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▪ Synchronization is necessary to ensure that operations in a parallel 
program happen in the correct order 

– Condition synchronization 
– Mutual exclusion 

▪ Different primitives are used at different levels of  abstraction 
– High-level (e.g. monitors, parallel sections and loops): supported in languages 

themselves or language extensions (e.g, Java threads, OpenMP) 
– Middle-level (e.g., locks, barriers, and condition variables): supported in libraries 

(e.g., POSIX threads) 
– Low-level (e.g., compare&swap, test&set, load-link & store-conditional, 

transactional memory): supported in hardware 

▪ Higher level primitives can be constructed from lower level ones 
▪ Things to consider: deadlock, livelock, starvation
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Lect. 8: Synchronization
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Example: Sync. in Java Threads
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▪ Synchronized Methods 
– Concurrent calls to the method on the same object have to be serialized 
– All data modified during one call to the method becomes atomically visible to all 

calls to other methods of  the object 
– E.g.: 

– Can be implemented with locks

public class SynchronizedCounter {
  private int c = 0;

  public synchronized void increment() {
    c++;
  }
}

SynchronizedCounter myCounter;
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Example: Sync. in OpenMP
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▪ Doall loops 
– Iterations of  the loop can be executed concurrently 
– After the loop, all processors have to wait and a single one continues with the 

following code 
– All data modified during the loop is visible after the loop 
– E.g.: 

– Can be implemented with barrier

#pragma omp parallel for \
        private(i,s) shared (A,B)\
        schedule(static)
for (i=0; i<N; i++) {
  s = …

  A[i] = B[i] + s;
}
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Example: Sync. in POSIX Threads
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▪ Locks 
– Only one thread can own the lock at any given time 
– Unlocking makes all the modified data visible to all threads and locking forces the 

thread to obtain fresh copies of  all data 
– E.g.: 

– Can be implemented with hardware atomic RMW (e.g. test&set)

pthread_mutex_t mylock;

pthread_mutex_init(&mylock, NULL);
pthread_mutex_lock(&mylock);

Count++;

pthread_mutex_unlock(&mylock);
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Example: Building Locks from Ld/St?
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▪ E.g., Peterson’s algorithm 
Processor 0 

int A, B, C;
Int flag[2], turn;

flag[0]=0; flag[1]=0;
turn = 0;

/* lock */
flag[0] = 1; turn = 1;
While(flag[1]&&turn==1);

/* unlock */
flag[0] = 0;

Processor 1 

/* lock */
flag[1] = 1; turn = 0;
While(flag[0]&&turn==0);

/* unlock*/
flag[1] = 0;
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Example: Building Locks from Ld/St?

▪ Requires SC.  
– Relaxed models need to use fences. 

▪ Works for only 2 processors 
▪ A general N processor solution (for e.g. 

Bakery algorithms) requires O(N) flag 
variables and it also slow. 
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Building Locks with Hdw. Primitives
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▪ Example: Test&Set

int lock(int *mylock) {

  int value;

  value = test&set(mylock,1);
  if (value)
    return FALSE;
  else
    return TRUE;
}

void unlock(int *mylock) {
  *mylock = 0;
   return;
}
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Hardware Primitives
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▪ Hardware’s job is to provide atomic memory operations, which 
involves read and write to a memory location atomically. 

▪ Also called as a Read-Modify-Write (RMW) instructions.  
▪ Implemented in the IS, but usually encapsulated in library 

function calls by manufacturers 
▪ At a minimum, hardware must provide an atomic swap (or 

test&set), but there are more sophisticated ones
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Compare&Swap

9

– Compare&Swap (e.g., Sun Sparc): if  value in memory is equal to value in register 
R2 then swap memory value with the value in R3  

▪ Can implement more complex conditions for synchronization 
▪ The compare and the swap must be performed atomically

      CAS   (R1),R2,R3 : if (MEM[R1]==R2)
                              MEM[R1]<->R3;
                                 

    int compare_and_swap(int *addr, int value, int new_value)
   {
            ATOMIC_BEGIN();
            int old_value = *addr;
            if(old_value == value)   *addr = new_value;
            ATOMIC_END();
            return old_value;
   }                                
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Fetch&Add
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– Fetch&Increment (e.g., Intel x86) (in general Fetch&Op): increment the value in 
memory and return the old value in register 

▪ Less flexible than Compare&Swap 
▪ The fetch and addition must be done atomically. 

    int fetch_and_add(int *addr, int increment)
   {
            ATOMIC_BEGIN();
            int old_value = *addr;
            *addr = *addr + increment;
            ATOMIC_END();
            return old_value;
   }                                

      lock; ADD   (R1),R2, R3 : R3 = MEM[R1]; MEM[R1]=MEM[R1]+R2
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Test&Set (or Swap)
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– Swap (test-and-set): swap the values in memory and in a register 
▪ Less flexible of  all 
▪ swap must be performed atomically

    int test_and_set(int *addr, int new_value)
   {
            ATOMIC_BEGIN();
            int old_value = *addr;
            *addr = new_value;
            ATOMIC_END();
            return old_value;
   }                                

      lock; ADD   (R1),R2, R3 : R3 = MEM[R1]; MEM[R1]=R2
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Why a bunch of  Read-modify-Write instr.?
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▪ Are each of  these instructions equal in “power” in 
synchronisation situations? 

