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▪ Consider the following code: 

– What are the possible outcomes?

1

Lect. 7: Memory Consistency

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;
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while (B==0);
print A, C;

P3
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▪ Consider the following code: 

– What are the possible outcomes?
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Lect. 7: Memory Consistency

A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;
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A==1, C==1?
A==0, C==1?
A==0, C==0?
A==1, C==0?

while (B==0);
print A, C;

P3

Yes. This is what one would expect.
Yes. If st to B overtakes the st to A on the interconnect 
toward P3.
Yes. If the st to A overtakes the st to C from the same 
processor.
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Memory Consistency
▪ Cache coherence: 

– Guarantees eventual write 
     propagation 
– Guarantees a single order 
    of  all writes to same location 

▪ Memory consistency: 
– Specifies the ordering of  loads and stores to different memory locations 
– Defined in so called Memory Consistency Models 
– This is really a “contract” between the hardware, the compiler, and the 

programmer 
▪ i.e., hardware and compiler will not violate the ordering specified 
▪ i.e., the programmer will not assume a stricter order than that of  the model 

– Hardware/Compiler provide “safety net” mechanisms so the user can 
enforce a stricter order than that provided by the model
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No guarantees on when writes propagate. 

For the same memory location. 
No guarantee on write-atomcity 



Write-Serialization vs Write-Atomicity

// Initially all values are 0. 
P1             P2                  P3              P4 
X= 1                                                  X=2 
                  =X(1)             =X(2) 
                  =X(2)             =X(1) 

P1             P2                  P3              P4 
X= 1                                                  Y=1 
                  =X(1)             =Y(1) 
                  =Y(0)             =X(0)
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Violation of   
Write-serialization

Violation of   
Write-atomicity



Sequential Consistency (SC)

   A multiprocessor system is  sequentially 
consistent if  the result of  any execution is 

   the same as if  the operations of  all the 
processors were executed in some sequential 
order, and the operations of  each individual 
processor appear in this sequence in the order 
specified by its program. 

    [Lamport 78]  
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Sequential Consistency (SC)
▪ Key ideas: 

– The behaviour should be the same as in a time-shared multiprocessor 
– Two aspects: 

▪ Program order: memory ordering has to follow the individual order in each thread 
     (R!R, R!W, W!W, W!R) 
▪ Write-atomicity: there can be any interleaving of  such sequential segments - but a single total 

order of  all memory operations 

– Notice that in practice many orderings are still valid

5

P0 P1 Pn

Memory
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Terminology
▪ Issue: memory operation leaves the processor and becomes visible to the 

memory subsystem 
▪ Performed: memory operation appears to have taken place 

– Performed w.r.t. processor X: as far as processor X can tell 
▪ E.g., a store S by processor Y to variable A is performed w.r.t. processor X if  a 

subsequent load by X to A returns the value of  S (or the value of  a store later than S, 
but never a value older than that of  S) 

▪ E.g., a load L is performed w.r.t. processor X if  all subsequent stores by any processor 
cannot affect the value returned by L to X 

– Globally performed or complete: performed w.r.t. to all processors 
▪ E.g., a store S by processor Y to variable A is globally performed if  any subsequent 

load by any processor to A returns the value of  S 

▪ X consistent execution: result of  any execution that matches one of  the 
possible total orders (interleavings) as defined by model X 

– “Result of  an execution”: Values returned by the reads
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Example: Sequential Consistency

▪ Some valid SC orderings:
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A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;
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P1: st C # C=1
P1: st A # A=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

while (B==0);
print A;

P3

P1: st C # C=1
P2: ld A # while
…
P1: st A # A=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

P1: st C # C=1
P2: ld A # while
…
P1: st A # A=1
P2: ld A # while
P3: ld B # while
…
P2: st B # B=1
P3: ld B # while
P3: ld A # print
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Is this ordering SC?
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A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;
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P1: st A # A=1
P1: st C # C=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

while (B==0);
print A;

P3
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Is this ordering SC? Yes! 
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A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1;
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P1: st A # A=1
P1: st C # C=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

while (B==0);
print A;

P3

P1: st C # C=1
P1: st A # A=1
P2: ld A # while
P2: st B # B=1
P3: ld B # while
P3: ld A # print

The values returned by the reads of  the execution on the left 
matches that of  the SC execution on the right!
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Sequential Consistency (SC)
▪ Sufficient conditions 

