
CS4/MSc Parallel Architectures - 2017-2018

▪ Snooping coherence
– Global state of a memory line is the collection of its state in all caches, and

there is no summary state anywhere
– All cache controllers monitor all other caches’ activities and maintain the state

of their lines
– Requires a broadcast shared medium (e.g., bus or ring) that also maintains a

total order of all transactions
– Bus acts as a serialization point to provide ordering

▪ Directory coherence
– Global state of a memory line is the collection of its state in all caches, but

there is a summary state at the directory
– Cache controllers do not observe all activity, but interact only with directory
– Can be implemented on scalable networks, where there is no total order and no

simple broadcast, but only one-to-one communication
– Directory acts as a serialization point to provide ordering

1

Lect. 6: Directory Coherence Protocol

CS4/MSc Parallel Architectures - 2017-2018

Directory Structure
▪ Directory information (for every

memory line)
– Line state bits (e.g., not cached, shared,

modified)
– Sharing bit-vector: one bit for each

processor that is sharing or for the
single processor that has the modified
line

– Organized as a table indexed by the
memory line address

▪ Directory controller
– Hardware logic that interacts with

cache controllers and enforces cache
coherence

2

Sharing vector

0 0 00 0

Line state Memory

4

Cache states:
00 = invalid
01 = shared
10 = modified

Dir. states:
00 = not cached
01 = shared
10 = modified

Directory information

Up to 3 processors can be supported

Line is not cached so sharing vector
is empty and memory value is valid

1 0 10 1 9

Line is shared in P0 and P2
and memory value is valid

CS4/MSc Parallel Architectures - 2017-2018

Directory Operation
▪ Example: load with no sharers

3

Sharing vector

0 0 00 0

Line state Memory

4
P0

L1

0 0

Line state

P1
L1

0 0

Line state

P2
L1

0 0

Line state
Cache states:
00 = invalid
01 = shared
10 = modified

Dir. states:
00 = not cached
01 = shared
10 = modified

Load

Miss

1 1

4 Value1

CS4/MSc Parallel Architectures - 2017-2018

Directory Operation
▪ Example: load with sharers

4

Sharing vector

0 0 10 1

Line state Memory

4
P0

L1

0 1

Line state

P1
L1

0 0

Line state

P2
L1

0 0

Line state
Cache states:
00 = invalid
01 = shared
10 = modified

Dir. states:
00 = not cached
01 = shared
10 = modified

Load

4

Miss

1

4

4

Value

1

CS4/MSc Parallel Architectures - 2017-2018

Directory Operation
▪ Example: store with sharers

5

Sharing vector

0 1 10 1

Line state Memory

4
P0

L1

0 1

Line state

P1
L1

0 1

Line state

P2
L1

0 0

Line state
Cache states:
00 = invalid
01 = shared
10 = modified

Dir. states:
00 = not cached
01 = shared
10 = modified

Store

4

Miss

4

4

0

A
ck

no
w

le
dg

e

6

Acknowledge

1 0

Invalidate

1 0 0

Reply

CS4/MSc Parallel Architectures - 2017-2018

Directory Operation
▪ Example: load with owner

6

Sharing vector

0 1 01 0

Line state Memory

4
P0

L1

0 0

Line state

P1
L1

1 0

Line state

P2
L1

0 0

Line state
Cache states:
00 = invalid
01 = shared
10 = modified

Dir. states:
00 = not cached
01 = shared
10 = modified

Load

44

6

Miss

Forward

0 1

6

Value

0 1

Acknowledge+Value

10 1 6

CS4/MSc Parallel Architectures - 2017-2018

Notes on Directory Operation
▪ On a write with multiple sharers it is necessary to collect and count

all the invalidation acknowledgements (ACK) before actually writing
▪ On transactions that involve more complex state changes the

directory must also receive acknowledgement
– To establish the completion of the load or store

▪ As with snooping on buses, “the devil is in the details” and we
actually need transient states, must deal with conflicting requests,
and must handle multi-level caches

▪ As with buses, when buffers overflow we need to introduce NACKs
▪ Directories should work well if only a small number of processors

share common data at any given time (otherwise broadcasts are
better)

7

CS4/MSc Parallel Architectures - 2017-2018

Quantitative Motivation for Directories
▪ Number of invalidations per store miss on MSI with infinite caches

▪ Bottom-line: number of sharers for read-write data is small

8

LU
Radix
Ocean
Raytrace
Barnes-Hut
Radiosity

Culler and Singh
Fig. 8.9

CS4/MSc Parallel Architectures - 2017-2018

Example Implementation Difficulties
▪ Operations have to be serialized locally

▪ Operations have to be serialized at directory

9

P0 P1

Dir.