▪ Or are some instructions more powerful than others?



Consensus

▪ Bunch of  threads from 1..n, each thread proposes a value, propose[i] 
▪ Consensus problem: can the threads agree on a value? 

▪ Need to select a winner thread 
▪ The winner must know. 
▪ The losers must also know the identity of  the winner 
▪ Abstracts the mutual exclusion problem 

▪ With Compare&Swap: 
▪ The winner can swap their own thread id into consensus variable. 
▪ Losers can’t modify the consensus variable. 
▪ The losers will know who won.  
▪ The swap must happen only for the winner (and hence CAS works)
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Implementing RMWs

▪ Need to guarantee atomicity of  R and W 
▪ Lock the bus until the R and W performs 

– Early implementation. 
– No other processor can issue memory requests until the 

RMW completes.  
– Slow (impacts other processors too) 

▪ Cache line locking 
– Obtain exclusive access by doing a Read exclusive (i.e 

invalidates other cache lines and obtain block in modified 
state). 

– Deny coherence requests to that line until W completes
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Implementing RMWs

▪ Need to guarantee atomicity of  R and W 
▪ Cache line locking 

– Obtain exclusive access by doing a Read exclusive (i.e 
invalidates other cache lines and obtain block in 
modified state). 

– Deny coherence requests to that line until W completes 
• Interaction with the memory model? 

- E.g. TSO, there might be older writes in the write buffer. 
- Typically the write buffer is flushed before the RMW 
- Cost of  RMW includes a fence-like write buffer drain. 
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Building Locks with Hdw. Primitives
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▪ Example: Test&Set

int lock(int *mylock) {

  int value;

  value = test&set(mylock,1);
  if (value)
    return FALSE;
  else
    return TRUE;
}

void unlock(int *mylock) {
  *mylock = 0;
   return;
}
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What If  the Lock is Taken?
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▪ Spin-wait lock 

– Each call to lock invokes the hardware primitive, which involves an expensive 
memory operation and takes up network bandwidth 

▪ Spin-wait on cache: Test-and-Test&Set 
– Spin on cached value using normal load and rely on coherence protocol 

– Still, all processors race to memory, and clash, once the lock is released

while (!lock(&mylock));
…
unlock(&mylock);

while (TRUE) {
  if (!lock(&mylock))
    while (!mylock);
  else break;
}
…
unlock(&mylock);
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What If  the Lock is Taken?
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▪ Software solution: Blocking locks and Backoff  

– Wait can be implemented in the application itself  (backoff) or by calling the OS to 
be put to sleep (blocking) 

– The waiting time is usually increased exponentially with the number of  retries 
– Similar to the backoff  mechanism adopted in the Ethernet protocol

while (TRUE) {
  if (!lock(&mylock)) wait (time);
  else break;
}
…
unlock(&mylock);
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LL/SC
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▪ Load-link and Store-conditional 
– Implement atomic memory operation as two operations 
– Load-link (LL):  

▪ Registers the intention to acquire the lock 
▪ Returns the present value of  the lock 

– Store-conditional (SC):  
▪ Only stores the new value if  no other processor attempted a store between our 

previous LL and now 
▪ Returns 1 if  it succeeds and 0 if  it fails 

– Relies on the coherence mechanism to detect conflicting SC’s 
– All operation is done locally at the cache controllers or directory, no need for 

complex blocking operation in memory 
– Introduced in the MIPS processor, now also used in PowerPC and ARM
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Another Hardware Primitive
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▪ Load-link and Store-conditional operation
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▪ E.g., spin-wait with attempted swap 

Advantages: 
• Lesser complexity on coherence system – does not suffer from deadlocks  
• Failing SC does not send invalidates 
• Lends itself  naturally to test-and-test&set like implementation

Building Locks with LL/SC

21

try:   MOV  R2, lock
       LL   R1, location  ; value of lock loaded
       BNZ  R1, try       ; try again if lock taken
       SC   R2, location  ; try to store conditionally    
       BEQZ R2, try       ; branch if SC failed
       RET



Transactional Memory (TM)*

▪ Coarse-grain locking is easy but limits concurrency 

▪ Fine-grain locking is efficient but hard to get right 

▪ Can we get the performance of  the latter with the programmability of  the 
former? 