1.  Threads issue memory operations in program order 
2.  Before issuing next memory operation threads wait until last issued memory 

operation completes (i.e., performs w.r.t. all other processors) 
3.  A read is allowed to complete only if  the matching write (i.e., the one whose 

value is returned to the read) also completes 

▪ Notes: 
– Condition 2 guarantees program ordering 
– Condition 3 guarantees write atomicity 
– These conditions are easily violated in real hardware and compilers (e.g., write 

buffers in hdw. and ld-st scheduling in compiler) 
– In practice necessary conditions may be more relaxed

10



How SC can be violated
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P1 P2

flag1 = 1

if(flag2 == 0)
{
   /* critical*/
}

flag2 = 1

if(flag1 == 0)
{
   /* critical*/
}

Initially flag1 = flag2 = 0
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If  write-buffering is used each processor can buffer the writes  
(to flag1 and flag2 resp.) and go ahead with the reads. This will  
cause both reads (flag1 and flag2) to return 0, causing both P1 and P2 to enter critical 
section. 



Efficient SC: In-window Speculation

▪ Using speculation (for optimizing W!R, R!R) 
– The later read can be issued earlier 
– But memory operations complete in program order 
– If  an invalidate is received, speculation squashed and 

replayed starting from the (later) load 

▪ Write-prefetching (for optimizing W!W) 
– Obtain read-exclusive out-of-order (or in parallel) 
– Complete writes in program order. 
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Post-retirement speculation

▪ Inwindow speculation in practice good for 
R!R and W!W but not W!R 

▪ Write takes long time to perform: instruction 
window (ROB) can get full. 

▪ Post-retirement speculation: speculation 
beyond instruction window
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SC via Conflict Ordering

▪ Efficient SC without aggressive speculation 

▪ Memory operations may be reordered as long 
as reordering is invisible to other processors
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Conflict Ordering
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P1

P2

a1:flag1 = 1

a2:if(flag2 == 0)
{
   /* critical*/
}

b1:flag2 = 1

b2:if(flag1 == 0)
{
   /* critical*/
}

Initially flag1 = flag2 = 0
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In this example, does not 
matter if  (a1,a2) and 
(b1,b2) perform out-of-
order; as long as b2 sees 
a1, both processors can’t 
enter critical section at 
the same time



Conflict Ordering
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P1 P2

a1:flag1 = 1

a2:if(flag2 == 0)
{
   /* critical*/
}

b1:flag2 = 1

b2:if(flag1 == 0)
{
   /* critical*/
}

Initially flag1 = flag2 = 0
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In this example, does not 
matter if  (a1,a2) and 
(b1,b2) perform out-of-
order; as long as a2 sees 
b1, both processors can’t 
enter critical section at 
the same time
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Relaxed Memory Consistency Models
▪ At a high level they relax ordering constraints between pairs of  reads, writes, 

and read-write (e.g., reads are allowed to bypass writes, writes are allowed to 
bypass each other) 

▪ Some of  the models also don’t guarantee write atomicity 
▪ Some models make synchronization explicit and different from normal loads 

and stores 
▪ Many models have been proposed and implemented 

– Total Store Ordering (TSO) (e.g., Sparc, intel): relaxes W—>R ordering 
– Partial Store Ordering (PSO) (e.g., Sparc): relaxes W—>R and W —>W 
– Relaxed Memory Ordering (RMO) (e.g., Sparc): relaxes all 4 memory orders 
– Release Consistency (RC) (e.g Itanium): relaxes all 4 memory orders but provides release 

store and acquire load (ARM v8 has a similar model).  
– IBM Power: relaxes all 4 memory orderings; also relaxes write atomicity; provides 2 

types of  barriers. 
– lwsync: ensures R—>R , R—>W,  and W—>W; write-atomicity still not ensured 
– sync: ensures all 4 memory ordering; write atomicity also ensured. 
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Relaxed Memory Consistency Models
▪ Note that control flow and data flow dependences within a thread 

must still be honoured regardless of  the consistency model 
– E.g.,  

– E.g.,
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A=0, B=0, C=0;
…

C = 1;
A = 1; while (A==0);

B = 1; while (B==0);
print A;

st to B cannot perform before ld to A

ld to A cannot perform before ld to B

A = 1;
…
A = 2;
…
B = A;

Second st to A cannot perform earlier than st to A

ld to A cannot perform before earlier st to A
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Example: Total Store Ordering (TSO)
▪ Reads are allowed to bypass writes (can hide write latency) 

▪ Still makes prior example work as expected, 

     but breaks some intuitive assumptions,
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…
data = 1;
flag = 1; while (flag==0);

Print data;

P1 P2

…
A = 1;
Print B;

B = 1;
Print A;

P1 P2 SC guarantees that A==0 and B==0 will 
never be printed

TSO allows it if  ld B (P1) overtakes st A 
(P1) and ld A (P2) overtakes st B (P2)
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Example: Release Consistency (RC)

