Lect. 4: Shared Memory Multiprocessors

= Obtained by connecting full processors together
— Processors have their own connection to memory
— Processors are capable of independent execution and control
(Thus, by this definition, GPU is not a multiprocessor as the GPU cores are not
capable of independent execution, but 2nd generation Xeon Phi is!!)
= Have a single OS for the whole system, support both processes and
threads, and appear as a common multiprogrammed system
(Thus, by this definition, Beowulf clusters are not multiprocessors)
= Can be used to run multiple sequential programs concurrently or
parallel programs

= Suitable for parallel programs where threads can follow different
code (task-level-parallelism)

ALY, 5,
@ CS4/MSc Parallel Architectutes - 2017-2018

Shared Memory Multiprocessors

= Recall the two common organizations:
— Physically centralized memory,
— Physically distributed memory, non-uniform memory access (NUMA)

PRRR PR

uniform memory access

Cache

Cache

Cache

Cache

MA) (a.k.a. SMP

Main memory

Cache Cache Cache Cache E
Mem. || Mem. || Mem Mem E
| | ——

(Note: both organizations have local caches)

[

L) P I
< ',
< -
- ..
s -
- L
.

€ 4

o eV

CS4/MSc Parallel Architectures - 2017-2018

Shared Memory Multiprocessors

Recall the communication model:
— Threads in different processors can use the same virtual address space
— Communication is done through shared memory variables

Producer (p1) Consumer (p2)

\A

data =10:;

X = data * y;

CS4/MSc Parallel Architectures - 2017-2018

Shared Memory Multiprocessors

Recall the communication model:
— Threads in different processors can use the same virtual address space
— Communication is done through shared memory variables
— Explicit synchronization (e.g;, variable flag below)

Producer (p1) Consumer (p2)
flag = O; flag = 0O;
data =10:;

flag = 1;
while (!flag);
» X = data " y;

CS4/MSc Parallel Architectures - 2017-2018

HW Support for Shared Memory

= (Cache Coherence
— Caches + multiprocessers =2 stale values

— System must behave correctly in the presence of caches
= Write propagation
= Write serialization

= Memory Consistency
— When should writes propagate?
— How are memory operations ordered?
— What value should a read return?

= Primitive synchronization instructions
— Memory fences: memory ordering on demand
— Read-Modify-writes: support for %ocks (critical sections)
— 'Transactional memory extensions

ALY, 5,
@ CS4/MSc Parallel Architectutes - 2017-2018

Cache Coherence

Producer (p1) Consumer (p2)
flag = O; flag = 0;
data = 10;
flag =1;
\>]
while (!flag);
X = data * y;

The update to flag (and data) should be (eventually) visible to p2

ALY
@ CS4/MSc Parallel Architectures - 2017-2018

Memory Consistency

Producer (p1) Consumer (p2)
flag = O; flag = O;
data = 10;

flag = 1;

|

x = data * y;

If p2 sees the update to flag, will p2 see the update to data?

WA »
@ CS4/MSc Parallel Architectures - 2017-2018

Primitive Synchronization

Producer (p1) Consumer (p2)
flag = O; flag = O;
/dma=1m
I

fbé=1;

\‘ while (Iflag) {3

x=déa*w

fence

If p2 sees the update to flag, will it see the update to data?

AL 5
@ CS4/MSc Parallel Architectures - 2017-2018

The Cache Coherence Problem

@

Cache

: A not cached
:load A (A=1)
: A=1
: A=1

o

= H H A

3

stale / T, A=1

T.:load A (A=1)

-

use stale value!

@

Cache

T,: A not cached
T,: A not cached
T,: A not cached
T,: A not cached
T,:load A (A=1)

\

use old value

4 4 = A

Main memory

CS4/MSc Parallel Architectures - 2017-2018

@

Cache

o- A not cached
: A not cached
:load A (A=1)
,: store A (A=2)
: A=2

—_

[\

N~

<.
I

—_
.o

tale
/ S

4 4 H A A
D>D>¢|‘|>D>D>

+.

