
CS4/MSc Parallel Architectures - 2017-2018

▪ Consider the following code:

– What are the possible outcomes?

1

Lect. 7: Memory Consistency

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;

P1 P2

in
iti

al
iz

at
io

n
pa

ra
lle

l

while (B==0);
print A, C;

P3

CS4/MSc Parallel Architectures - 2017-2018

▪ Consider the following code:

– What are the possible outcomes?

2

Lect. 7: Memory Consistency

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;

P1 P2

in
iti

al
iz

at
io

n
pa

ra
lle

l

A==1, C==1?
A==0, C==1?
A==0, C==0?
A==1, C==0?

while (B==0);
print A, C;

P3

Yes. This is what one would expect.
Yes. If st to B overtakes the st to A on the interconnect
toward P3.
Yes. If the st to A overtakes the st to C from the same
processor.

CS4/MSc Parallel Architectures - 2017-2018

Memory Consistency
▪ Cache coherence:

– Guarantees eventual write
 propagation
– Guarantees a single order
 of all writes to same location

▪ Memory consistency:
– Specifies the ordering of loads and stores to different memory locations
– Defined in so called Memory Consistency Models
– This is really a “contract” between the hardware, the compiler, and the

programmer
▪ i.e., hardware and compiler will not violate the ordering specified
▪ i.e., the programmer will not assume a stricter order than that of the model

– Hardware/Compiler provide “safety net” mechanisms so the user can
enforce a stricter order than that provided by the model

3

No guarantees on when writes propagate.

For the same memory location.
No guarantee on write-atomcity

Write-Serialization vs Write-Atomicity

// Initially all values are 0.
P1 P2 P3 P4
X= 1 X=2
 =X(1) =X(2)
 =X(2) =X(1)

P1 P2 P3 P4
X= 1 Y=1
 =X(1) =Y(1)
 =Y(0) =X(0)

CS4/MSc Parallel Architectures - 2017-2018

Violation of
Write-serialization

Violation of
Write-atomicity

Sequential Consistency (SC)

 A multiprocessor system is sequentially
consistent if the result of any execution is

 the same as if the operations of all the
processors were executed in some sequential
order, and the operations of each individual
processor appear in this sequence in the order
specified by its program.

 [Lamport 78]

CS4/MSc Parallel Architectures - 2017-2018 4

CS4/MSc Parallel Architectures - 2017-2018

Sequential Consistency (SC)
▪ Key ideas:

– The behaviour should be the same as in a time-shared multiprocessor
– Two aspects:

▪ Program order: memory ordering has to follow the individual order in each thread
 (R!R, R!W, W!W, W!R)
▪ Write-atomicity: there can be any interleaving of such sequential segments - but a single total

order of all memory operations

– Notice that in practice many orderings are still valid

5

P0 P1 Pn

Memory

CS4/MSc Parallel Architectures - 2017-2018

Terminology
▪ Issue: memory operation leaves the processor and becomes visible to the

memory subsystem
▪ Performed: memory operation appears to have taken place

– Performed w.r.t. processor X: as far as processor X can tell
▪ E.g., a store S by processor Y to variable A is performed w.r.t. processor X if a

subsequent load by X to A returns the value of S (or the value of a store later than S,
but never a value older than that of S)

▪ E.g., a load L is performed w.r.t. processor X if all subsequent stores by any processor
cannot affect the value returned by L to X

– Globally performed or complete: performed w.r.t. to all processors
▪ E.g., a store S by processor Y to variable A is globally performed if any subsequent

load by any processor to A returns the value of S

▪ X consistent execution: result of any execution that matches one of the
possible total orders (interleavings) as defined by model X

– “Result of an execution”: Values returned by the reads

6

CS4/MSc Parallel Architectures - 2017-2018

Example: Sequential Consistency

▪ Some valid SC orderings:

7

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;

P1 P2

in
iti

al
iz

at
io

n
pa

ra
lle

l

P1: st C # C=1
P1: st A # A=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

while (B==0);
print A;

P3

P1: st C # C=1
P2: ld A # while
…
P1: st A # A=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

P1: st C # C=1
P2: ld A # while
…
P1: st A # A=1
P2: ld A # while
P3: ld B # while
…
P2: st B # B=1
P3: ld B # while
P3: ld A # print

CS4/MSc Parallel Architectures - 2017-2018

Is this ordering SC?