▪ TM 
– Atomic read-modify-writes for sections of  code (think ll/sc for a bunch of  

memory addresses) 
– First proposed in the context of  database transactions 
– First proposed as replacement for locks by Herlihy and Moss in 1993 
– Intel Haswell architecture has TM implementation
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With thanks to Christos Kozyrakis for some of  the content



HashMap

• Given key returns value if  found 
• Not thread-safe. Why? 
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put(Object key, Type value) 
{ 
    int id = hash (key); 
    HashEntry e = buckets[id]; 
    while(e!=NULL) 
    { 
          prev = e; 
          e = e.next; 
          if  (key == e.key) { 
              e.value = value;  
              return success;  
          } 
    } 
    add_entry(e, key, value);  
}

get(Object key) 
{ 
    int id = hash (key); 
    HashEntry e = buckets[id]; 
    while(e!=NULL) 
    { 
     if  (key == e.key) return 

e.value; 
         e = e.next; 
    } 
} 



Making HashMap thread safe

▪ Grab a mutex before entering get, put 
– Coarse-grain locking 
– Easy to program 
– Limits concurrency 

▪ Redesign using per-bucket locks 
– Fine-grain locking 
– Error prone and complex 

▪ Use TM 
– Simply enclose get and put within Atomic 
– System ensures atomicity. 
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HashMap using TM
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put(Object key, Type value) 
{ 
  ATOMIC 
  { 
    int id = hash (key); 
    HashEntry e = buckets[id]; 
    while(e!=NULL) 
    { 
          prev = e; 
          e = e.next; 
          if  (key == e.key) { 
              e.value = value;  
              return success;  
          } 
    } 
    add_entry(e, key, value); 
   }  
}

get(Object key) 
{ 
 ATOMIC 
 { 
    int id = hash (key); 
   HashEntry e = buckets[id]; 
    while(e!=NULL) 
    { 
     if  (key == e.key) return e.value; 
         e = e.next; 
    } 
  } 
} 



Performance
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TCC: A Hardware TM system

• Hardware TM as good as fine-grained locking!



What does TM guarantee?

▪ Atomicity 
– If  and when a transaction commits, all writes appear to take 

effect at once 
– If  and when a transaction aborts, none of  the writes appear to 

take effect.  

▪ Isolation 
– No other code can observe writes, until the transaction 

completes successfully.  

▪ Serializability 
– Transactions must appear to commit in a single serial order.  
– Transactions must appear in this order in program order. 
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Advantages of  TM

▪ Programmability 
– As easy to use as coarse-grained locks.  
– Programmer does not need to worry about how to enforce 

atomicity.  
– Composability: Safe to compose transactions.  
– Failure atomicity: No explicit undo necessary on exception, 

simply abort.  

▪ Performance 
– Allows for fine-grained concurrency 
– Performs as well as fine-grained locks. 

CS4/MSc Parallel Architectures - 2017-2018 24



TM Caveats

▪ All locks may not be converted to atomic transactions 

▪ Hard to Undo output and Redo Input 

▪ Semantics of  interaction of  transactional and non-transactional 
code tricky
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How system ensures Atomicity?

▪ TM implementation must provide 

– Versioning: the ability to recover in case transaction does not 
succeed by either buffering new values or logging old values. 

– Conflict detection: the ability to detect if  two transactions are 
conflicting (if  one modifies locations that are read/modified by 
the other). 

– HTM: If  versioning and conflict detection in HW 

– STM: If  versioning and conflict detection in SW
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Versioning

▪ Eager Versioning (undo-log based) 
– Update memory directly.  
– Maintain old values in a log.  
– Faster commits (discard log), direct reads (relevant in STM) 
– But slower aborts.  

▪ Lazy Versioning (write-buffer based) 
– Buffer data until commit in a write-buffer 
– Update actual memory on commit  
– Fast aborts (discard write buffer) 
– But slower commits and indirect reads (STM)
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Eager Versioning Example
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Lazy Versioning Example
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Conflict detection

▪ Detect and handle conflicts between transactions 
– R/W and W/W conflicts  
– Must keep track of  read-set (addresses read) and write-set 

(addresses written) of  transactions 

▪ Pessimistic (or eager) detection 
– Check for conflicts during loads or stores 

– STM: by instrumenting loads and stores with locks and 
version numbers 

– HTM: leverage coherence protocol. 
– Contention manager: upon detecting a conflict, either stall or 

abort
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Pessimistic Detection Example
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Conflict detection

▪ Optimistic (or lazy) detection 
– Check for conflicts when a transaction is about to commit 

– STM: by instrumenting loads and stores with locks and 
version numbers 

– HTM: leverage coherence protocol; validate write set by 
obtaining exclusive access to write-set.  

– Contention manager: upon detecting a conflict, give priority to 
committing transaction. 
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Optimistic Detection Example
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HTM

▪ Data versioning in caches 
– Cache the write-buffer or the undo log 
– Cache metadata to track read and write set.  

– Read/write bits for each cache line set on loads/stores 
– Gang cleared on transaction commit or abort 
– Replacements cause an abort! 

▪ Conflict detection through coherence protocol 
– Coherence lookups detects conflicts.  

– Requests check R/W bits 
– Works for both snooping and directory protocols.
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Intel’s HTM: RTM

▪ Restricted Transactional Memory 
– xbegin:  Begin transaction (also provide offset to 

fallback instr.) 
– xend: End transaction  
– xabort: User controlled abort of  transaction 

– On abort, control transfers to fallback 
– E.g. At fallback PC, programmer can have coarse-

grained lock version 

▪ Implementation 
– Write-buffer based (L1 cache) 
– Conflict detection using coherence protocol.
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