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▪ Snooping coherence 
– Global state of  a memory line is the collection of  its state in all caches, and 

there is no summary state anywhere 
– All cache controllers monitor all other caches’ activities and maintain the state 

of  their lines 
– Requires a broadcast shared medium (e.g., bus or ring) that also maintains a 

total order of  all transactions 
– Bus acts as a serialization point to provide ordering 

▪ Directory coherence 
– Global state of  a memory line is the collection of  its state in all caches, but 

there is a summary state at the directory 
– Cache controllers do not observe all activity, but interact only with directory 
– Can be implemented on scalable networks, where there is no total order and no 

simple broadcast, but only one-to-one communication 
– Directory acts as a serialization point to provide ordering
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Lect. 6:  Directory Coherence Protocol
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Directory Structure
▪ Directory information (for every 

memory line) 
– Line state bits (e.g., not cached, shared, 

modified) 
– Sharing bit-vector: one bit for each 

processor that is sharing or for the 
single processor that has the modified 
line 

– Organized as a table indexed by the 
memory line address 

▪ Directory controller 
– Hardware logic that interacts with 

cache controllers and enforces cache 
coherence
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Directory Operation
▪ Example: load with no sharers
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Directory Operation
▪ Example: load with sharers
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Directory Operation
▪ Example: store with sharers
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Directory Operation
▪ Example: load with owner
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Notes on Directory Operation
▪ On a write with multiple sharers it is necessary to collect and count 

all the invalidation acknowledgements (ACK) before actually writing 
▪ On transactions that involve more complex state changes the 

directory must also receive acknowledgement 
– To establish the completion of  the load or store  

▪ As with snooping on buses, “the devil is in the details” and we 
actually need transient states, must deal with conflicting requests, 
and must handle multi-level caches 

▪ As with buses, when buffers overflow we need to introduce NACKs 
▪ Directories should work well if  only a small number of  processors 

share common data at any given time (otherwise broadcasts are 
better)
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Quantitative Motivation for Directories
▪ Number of  invalidations per store miss on MSI with infinite caches 

▪ Bottom-line: number of  sharers for read-write data is small
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Example Implementation Difficulties
▪ Operations have to be serialized locally 

▪ Operations have to be serialized at directory
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P0 P1

Dir.

1. P0 sends read request for line A.

1

2. P1 sends read exclusive request for line A (waits at dir.).
2 3. Dir. responds to (1), sets sharing vector (message gets delayed).

3 4a/b. Dir. responds to (2) to both P0 (sharer) and P1 (new owner).
4a

4b Problem: when (3) finally arrives at P0 the stale value of  line A is placed in the 
cache. Solution: P0 must serialize transactions locally so that it won’t react to 4b 
while it has a read pending.

5. P0 invalidates line A and sends acknowledgement
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P0 P1

Dir.

1. P1 sends read exclusive request for line A.

1
2. Dir. forwards request to P0 (owner).

2
4. P1 receives (3a) and considers read excl. complete. A replacement miss sends 
the updated value back to memory.4

Problem: when (4) arrives dir. accepts and overwrites memory. When (3b) finally 
arrives dir. completes ownership transfer and thinks that P1 is the owner. 
Solution: dir. must serialize transactions so that it won’t react to 4 while the 
ownership transfer is pending.

3b 3a/b. P0 sends data to P1 and ack. to dir. (ack gets delayed).

3a
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Directory Overhead
▪ Problem: consider a system with 128 processors, 256GB of  

memory, 1MB L2 cache per processor, and 64byte cache lines 
– 128 bits for sharing vector plus 3 bits for state → ~16bytes 
– Per line: 16/64 = 0.25 → 25% memory overhead 
– Total: 0.25*256G = 64GB of  memory overhead! 

▪ Solution: Cached Directories 
– At any given point in time there can be only 128M/64 = 2M lines actually 

cached in the whole system 
– Lines not cached anywhere are implicitly in state “not cached” with null 

sharing vector 
– To maintain only the entries for the actively cached lines we need to keep the 

tags → 64bits = 8bytes 
– Overhead per cached line: (8+16)/64 = 0.375 → 37.5% overhead 
– Total overhead: 0.375*2M = 768KB of  memory overhead
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Scalability of  Directory Information
▪ Problem: number of  bits in sharing vector limit the maximum 

number of  processors in the system 
– Larger machines are not possible once we decide on the size of  the vector 
– Smaller machines waste memory 

▪ Solution: Limited Pointer Directories 
– In practice only a small number of  processors share each line at any time 
– To keep the ID of  up to n processors we need log2n bits and to remember m 

sharers we need m IDs → m*log2n 
– For n=128 and m=4 → 4*log2128 = 28bits = 3.5bytes 
– Total overhead: (3.5/64)*256G = 14GB of  memory overhead 
– Idea: 

▪ Start with pointer scheme 
▪ If  more than m processors attempt to share the same line then trap to OS and let 

OS manage longer lists of  sharers 
▪ Maintain one extra bit per directory entry to identify the current representation
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Distributed Directories
▪ Directories can be used with UMA systems, but are more commonly used with NUMA systems 

▪ In this case the directory is actually distributed across the system 
▪ These machines are then called cc-NUMA, for cache-coherent-NUMA, and DSM, for distributed shared memory
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Distributed Directories
▪ Now each part of  the directory is only responsible for the memory 

lines of  its node 
▪ How are memory lines distributed across the nodes? 

– Lines are mapped per OS page to nodes 
– Pages are mapped to nodes following their physical address 
– Mapping of  physical pages to nodes is done statically in chunks 
– E.g., 4 processors with 1MB of  memory each and 4KB pages (thus, 256 pages 

per node) 
▪ Node 0 is responsible (home) for pages [0,255] 
▪ Node 1 is responsible for pages [256,511] 
▪ Node 2 is responsible for pages [512,767] 
▪ Node 3 is responsible for pages [768,1023] 
▪ Load to address 1478656 goes to page 1478656/4096=361, which goes to node 

361/256=1
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Distributed Directories
▪ How is data mapped to nodes? 

– With a single user, OS can map a virtual page to any physical page→ OS can 
place data almost anywhere, albeit at the granularity of  pages 

– Common mapping policies: 
▪ First-touch: the first processor to request a particular data has the data’s page 

mapped to its range of  physical pages 
– Good when each processor is the first to touch the data it needs, and other nodes do 

not access this page often 
▪ Round-robin: as data is requested virtual pages are mapped to physical pages in 

circular order (i.e., node 0, node 1, node 2, … node N, node 0, …) 
– Good when one processor manipulates most of  the data at the beginning of  a phase 

(e.g., initialization of  data) 
– Good when some pages are heavily shared (hot pages) 

▪ Note: data that is only private is always mapped locally 
– Advanced cc-NUMA OS functionality 

▪ Mapping of  virtual pages to nodes can be changed on-the-fly (page migration) 
▪ A virtual page with read-only data can be mapped to physical pages in multiple 

nodes (page replication)
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Combined Coherence Schemes
▪ Use bus-based snooping in nodes and directory (or bus snooping) across nodes 

– Bus-based snooping coherence for a small number of  processors is relatively strait-
forward 

– Hopefully communication across processors within a node will not have to go beyond 
this domain 

– Easier to scale up and down the machine size 
– Two levels of  state: 

▪ Per-node at higher level (e.g., a whole node owns modified data, but Dir. does not know 
which processor in the node actually has it) 

▪ Per-processor at lower level (e.g., by snooping inside the node we can find the exact owner 
and the exact up-to-date value)
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