
CS4/MSc Parallel Architectures - 2017-2018

▪ Snooping coherence on simple shared bus

– “Easy” as all processors and memory controller can observe all transactions
– Bus-side cache controller monitors the tags of the lines involved and reacts if

necessary by checking the contents and state of the local cache
– Bus provides a serialization point (i.e., any transaction A is either before or after

another transaction B)
▪ More complex with split transaction buses

0

P1
L1

0 0

Line state
P2

L1

0 0

Line state
Cache states:
00 = invalid
01 = shared
10 = modified

Lect. 5: Snooping Coherence Protocol

CS4/MSc Parallel Architectures - 2017-2018

▪ Read/Write miss
– When should memory provide data?

▪ Wait until inhibit is deasserted
▪ If Wired OR (sharers, modified) is false, then provides data.

– Write-backs?
▪ Don’t want to wait for writes ! Write-back buffer

1

P1
L1

0 0

Line state
P2

L1

0 0

Line state
Cache states:
00 = invalid
01 = shared
10 = modified

Lect. 5: Snooping Coherence Protocol

CS4/MSc Parallel Architectures - 2017-2018

“The devil is in the details”, Classic Proverb

▪ Problem: conflict when processor and bus-side controller must
check the cache

▪ Solutions:
– Use dual-ported modules for the tag and state array
– Or, duplicate tag and state array

▪ Both must be kept consistent when one is changed, which introduces some
amount of conflicts

2

P1
L1

0 0

Line state
P2

L1

0 0

Line state
Cache states:
00 = invalid
01 = shared
10 = modified

Snooping on Simple Bus

Ld/St

Snooping on Simple Bus

CS4/MSc Parallel Architectures - 2017-2018

Fig 6.4
Culler et al.

CS4/MSc Parallel Architectures - 2017-2018

▪ Problem: even if bus is atomic, state transitions are not instantaneous
and may require several steps → transitions are not atomic

– E.g., read- miss transaction = wait for bus + wait for bus-side controllers to
check cache + data response (or memory response)

– E.g. write-upgrade transactions = wait for bus + wait for bus-side controllers to
invalidate

▪ What to do if there are conflicting requests (i.e to same cache line)
from the same processor or from the bus?

– E.g., an upgrade request may lose bus arbitration to another processor’s and may
have to be re-issued as a full write miss (due to the intervening invalidation)

▪ Solution:
– Introduce transient states to cache lines and the protocol (the I, S, M, etc states

seen in Lecture 4 are then called the stable states)

3

Snooping on Simple Bus

CS4/MSc Parallel Architectures - 2017-2018

Example: Extended MESI Protocol

▪ Transactions originating at this CPU:

4

Invalid Shared

Modified

CPU write miss

CPU write

CPU write hit
CPU read hit

Exclusive
CPU read hit

CPU read miss & shr.

CPU read miss & no shr.

CPU write

I→S,E

CPU read hit

I→M

S→M

CPU write miss

bus granted

CPU read
bus granted &

shr.

bus granted & no shr.

CPU write

bus granted
& no conflict

conflict

CS4/MSc Parallel Architectures - 2017-2018

▪ Problems:
– Processor interacts with L1 while bus snooping device interacts with L2, and

propagating such operations up or down is not instantaneous
– Note: L2 lines could be bigger than L1 lines

5

Snooping with Multi-Level Hierarchies

P1
L1

0 0

Line state
P2

L1

0 0

Line state Cache states:
00 = invalid
01 = shared
10 = modified

Ld/St

L2

0 0

Line state
L2

0 0

Line state

CS4/MSc Parallel Architectures - 2017-2018

▪ Solution:
 1. Maintain inclusion property

– Lines in L1 must also be in L2 → no data is found solely in L1, so no risk of
missing a relevant transaction when snooping at L2

– Lines M state in L1 must also be in M state in L2→ snooping controller at L2
can identify all data that is modified locally

 2. Propagate coherence transactions to L1 as well.
▪ Propagate all transactions from to L1, whether relevant or not
▪ Keep extra state in the L2 lines to tell whether the line is also present in L1 or not

(inclusion bits). If it is present in L2, but inclusion bits say it is not present in L1,
no need to propagate transaction to L1.

6

Snooping with Multi-Level Hierarchies

CS4/MSc Parallel Architectures - 2017-2018

▪ Maintaining inclusion property
 Assume: L1: associativity a1, number of sets n1, block size b1
 L2: associativity a2, number of sets n2, block size b2

– Difficulty: Replacement policy (e.g., LRU)
 Assume: a1=a2=2; b1=b2; n2=k*n1; lines m1, m2, and m3 map to same set

in L1 and the same set in L2; initially m1 is present in L1 and L2

7

Snooping with Multi-Level Hierarchies

m1

L1

m1

L2
P

miss2 miss3

Ld m21

m2m2 fill 4fill 5

miss8 miss9

Ld m16
hit

Ld m37

fill 10fill 11

m3 m3

CS4/MSc Parallel Architectures - 2017-2018

▪ Maintaining inclusion property
 Assume: L1: associativity a1, number of sets n1, block size b1
 L2: associativity a2, number of sets n2, block size b2