8

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;

P1 P2

in
iti

al
iz

at
io

n
pa

ra
lle

l

P1: st A # A=1
P1: st C # C=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

while (B==0);
print A;

P3

CS4/MSc Parallel Architectures - 2017-2018

Is this ordering SC? Yes!

9

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;

P1 P2

in
iti

al
iz

at
io

n
pa

ra
lle

l

P1: st A # A=1
P1: st C # C=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

while (B==0);
print A;

P3

P1: st C # C=1
P1: st A # A=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

The values returned by the reads of the execution on the left
matches that of the SC execution on the right!

CS4/MSc Parallel Architectures - 2017-2018

Sequential Consistency (SC)
▪ Sufficient conditions

1. Threads issue memory operations in program order
2. Before issuing next memory operation threads wait until last issued memory

operation completes (i.e., performs w.r.t. all other processors)
3. A read is allowed to complete only if the matching write (i.e., the one whose

value is returned to the read) also completes

▪ Notes:
– Condition 2 guarantees program ordering
– Condition 3 guarantees write atomicity
– These conditions are easily violated in real hardware and compilers (e.g., write

buffers in hdw. and ld-st scheduling in compiler)
– In practice necessary conditions may be more relaxed

10

How SC can be violated

CS4/MSc Parallel Architectures - 2017-2018

P1 P2

flag1 = 1

if(flag2 == 0)
{
 /* critical*/
}

flag2 = 1

if(flag1 == 0)
{
 /* critical*/
}

Initially flag1 = flag2 = 0

11

If write-buffering is used each processor can buffer the writes
(to flag1 and flag2 resp.) and go ahead with the reads. This will
cause both reads (flag1 and flag2) to return 0, causing both P1 and P2 to enter critical
section.

Efficient SC: In-window Speculation

▪ Using speculation (for optimizing W!R, R!R)
– The later read can be issued earlier
– But memory operations complete in program order
– If an invalidate is received, speculation squashed and

replayed starting from the (later) load

▪ Write-prefetching (for optimizing W!W)
– Obtain read-exclusive out-of-order (or in parallel)
– Complete writes in program order.

CS4/MSc Parallel Architectures - 2017-2018 12

Post-retirement speculation

▪ Inwindow speculation in practice good for
R!R and W!W but not W!R

▪ Write takes long time to perform: instruction
window (ROB) can get full.

▪ Post-retirement speculation: speculation
beyond instruction window

CS4/MSc Parallel Architectures - 2017-2018 13

SC via Conflict Ordering

▪ Efficient SC without aggressive speculation

▪ Memory operations may be reordered as long
as reordering is invisible to other processors

CS4/MSc Parallel Architectures - 2017-2018 14

Conflict Ordering

CS4/MSc Parallel Architectures - 2017-2018

P1

P2

a1:flag1 = 1

a2:if(flag2 == 0)
{
 /* critical*/
}

b1:flag2 = 1

b2:if(flag1 == 0)
{
 /* critical*/
}

Initially flag1 = flag2 = 0

15

In this example, does not
matter if (a1,a2) and
(b1,b2) perform out-of-
order; as long as b2 sees
a1, both processors can’t
enter critical section at
the same time

Conflict Ordering

CS4/MSc Parallel Architectures - 2017-2018

P1 P2

a1:flag1 = 1

a2:if(flag2 == 0)
{
 /* critical*/
}

b1:flag2 = 1

b2:if(flag1 == 0)
{
 /* critical*/
}

Initially flag1 = flag2 = 0

16

In this example, does not
matter if (a1,a2) and
(b1,b2) perform out-of-
order; as long as a2 sees
b1, both processors can’t
enter critical section at
the same time

CS4/MSc Parallel Architectures - 2017-2018

Relaxed Memory Consistency Models
▪ At a high level they relax ordering constraints between pairs of reads, writes,

and read-write (e.g., reads are allowed to bypass writes, writes are allowed to
bypass each other)

