.
▪ The swap must happen only for the winner (and hence CAS works)

CS4/MSc Parallel Architectures - 2017-2018 13

Implementing RMWs

▪ Need to guarantee atomicity of R and W
▪ Lock the bus until the R and W performs

– Early implementation.
– No other processor can issue memory requests until the

RMW completes.
– Slow (impacts other processors too)

▪ Cache line locking
– Obtain exclusive access by doing a Read exclusive (i.e

invalidates other cache lines and obtain block in modified
state).

– Deny coherence requests to that line until W completes

CS4/MSc Parallel Architectures - 2017-2018 14

Implementing RMWs

▪ Need to guarantee atomicity of R and W
▪ Cache line locking

– Obtain exclusive access by doing a Read exclusive (i.e
invalidates other cache lines and obtain block in
modified state).

– Deny coherence requests to that line until W completes
• Interaction with the memory model?

- E.g. TSO, there might be older writes in the write buffer.
- Typically the write buffer is flushed before the RMW
- Cost of RMW includes a fence-like write buffer drain.

CS4/MSc Parallel Architectures - 2017-2018 15

CS4/MSc Parallel Architectures - 2017-2018

Building Locks with Hdw. Primitives

16

▪ Example: Test&Set

int lock(int *mylock) {

 int value;

 value = test&set(mylock,1);
 if (value)
 return FALSE;
 else
 return TRUE;
}

void unlock(int *mylock) {
 *mylock = 0;
 return;
}

CS4/MSc Parallel Architectures - 2017-2018

What If the Lock is Taken?

17

▪ Spin-wait lock

– Each call to lock invokes the hardware primitive, which involves an expensive
memory operation and takes up network bandwidth

▪ Spin-wait on cache: Test-and-Test&Set
– Spin on cached value using normal load and rely on coherence protocol

– Still, all processors race to memory, and clash, once the lock is released

while (!lock(&mylock));
…
unlock(&mylock);

while (TRUE) {
 if (!lock(&mylock))
 while (!mylock);
 else break;
}
…
unlock(&mylock);

CS4/MSc Parallel Architectures - 2017-2018

What If the Lock is Taken?

18

▪ Software solution: Blocking locks and Backoff

– Wait can be implemented in the application itself (backoff) or by calling the OS to
be put to sleep (blocking)

– The waiting time is usually increased exponentially with the number of retries
– Similar to the backoff mechanism adopted in the Ethernet protocol

while (TRUE) {
 if (!lock(&mylock)) wait (time);
 else break;
}
…
unlock(&mylock);

CS4/MSc Parallel Architectures - 2017-2018

LL/SC

19

▪ Load-link and Store-conditional
– Implement atomic memory operation as two operations
– Load-link (LL):

▪ Registers the intention to acquire the lock
▪ Returns the present value of the lock

– Store-conditional (SC):
▪ Only stores the new value if no other processor attempted a store between our

previous LL and now
▪ Returns 1 if it succeeds and 0 if it fails

– Relies on the coherence mechanism to detect conflicting SC’s
– All operation is done locally at the cache controllers or directory, no need for

complex blocking operation in memory
– Introduced in the MIPS processor, now also used in PowerPC and ARM

CS4/MSc Parallel Architectures - 2017-2018

Another Hardware Primitive

20

▪ Load-link and Store-conditional operation

P0
L1

RESERVE
P1

L1
RESERVE

Coherence substrate

LL 0xA

0xA1

SC 0xA

SC suceeds

P0
L1

RESERVE
P1

L1
RESERVE

LL 0xA

Coherence substrate

LL 0xA

0xA1

SC 0xA

SC fails 0xA1

SC suceeds

SC 0xA

0

CS4/MSc Parallel Architectures - 2017-2018

▪ E.g., spin-wait with attempted swap

Advantages:
• Lesser complexity on coherence system – does not suffer from deadlocks
• Failing SC does not send invalidates
• Lends itself naturally to test-and-test&set like implementation

Building Locks with LL/SC

21

try: MOV R2, lock
 LL R1, location ; value of lock loaded
 BNZ R1, try ; try again if lock taken
 SC R2, location ; try to store conditionally
 BEQZ R2, try ; branch if SC failed
 RET

Transactional Memory (TM)*

▪ Coarse-grain locking is easy but limits concurrency

▪ Fine-grain locking is efficient but hard to get right

▪ Can we get the performance of the latter with the programmability of the
former?

▪ TM
– Atomic read-modify-writes for sections of code (think ll/sc for a bunch of

memory addresses)
– First proposed in the context of database transactions
– First proposed as replacement for locks by Herlihy and Moss in 1993
– Intel Haswell architecture has TM implementation

CS4/MSc Parallel Architectures - 2017-2018 22

With thanks to Christos Kozyrakis for some of the content

HashMap

• Given key returns value if found
• Not thread-safe. Why?

CS4/MSc Parallel Architectures - 2017-2018 23

put(Object key, Type value)
{
 int id = hash (key);
 HashEntry e = buckets[id];
 while(e!=NULL)
 {
 prev = e;
 e = e.next;
 if (key == e.key) {
 e.value = value;
 return success;
 }
 }
 add_entry(e, key, value);
}

get(Object key)
{
 int id = hash (key);
 HashEntry e = buckets[id];
 while(e!=NULL)
 {
 if (key == e.key) return

e.value;
 e = e.next;
 }
}

Making HashMap thread safe

▪ Grab a mutex before entering get, put
– Coarse-grain locking
– Easy to program
– Limits concurrency

▪ Redesign using per-bucket locks
– Fine-grain locking
– Error prone and complex

▪ Use TM
– Simply enclose get and put within Atomic
– System ensures atomicity.