Cache Coherence

= Write Propagation
— writes are (eventually) visible in all processors

s Write Serialization
— Writes are observable in the same order from all

pfOC@SSOrS
// Initially all values are 0.
P1 P2 P3 P4
X=1 X=2
=X (1) =X(2)
=X(2) =X(1)

CS4/MSc Parallel Architectures - 2017-2018

10

Cache Coherence Protocols

= Jdea:
— Keep track of what processors have copies of what data
— Enforce that at any given time a single value of every data exists:
» By getting rid of copies of the data with old values — invalidate protocols
= By updating everyone’s copy of the data — update protocols

= In practice:

— Guarantee that old values are eventually invalidated /updated (write
propagation)
(recall that without synchronization there is no guarantee that a load will
return the new value anyway)

— Guarantee that only a single processor is allowed to modify a certain datum at
any given time (write serialization)

— Must appear as if no caches were present

— Note: must fit with cache’s operation at the granularity of lines

ALY :
@ CS4/MSc Parallel Architectutes - 2017-2018 -

Write-invalidate Example

@ @ @@

Cache Cache Cache
T,:load A (A=1) T,: A not cached T,: A not cached
T, A=1 T,: A not cached T, load A (A=1)

» T5: A not cached T,: A not cached T,: store A (A=2)

T,: A not cached
:load A (A=2)

» T, load A (A=2) T, A=2

new value

invalidate new value

—_
. .o

Main memory

ALY 3
@ CS4/MSc Parallel Architectures - 2017-2018

tale
/ S

4 H A A
>

e e e T

.

Write-update Example

@ @ @@

Cache Cache Cache
T,:load A (A=1) T,: A not cached T,: A not cached
T, A=1 T,: A not cached T, load A (A=1)

» T A=2 T,: A not cached T,: store A (A=2)
TiA=2 T,:load A (A=2) T, A=2

:load A (A=2)

new value

update

Main memory

ALY 3
@ CS4/MSc Parallel Architectures - 2017-2018

— =

13

Invalidate vs. Update Protocols

Invalidate:

+ Multiple writes by the same processor to the cache block only require one
invalidation

+ No need to send the new value of the data (less bandwidth)

— Caches must be able to provide up-to-date data upon request

— Must write-back data to memory when evicting a moditied block

Usually used with write-back caches (more popular)

= Update:

TR

“ l‘
< ',
< A
- -
s -
- U

g
€ 3
o, \.,\

+ New value can be re-used without the need to ask for it again
+ Data can always be read from memory

+ Modified blocks can be evicted from caches silently

— DPossible multiple useless updates (more bandwidth)

Usually used with write-through caches (less popular)

CS4/MSc Parallel Architectures - 2017-2018 14

Cache Coherence Protocols

= Implementation can either be in software or hardware.

= Software coherence
» Expose writeback and self-invalidate to software
= Insert these at appropriate points by leveraging static analysis.
= Problem: conservatism of static analysis

= Hardware coherence

= Add state bits to cache lines to track state of the line
— Most common: Modified, Owned, Exclusive, Shared, Invalid
— Protocols usually named after the states supported

= Cache lines transition between states upon load/store operations from the
local processor and by remote processors

= These state transitions must guarantee:
= write propagation and

= write serialization: no two cache copies can be simultaneously modified
(SWMR: Single writer multiple readers)

ABLY, 5
@ CS4/MSc Parallel Architectures - 2017-2018

15

Example: MSI Protocol

States:

— Modified (M): block is cached only in this cache and has been modified
— Shared (S): block is cached in this cache and possibly in other caches (no
cache can modify the block)

— Invalid (I): block is not cached

CS4/MSc Parallel Architectures - 2017-2018

16

Example: MSI Protocol

= Transactions originated at this CPU:
CPU read hit

CPU read miss C

»

| Shared

Inwvalid

CPU write miss

CPU write (upgrade)

Modified

CPU read hit
CPU write hit

A I
@ CS4/MSc Parallel Architectures - 2017-2018

17

Example: MSI Protocol

= Transactions originated at other CPU:

Remote read miss

Invalid « Shared
Remote write miss
Remote write miss
Remote read miss

Modified

AL 5
@ CS4/MSc Parallel Architectures - 2017-2018

18

Example: MESI Protocol

= States:

— Modified (M): block is cached only in this cache and has been modified
— Exclusive (E): block 1s cached only in this cache, has not been modified, but
can be modified at will