– Difficulty: Different line sizes
 Assume: a1=a2=1; b1=1, b2=2; n1=4, n2=8
Thus, words w0 and w17 can coexist in L1, but not in L2

8

Snooping with Multi-Level Hierarchies

w0L1 L2
w1
w2
w3

w16
w17

CS4/MSc Parallel Architectures - 2017-2018

▪ Maintaining inclusion property
– Most combinations of L1/L2 size, associativity, and line size do not

automatically lead to inclusion
– Static solution: One solution is to have a1=1, a2≥1, b1=b2, and n1≤n2
– Dynamic solution: More common solution is to invalidate the L1 line (or

lines, if b1<b2) upon replacing a line in L2. Must also invalidate L1 line(s)
when L2 line is invalidated due to coherence
▪ Propagate all invalidations from L2 to L1, whether relevant or not
▪ Keep extra state in the L2 lines to tell whether the line is also present in L1 or not

(inclusion bits)
– Finally, add a new state to L2 (modified-but-stale) to keep track of lines that

are in state M in L1 (or make L1 write-through)

9

Snooping with Multi-Level Hierarchies

CS4/MSc Parallel Architectures - 2017-2018

▪ Non-split-transaction buses are idle from when the address request
is finished until the data returns from memory or another cache

▪ In split-transaction buses transactions are split into a request
transaction and a response transaction, which can be separated

▪ Sometimes implemented as two buses: one for requests and one for
responses

10

Snooping with Split-Transaction Buses

Address
(normal) address 1

address 2

address 2

Data
(normal) data 1

Address
(split) address 1 address 3

Data
(split) data 0 data 1

CS4/MSc Parallel Architectures - 2017-2018

▪ Problems
– Multiple requests can clash (e.g., a read and a write, or two writes, to the same

data) (Note that this is more complicated than the case in Slide 4, as now
different transactions may be at different stages of service)

– Buffers used to hold pending transactions may fill up (flow control is
required)

– Responses from multiple requests may appear in a different order than their
respective requests
▪ Responses and requests must then be matched using tags for each transaction

11

Snooping with Split-Transaction Buses

CS4/MSc Parallel Architectures - 2017-2018

▪ Clashing requests
– snoop controllers keep track themselves of what transactions are pending, in case

there is conflict
– Allow only one request at a time for each line (e.g., SGI Challenge)

▪ Flow control
– Use negative acknowledgement (NACK) when buffers are full (requests must be

retried later; a bit more tricky with responses, due to danger of deadlock) (e.g.,
SGI Challenge)

– Or, design the size of all queues for the worst case scenario
▪ Ordering of transactions

– Responses can appear in any order → the interleaving of the requests fully
determine the order of transactions (e.g., SGI Challenge)

– Or, enforce a FIFO order of transactions across the whole system (caches +
memory) (e.g., Sun Enterprise)

12

Snooping with Split-Transaction Buses

CS4/MSc Parallel Architectures - 2017-2018

▪ Like a bus, rings easily support broadcasts
▪ Snooping implemented by all controllers checking the message as it passes by and

re-injecting it into the ring
▪ Potentially multiple transactions can be simultaneously on different stretches of

the ring (harder to enforce proper ordering)
▪ Large latency for long rings and growing linearly with number of processors
▪ Used to provide coherence across multiple chips in recent CMP systems (e.g.,

IBM Power 5)

15

Snooping with Ring

P

L1 Mem

P

L1 Mem

P

L1 Mem

P

L1Mem

P

L1 Mem
P

L1 Mem

CS4/MSc Parallel Architectures - 2017-2018

References and Further Reading

16

▪ Original (hardware) cache coherence works:
“Using Cache Memory to Reduce Processor Memory Traffic”, J. Goodman, Intl.

Symp. on Computer Architecture, June 1983.
“A Low-Overhead Coherence Solution for Multiprocessors with Private Cache

Memories”, M. Papamarcos and J. Patel, Intl. Symp. on Computer Architecture,
June 1984.

“Hierarchical Cache/Bus Architecture for Shared-Memory Multiprocessors”, A.
Wilson Jr., Intl. Symp. on Computer Architecture, June 1987.

▪ An early survey of cache coherence protocols:
“Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation Model”, J.

Archibald and J.-L. Baer, ACM Trans. on Computer Systems, November 1986.

▪ Discussion on the difficulties of maintaining inclusion
“On the Inclusion Properties for Multi-Level Cache Hierarchies”, J.-L. Baer and W.-H.

Wang, Intl. Symp. on Computer Architecture, May 1988.

CS4/MSc Parallel Architectures - 2017-2018

References and Further Reading

17

▪ Modern bus-based coherent multiprocessors:
“The Sun Fireplane System Interconnect”, A. Charlesworth, Supercomputing Conf.,

November 2001.

▪ Some software cache coherence schemes:
“The IBM Research Parallel Processor Prototype (RP3): Introduction and

Architecture”, G. Pfister, W. Brantley, D. George, S. Harvey, W. Kleinfelder, K.
McAuliffe, E. Melton, V. Norton, and J. Weiss, Intl. Conf. on Parallel Processing,
August 1985.

 “Automatic Management of Programmable Caches”, R. Cytron, S. Karlowsky, and K.
McAuliffe, Intl. Conf. on Parallel Processing, August 1988.