▪ Some of the models also don’t guarantee write atomicity
▪ Some models make synchronization explicit and different from normal loads

and stores
▪ Many models have been proposed and implemented

– Total Store Ordering (TSO) (e.g., Sparc, intel): relaxes W—>R ordering
– Partial Store Ordering (PSO) (e.g., Sparc): relaxes W—>R and W —>W
– Relaxed Memory Ordering (RMO) (e.g., Sparc): relaxes all 4 memory orders
– Release Consistency (RC) (e.g Itanium): relaxes all 4 memory orders but provides release

store and acquire load (ARM v8 has a similar model).
– IBM Power: relaxes all 4 memory orderings; also relaxes write atomicity; provides 2

types of barriers.
– lwsync: ensures R—>R , R—>W, and W—>W; write-atomicity still not ensured
– sync: ensures all 4 memory ordering; write atomicity also ensured.

17

CS4/MSc Parallel Architectures - 2017-2018

Relaxed Memory Consistency Models
▪ Note that control flow and data flow dependences within a thread

must still be honoured regardless of the consistency model
– E.g.,

– E.g.,

18

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1; while (B==0);
print A;

st to B cannot perform before ld to A

ld to A cannot perform before ld to B

A = 1;
…
A = 2;
…
B = A;

Second st to A cannot perform earlier than st to A

ld to A cannot perform before earlier st to A

CS4/MSc Parallel Architectures - 2017-2018

Example: Total Store Ordering (TSO)
▪ Reads are allowed to bypass writes (can hide write latency)

▪ Still makes prior example work as expected,

 but breaks some intuitive assumptions,

19

…
data = 1;
flag = 1; while (flag==0);

Print data;

P1 P2

…
A = 1;
Print B;

B = 1;
Print A;

P1 P2 SC guarantees that A==0 and B==0 will
never be printed

TSO allows it if ld B (P1) overtakes st A
(P1) and ld A (P2) overtakes st B (P2)

CS4/MSc Parallel Architectures - 2017-2018

Example: Release Consistency (RC)

▪ Reads and writes are allowed to bypass both reads and writes (i.e., any order
that satisfies control flow and data flow is allowed)

▪ Assumes explicit synchronization operations: acquire and release So, for
correct operation, our example must become:

▪ Constraints
– All previous writes (and previous reads) must complete before a release can complete
– No subsequent reads (and subsequent writes) can complete before a previous acquire

completes
– All synchronization operations must be sequentially consistent (i.e., follow the rules for

SC, where an acquire is equivalent to a read and a release is equivalent to a write)

20

…
data = 1;
Release:flag=1; Acquire:while (!flag);

Print data;

P1 P2

CS4/MSc Parallel Architectures - 2017-2018

Example: Release Consistency (RC)
▪ Example: original

program order

21

Read/write
…
Read/write

P1

Acquire

Read/write
…
Read/write
Release

Read/write
…
Read/write

▪ Allowable overlaps

– Reads and writes from block 1 can appear after the
acquire

– Reads and writes from block 3 can appear before the
release

– Between acquire and release any order is valid in block 2
(and also 1 and 3)

▪ Note that despite the many reorderings, this
still matches our intuition of critical sections

1

2

3

Read/write
…
Read/write

1

Acquire

Read/write
…
Read/write
Release

2
Read/write
…
Read/write

3

Implementing RC

▪ Eager RC
– Writes retire into write buffer (and could complete out of order)
– Reads maybe be issued out-of-order (and may complete out of order,

although in practice they processors commit in order.)
– Note: Invalidates need not snoop LSQ
– A release drains the write-buffer
– All loads following an acquire are issued after the acquire.

▪ Question: Must writes eagerly invalidate shared copies?

CS4/MSc Parallel Architectures - 2017-2018 22

Implementing RC

▪ Lazy RC
– Writes retire into write buffer

▪ (and complete out of order)
▪ But only written to the local cache – no eager invalidates.

– A release writes all dirty blocks (including the release
write) in the local cache into coherent lower-level cache
(memory)

– Reads maybe be issued out-of-order (but completed in
inorder)

– Upon an acquire the local cache is self-invalidated (and the
acquire load also forced to miss the local cache)

CS4/MSc Parallel Architectures - 2017-2018 23

Implementing RC: Lazy RC

CS4/MSc Parallel Architectures - 2017-2018

…
data = 1;

Release:flag=1;
Acquire:while (!flag);

Print data;

P1 P2

Upon release, write buffer
flushed to lower level cache

Upon acquire, local cache
invalidated

Lazy RC

▪ Does not require a sharer vector

▪ Would still benefit from local/shared tracking
– Local data need not be written to the lower-level

upon a release
– Local data need not be self-invalidated upon an

acquire
– Could use the directory to track this or even the TLB.