CS4/MSc Parallel Architectures - 2017-2018 24

HashMap using TM

CS4/MSc Parallel Architectures - 2017-2018 23

put(Object key, Type value)
{
 ATOMIC
 {
 int id = hash (key);
 HashEntry e = buckets[id];
 while(e!=NULL)
 {
 prev = e;
 e = e.next;
 if (key == e.key) {
 e.value = value;
 return success;
 }
 }
 add_entry(e, key, value);
 }
}

get(Object key)
{
 ATOMIC
 {
 int id = hash (key);
 HashEntry e = buckets[id];
 while(e!=NULL)
 {
 if (key == e.key) return e.value;
 e = e.next;
 }
 }
}

Performance

CS4/MSc Parallel Architectures - 2017-2018 23

TCC: A Hardware TM system

• Hardware TM as good as fine-grained locking!

What does TM guarantee?

▪ Atomicity
– If and when a transaction commits, all writes appear to take

effect at once
– If and when a transaction aborts, none of the writes appear to

take effect.

▪ Isolation
– No other code can observe writes, until the transaction

completes successfully.

▪ Serializability
– Transactions must appear to commit in a single serial order.
– Transactions must appear in this order in program order.

CS4/MSc Parallel Architectures - 2017-2018 24

Advantages of TM

▪ Programmability
– As easy to use as coarse-grained locks.
– Programmer does not need to worry about how to enforce

atomicity.
– Composability: Safe to compose transactions.
– Failure atomicity: No explicit undo necessary on exception,

simply abort.

▪ Performance
– Allows for fine-grained concurrency
– Performs as well as fine-grained locks.

CS4/MSc Parallel Architectures - 2017-2018 24

TM Caveats

▪ All locks may not be converted to atomic transactions

▪ Hard to Undo output and Redo Input

▪ Semantics of interaction of transactional and non-transactional
code tricky

CS4/MSc Parallel Architectures - 2017-2018 24

How system ensures Atomicity?

▪ TM implementation must provide

– Versioning: the ability to recover in case transaction does not
succeed by either buffering new values or logging old values.

– Conflict detection: the ability to detect if two transactions are
conflicting (if one modifies locations that are read/modified by
the other).

– HTM: If versioning and conflict detection in HW

– STM: If versioning and conflict detection in SW

CS4/MSc Parallel Architectures - 2017-2018 25

Versioning

▪ Eager Versioning (undo-log based)
– Update memory directly.
– Maintain old values in a log.
– Faster commits (discard log), direct reads (relevant in STM)
– But slower aborts.

▪ Lazy Versioning (write-buffer based)
– Buffer data until commit in a write-buffer
– Update actual memory on commit
– Fast aborts (discard write buffer)
– But slower commits and indirect reads (STM)

CS4/MSc Parallel Architectures - 2017-2018 25

Eager Versioning Example

CS4/MSc Parallel Architectures - 2017-2018 25

Lazy Versioning Example

CS4/MSc Parallel Architectures - 2017-2018 25

Conflict detection

▪ Detect and handle conflicts between transactions
– R/W and W/W conflicts
– Must keep track of read-set (addresses read) and write-set

(addresses written) of transactions

▪ Pessimistic (or eager) detection
– Check for conflicts during loads or stores

– STM: by instrumenting loads and stores with locks and
version numbers

– HTM: leverage coherence protocol.
– Contention manager: upon detecting a conflict, either stall or

abort

CS4/MSc Parallel Architectures - 2017-2018 25

Pessimistic Detection Example

CS4/MSc Parallel Architectures - 2017-2018 25

Conflict detection

▪ Optimistic (or lazy) detection
– Check for conflicts when a transaction is about to commit

– STM: by instrumenting loads and stores with locks and
version numbers

– HTM: leverage coherence protocol; validate write set by
obtaining exclusive access to write-set.

– Contention manager: upon detecting a conflict, give priority to
committing transaction.

CS4/MSc Parallel Architectures - 2017-2018 25

Optimistic Detection Example

CS4/MSc Parallel Architectures - 2017-2018 25

HTM

▪ Data versioning in caches
– Cache the write-buffer or the undo log
– Cache metadata to track read and write set.

– Read/write bits for each cache line set on loads/stores
– Gang cleared on transaction commit or abort
– Replacements cause an abort!

▪ Conflict detection through coherence protocol
– Coherence lookups detects conflicts.

– Requests check R/W bits
– Works for both snooping and directory protocols.

CS4/MSc Parallel Architectures - 2017-2018 25

Intel’s HTM: RTM

▪ Restricted Transactional Memory
– xbegin: Begin transaction (also provide offset to

fallback instr.)
– xend: End transaction
– xabort: User controlled abort of transaction

– On abort, control transfers to fallback
– E.g. At fallback PC, programmer can have coarse-

grained lock version

▪ Implementation
– Write-buffer based (L1 cache)
– Conflict detection using coherence protocol.

CS4/MSc Parallel Architectures - 2017-2018 25

CS4/MSc Parallel Architectures - 2017-2018

References

28

▪ Transactional memory
 James Larus and Christos Kozyrakis. 2008. Transactional memory. Commun. ACM 51,

7 (July 2008), 80-88.

▪ A commercial machine with Full/Empty bits:
“The Tera Computer System”, R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A.

Porterfield, and B. Smith, Intl. Symp. on Supercomputing, June 1990.

▪ Performance evaluations of synchronization for shared-memory:
“The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors”, T.

Anderson, IEEE Trans. on Parallel and Distributed Systems, January 1990.
“Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors”, J.

Mellor-Crummey and M. Scott, ACM Trans. on Computer Systems, February 1991.