▪ Reads and writes are allowed to bypass both reads and writes (i.e., any order 
that satisfies control flow and data flow is allowed) 

▪ Assumes explicit synchronization operations: acquire and release So, for 
correct operation, our example must become: 

▪ Constraints 
– All previous writes (and previous reads) must complete before a release can complete 
– No subsequent reads (and subsequent writes) can complete before a previous acquire 

completes 
– All synchronization operations must be sequentially consistent (i.e., follow the rules for 

SC, where an acquire is equivalent to a read and a release is equivalent to a write)

20

…
data = 1;
Release:flag=1; Acquire:while (!flag);

Print data;

P1 P2
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Example: Release Consistency (RC)
▪ Example: original 

program order
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Read/write
…
Read/write

P1

Acquire

Read/write
…
Read/write
Release

Read/write
…
Read/write

▪ Allowable overlaps 

– Reads and writes from block 1 can appear after the 
acquire  

– Reads and writes from block 3 can appear before the 
release 

– Between acquire and release any order is valid in block 2 
(and also 1 and 3) 

▪ Note that despite the many reorderings, this 
still matches our intuition of  critical sections

1

2

3

Read/write
…
Read/write

1

Acquire

Read/write
…
Read/write
Release

2
Read/write
…
Read/write

3



Implementing RC

▪ Eager RC 
– Writes retire into write buffer (and could complete out of  order) 
– Reads maybe be issued out-of-order (and may complete out of  order, 

although in practice they processors commit in order.)  
– Note: Invalidates need not snoop LSQ 
– A release drains the write-buffer 
– All loads following an acquire are issued after the acquire. 

▪ Question: Must writes eagerly invalidate shared copies?

CS4/MSc Parallel Architectures - 2017-2018 22



Implementing RC

▪ Lazy RC 
– Writes retire into write buffer  

▪ (and complete out of  order) 
▪ But only written to the local cache – no eager invalidates. 

– A release writes all dirty blocks (including the release 
write)  in the local cache into coherent lower-level cache 
(memory) 

– Reads maybe be issued out-of-order (but completed in 
inorder) 

– Upon an acquire the local cache is self-invalidated (and the 
acquire load also forced to miss the local cache)
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Implementing RC: Lazy RC
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…
data = 1;

Release:flag=1;
Acquire:while (!flag);

Print data;

P1 P2

Upon release, write buffer 
flushed to lower level cache

Upon acquire, local cache 
invalidated



Lazy RC

▪ Does not require a sharer vector 

▪ Would still benefit from local/shared tracking 
– Local data need not be written to the lower-level 

upon a release 
– Local data need not be self-invalidated upon an 

acquire 
– Could use the directory to track this or even the TLB. 

(How)?  

▪ Aside: Is the cache still coherent?
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SC Behaviour on Relaxed Models

▪ Delay-set Analysis 
– Technique to identify pairs of  memory accesses that need to be ordered for 

SC 
– Mark all memory references in both threads and create arcs between them 

▪ Directed intra-thread arcs that follow program order (the blue ones below) 
▪ Undirected inter-thread arcs that follow cross-thread data dependences (the green 

ones below, recall that the print implicitly contains a read) 
– Cycles following the arcs indicate the problematic memory references

25

…
A = 1;

Print B;

B = 1;

Print A;

P1 P2
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SC Behaviour on Relaxed Models
▪ How can ordering be enforced on memory accesses? 
▪ Memory Fences: 

– New instructions in the IS  
– Specify that previously issued memory operations must complete before 

processor is allowed to proceed past the fence 
▪ Read fence : all previous reads must complete before the next read (or write) can be 

issued 
▪ Write fence: all previous writes must complete before the next write (or read) can be 

issued 
▪ Full fence : all previous reads and writes must complete before the next memory 

operation can be issued; also guarantees write atomicity. 
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…
A = 1;

Print B;

B = 1;

Print A;

P1 P2

fence fence
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Final Notes
▪ Many processors/systems support more than one consistency 

model, usually set at boot time 
– Sparc supports TSO, PSO, RMO 

▪ It is possible to decouple consistency model presented to 
programmer from that of  the hardware/compiler 
– E.g., hardware may implement a relaxed model but compiler guarantees SC 

via memory fences 
– Language Level memory model (C, C++, Java etc. have memory models) 

– Variants of  DRF: Data-race-free memory models.  
– SC guaranteed but only for well synchronised programs 
– Well synchronised: All potentially conflicting (racing) operations are 

labelled by the programmer.  
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