(How)?

▪ Aside: Is the cache still coherent?

CS4/MSc Parallel Architectures - 2017-2018 24

CS4/MSc Parallel Architectures - 2017-2018

SC Behaviour on Relaxed Models

▪ Delay-set Analysis
– Technique to identify pairs of memory accesses that need to be ordered for

SC
– Mark all memory references in both threads and create arcs between them

▪ Directed intra-thread arcs that follow program order (the blue ones below)
▪ Undirected inter-thread arcs that follow cross-thread data dependences (the green

ones below, recall that the print implicitly contains a read)
– Cycles following the arcs indicate the problematic memory references

25

…
A = 1;

Print B;

B = 1;

Print A;

P1 P2

CS4/MSc Parallel Architectures - 2017-2018

SC Behaviour on Relaxed Models
▪ How can ordering be enforced on memory accesses?
▪ Memory Fences:

– New instructions in the IS
– Specify that previously issued memory operations must complete before

processor is allowed to proceed past the fence
▪ Read fence : all previous reads must complete before the next read (or write) can be

issued
▪ Write fence: all previous writes must complete before the next write (or read) can be

issued
▪ Full fence : all previous reads and writes must complete before the next memory

operation can be issued; also guarantees write atomicity.

26

…
A = 1;

Print B;

B = 1;

Print A;

P1 P2

fence fence

CS4/MSc Parallel Architectures - 2017-2018

Final Notes
▪ Many processors/systems support more than one consistency

model, usually set at boot time
– Sparc supports TSO, PSO, RMO

▪ It is possible to decouple consistency model presented to
programmer from that of the hardware/compiler
– E.g., hardware may implement a relaxed model but compiler guarantees SC

via memory fences
– Language Level memory model (C, C++, Java etc. have memory models)

– Variants of DRF: Data-race-free memory models.
– SC guaranteed but only for well synchronised programs
– Well synchronised: All potentially conflicting (racing) operations are

labelled by the programmer.

27

CS4/MSc Parallel Architectures - 2017-2018

References and Further Reading

28

▪ Original definition of sequential consistency:
“How to Make a Multiprocessor Computer that Correctly Execute Multiprocess

Programs”, L. Lamport, IEEE Trans. on. Computers, September 1979.

▪ In-window speculation
 K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to enhance the

performance of memory consistency models., ISCA '91, pages 355--364, 1991.
▪ Post-retirement speculation
 Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. 2009. InvisiFence:

performance-transparent memory ordering in conventional multiprocessors. SIGARCH
Comput. Archit. News37, 3 (June 2009)

▪ Conflict ordering
 Changhui Lin, Vijay Nagarajan, Rajiv Gupta, and Bharghava Rajaram. 2012. Efficient

sequential consistency via conflict ordering. ASPLOS 2012.

▪ A very good tutorial on memory consistency models:
“Shared Memory Consistency Models: A Tutorial”, S. Adve and K. Gharachorloo,

IEEE Computer, December 1996.

CS4/MSc Parallel Architectures - 2017-2018

References and Further Reading

28

▪ Lazy RC
Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. 1992. Lazy release consistency for

software distributed shared memory. SIGARCH Comput. Archit. News 20, 2
(April 1992), 13-21.

Ashby, T.J.; Díaz, P.; Cintra, M.; , "Software-Based Cache Coherence with Hardware-
Assisted Selective Self-Invalidations Using Bloom Filters,"Computers, IEEE
Transactions on , vol.60, no.4, pp.472-483, April 2011

▪ Delay set analysis:
“Efficient and Correct Execution of Parallel Programs that Share Memory”, D.

Shasha and M. Snir, ACM Trans. on. Programming Languages and Operating
Systems, February 1988.

▪ Compiler support for SC on non-SC hardware:
“Hiding Relaxed Memory Consistency with Compilers”, J. Lee and D. Padua, Intl.

Conf. on Parallel Architectures and Compilation Techniques, October 2000