— Shared (S): block is cached in this cache and possibly in other caches
— Invalid (I): block is not cached

= State E is obtained on reads when no other processor has a shared
copy

— All processors must answer 1f they have copies or not
— Or some device must know if processors have copies

= Advantage over MSI

— Often variables are loaded, modified in register, and then stored
— The store on state E then does not require asking for permission to write

ABLY, 5
@ CS4/MSc Parallel Architectures - 2017-2018

Example: MESI Protocol

= Transactions originated at this CPU:
CPU read hit

CPU read miss & sharing (\
In@ | Shared

CPU read miss & no sharing

Must inform everyone

CPU write miss (upgrade)

.
o
.
.
.
R
.
.
.
.
R
R
.
.
.
.
.

.
Pl
.
.
.

Modified B i i
@ e CPU read hit
~ CPU read hit Vo
5®ECPU write hie Can be done silently
< 4 CS4/MSc Parallel Architectures - 2017-2018

20

Example: MESI Protocol

= Transactions originated at other CPU:

Remote read miss

Invalid Remote write miss Shared

A

Remote read miss

Remote write

. Remote read miss
miss

Remote write miss

Modified

A I
@ CS4/MSc Parallel Architectures - 2017-2018

21

Possible Implementations

s Two ways of implementing coherence protocols in hardware
y p g p

— Snooping: all cache controllers monitor all other caches’ activities and
maintain the state of their lines
= Commonly used with buses and in many CMP’s today

— Directory: a central control device directly handles all cache activities and tells
the caches what transitions to make
= Can be of two types: physically centralized and physically distributed
= Commonly used with scalable interconnects and in many CMP’s today

ALY :
@ CS4/MSc Parallel Architectutes - 2017-2018

22

Behavior of Cache Coherence Protocols

TR

“ l‘
< ',
< A
- -
s -
- U

g
€ 3
o, \.,\

Uniprocessor cache misses (the 3 C’s):

— Cold (or compulsory) misses: when a block 1s accessed for the first time

— Capacity misses: when a block 1s not in the cache because it was evicted
because the cache was full

— Conflict misses: when a block is not in the cache because it was evicted
because the cache set was full

Coherence misses: when a block is not in the cache because it was

invalidated by a write from another processor

— Hard to reduce — relates to intrinsic communication and sharing of data in
the parallel application

— Talse sharing coherence misses: processors modify different words of the
cache block (no real communication or sharing) but end up invalidating the

complete block

CS4/MSc Parallel Architectures - 2017-2018

23

Behavior of Cache Coherence Protocols

» False sharing misses increases with larger cache line size

— Only true sharing remains with single word/byte cache lines

= False sharing misses can be reduced with better placement of data

in memory

= True sharing misses tends to decrease with larger cache line sizes

(due to locality)

= Classifying misses in a multiprocessor is not straightforward
— E.g, if PO has line A in the cache and evicts it due to capacity limitation, and
later P1 writes to the same line: 1s this a capacity or a coherence miss?
It is both, as fixing one problem (e.g, increasing cache size) won't fix the
other (see Figure 5.20 of Culler&Singh for a complete decision chart)

AR Y, 5
@ CS4/MSc Parallel Architectures - 2017-2018

24

Behavior of Cache Coherence Protocols

= Common types of data access patterns

Private: data that is only accessed by a single processor
Read-only shared: data that is accessed by multiple processors but only for
reading (this includes instructions)
Migratory: data that is used and modified by multiple processors, but in
turns
Producer-consumer: data that 1s updated by one processor and consumed by
another
Read-write: data that is used and modified by multiple processors
simultaneously

= Data used for synchronization

» Bottom-line: threads don’t usually read and write the same
data indiscriminately

iy

a5 T

< ',
: A
- =
= -
- U
.

&)

OyneV

CS4/MSc Parallel Architectures - 2017-2018 25

References and Further Reading

= “Parallel Computer Architecture”, David E.
Culler, Jaswinder Pal Singh (Chapter 5).

= “A Primer on Memory Consistency and Cache
Coherence”, Dantel J. Sorin, Mark D. Hill,
David A. Wood

CS4/MSc Parallel Architectures - 2017-2018

26