1. P0 sends read request for line A.

1

2. P1 sends read exclusive request for line A (waits at dir.).
2 3. Dir. responds to (1), sets sharing vector (message gets delayed).

3 4a/b. Dir. responds to (2) to both P0 (sharer) and P1 (new owner).
4a

4b Problem: when (3) finally arrives at P0 the stale value of line A is placed in the
cache. Solution: P0 must serialize transactions locally so that it won’t react to 4b
while it has a read pending.

5. P0 invalidates line A and sends acknowledgement

5

P0 P1

Dir.

1. P1 sends read exclusive request for line A.

1
2. Dir. forwards request to P0 (owner).

2
4. P1 receives (3a) and considers read excl. complete. A replacement miss sends
the updated value back to memory.4

Problem: when (4) arrives dir. accepts and overwrites memory. When (3b) finally
arrives dir. completes ownership transfer and thinks that P1 is the owner.
Solution: dir. must serialize transactions so that it won’t react to 4 while the
ownership transfer is pending.

3b 3a/b. P0 sends data to P1 and ack. to dir. (ack gets delayed).

3a

CS4/MSc Parallel Architectures - 2017-2018

Directory Overhead
▪ Problem: consider a system with 128 processors, 256GB of

memory, 1MB L2 cache per processor, and 64byte cache lines
– 128 bits for sharing vector plus 3 bits for state → ~16bytes
– Per line: 16/64 = 0.25 → 25% memory overhead
– Total: 0.25*256G = 64GB of memory overhead!

▪ Solution: Cached Directories
– At any given point in time there can be only 128M/64 = 2M lines actually

cached in the whole system
– Lines not cached anywhere are implicitly in state “not cached” with null

sharing vector
– To maintain only the entries for the actively cached lines we need to keep the

tags → 64bits = 8bytes
– Overhead per cached line: (8+16)/64 = 0.375 → 37.5% overhead
– Total overhead: 0.375*2M = 768KB of memory overhead

10

CS4/MSc Parallel Architectures - 2017-2018

Scalability of Directory Information
▪ Problem: number of bits in sharing vector limit the maximum

number of processors in the system
– Larger machines are not possible once we decide on the size of the vector
– Smaller machines waste memory

▪ Solution: Limited Pointer Directories
– In practice only a small number of processors share each line at any time
– To keep the ID of up to n processors we need log2n bits and to remember m

sharers we need m IDs → m*log2n
– For n=128 and m=4 → 4*log2128 = 28bits = 3.5bytes
– Total overhead: (3.5/64)*256G = 14GB of memory overhead
– Idea:

▪ Start with pointer scheme
▪ If more than m processors attempt to share the same line then trap to OS and let

OS manage longer lists of sharers
▪ Maintain one extra bit per directory entry to identify the current representation

11

CS4/MSc Parallel Architectures - 2017-2018

Distributed Directories
▪ Directories can be used with UMA systems, but are more commonly used with NUMA systems

▪ In this case the directory is actually distributed across the system
▪ These machines are then called cc-NUMA, for cache-coherent-NUMA, and DSM, for distributed shared memory

12

Interconnection

CPU

Cache

Mem.

Node

Dir.

CPU

Cache

Mem.Dir.

CPU

Cache

Mem.Dir.

CPU

Cache

Mem.Dir.

CS4/MSc Parallel Architectures - 2017-2018

Distributed Directories
▪ Now each part of the directory is only responsible for the memory

lines of its node
▪ How are memory lines distributed across the nodes?

– Lines are mapped per OS page to nodes
– Pages are mapped to nodes following their physical address
– Mapping of physical pages to nodes is done statically in chunks
– E.g., 4 processors with 1MB of memory each and 4KB pages (thus, 256 pages

per node)
▪ Node 0 is responsible (home) for pages [0,255]
▪ Node 1 is responsible for pages [256,511]
▪ Node 2 is responsible for pages [512,767]
▪ Node 3 is responsible for pages [768,1023]
▪ Load to address 1478656 goes to page 1478656/4096=361, which goes to node

361/256=1

13

CS4/MSc Parallel Architectures - 2017-2018

Distributed Directories
▪ How is data mapped to nodes?

– With a single user, OS can map a virtual page to any physical page→ OS can
place data almost anywhere, albeit at the granularity of pages

– Common mapping policies:
▪ First-touch: the first processor to request a particular data has the data’s page

mapped to its range of physical pages
– Good when each processor is the first to touch the data it needs, and other nodes do

not access this page often
▪ Round-robin: as data is requested virtual pages are mapped to physical pages in

circular order (i.e., node 0, node 1, node 2, … node N, node 0, …)
– Good when one processor manipulates most of the data at the beginning of a phase

(e.g., initialization of data)
– Good when some pages are heavily shared (hot pages)

▪ Note: data that is only private is always mapped locally
– Advanced cc-NUMA OS functionality

▪ Mapping of virtual pages to nodes can be changed on-the-fly (page migration)
▪ A virtual page with read-only data can be mapped to physical pages in multiple

nodes (page replication)

14

CS4/MSc Parallel Architectures - 2017-2018

Combined Coherence Schemes
▪ Use bus-based snooping in nodes and directory (or bus snooping) across nodes

– Bus-based snooping coherence for a small number of processors is relatively strait-
forward

– Hopefully communication across processors within a node will not have to go beyond
this domain

– Easier to scale up and down the machine size
– Two levels of state:

▪ Per-node at higher level (e.g., a whole node owns modified data, but Dir. does not know
which processor in the node actually has it)

▪ Per-processor at lower level (e.g., by snooping inside the node we can find the exact owner
and the exact up-to-date value)

15

Bus

CPU

Main memory

CPU CPU CPU

Cache Cache Cache Cache

Dir.

Bus or Scalable interconnect

Bus

CPU

Main memory

CPU CPU CPU

Cache Cache Cache Cache

Dir.

CS4/MSc Parallel Architectures - 2017-2018

References and Further Reading

16

▪ Original directory coherence idea:
“A New Solution to Coherence Problems in Multicache Systems”, L. Censier and P.

Feautrier, IEEE Trans. on Computers, December 1978

▪ Seminal work on distributed directories:
“The DASH Prototype: Implementation and Performance”, D. Lenoski, J. Laudon, T.

Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy, Intl. Symp. on Computer
Architecture, June 1992.

▪ A commercial machine with distributed directories:
“The SGI Origin: a ccNUMA Highly Scalable Server”, J. Laudon and D. Lenoski, Intl.

Symp. on Computer Architecture, June 1997.

▪ A commercial machine with SCI:
“STiNG: a CC-NUMA Computer System for the Commercial Marketplace”, T. Lovett

and R. Clapp, Intl. Symp. on Computer Architecture, June 1996.

▪ Adaptive full/limited pointer distributed directory protocols:
“An Evaluation of Directory Schemes for Cache Coherence”, A. Agarwal, R. Simoni,

J. Hennessy, and M. Horowitz, Intl. Symp. on Computer Architecture, June 1988.

CS4/MSc Parallel Architectures - 2017-2018

Probing Further

17

▪ Page migration and replication for ccNUMA
“Operating System Support for Improving Data Locality on ccNUMA Compute

Servers”, B. Verghese, S. Devine, A. Gupta, and M. Rosemblum, Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems,
October 1996.

▪ Cache Only Memory Architectures
“Comparative Performance Evaluation of Cache-Coherent NUMA and COMA

Architectures”, P. Stenstrom, T. Joe, and A. Gupta, Intl. Symp. on Computer
Architecture, June 1992.

▪ Recent alternative protocols: token, ring
“Token Coherence: Decoupling Performance and Correctness”, M. Martin, M. Hill,

and D. Wood, Intl. Symp. on Computer Architecture, June 2003.
“Coherence Ordering for Ring-Based Chip Multiprocessors”, M. Marty and M. Hill,

Intl. Symp. On Microarchitecture, December 2006.

