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Lect. 4:  Shared Memory Multiprocessors 

▪ Obtained by connecting full processors together 
– Processors have their own connection to memory 
– Processors are capable of  independent execution and control 
(Thus, by this definition,  GPU is not a multiprocessor as the GPU cores are not 

capable of  independent execution, but 2nd generation Xeon Phi is!!) 

▪ Have a single OS for the whole system, support both processes and 
threads, and appear as a common multiprogrammed system 
(Thus, by this definition, Beowulf  clusters are not multiprocessors) 

▪ Can be used to run multiple sequential programs concurrently or 
parallel programs 

▪ Suitable for parallel programs where threads can follow different 
code (task-level-parallelism)

1



CS4/MSc Parallel Architectures - 2017-2018

Shared Memory Multiprocessors
▪ Recall the two common organizations: 

– Physically centralized memory, uniform memory access (UMA) (a.k.a. SMP) 
– Physically distributed memory, non-uniform memory access (NUMA) 

(Note: both organizations have local caches)
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▪ Recall the communication model: 
– Threads in different processors can use the same virtual address space 
– Communication is done through shared memory variables
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data = 10;

x = data * y;

Producer (p1) Consumer (p2)

Shared Memory Multiprocessors
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▪ Recall the communication model: 
– Threads in different processors can use the same virtual address space 
– Communication is done through shared memory variables 
– Explicit synchronization (e.g., variable flag below)
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flag = 0;
…
data = 10;
flag = 1;

flag = 0;
…

while (!flag);
x = data * y;

Producer (p1) Consumer (p2)

Shared Memory Multiprocessors



HW Support for Shared Memory

▪ Cache Coherence 
– Caches + multiprocessers ! stale values 
– System must behave correctly in the presence of  caches 

▪ Write propagation 
▪ Write serialization 

▪ Memory Consistency 
– When should writes propagate? 
– How are memory operations ordered? 
– What value should a read return? 

▪ Primitive synchronization instructions 
– Memory fences: memory ordering on demand 
– Read-Modify-writes: support for locks (critical sections)  
– Transactional memory extensions
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Cache Coherence
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flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag);

x = data * y;

Producer (p1) Consumer (p2)

The update to flag (and data)  should be (eventually) visible to  p2
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Memory Consistency
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flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag) {}

x = data * y;

Producer (p1) Consumer (p2)

If  p2 sees the update to flag, will p2 see the update to data?
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Primitive Synchronization 
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flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag) {}

x = data * y;

Producer (p1) Consumer (p2)

If  p2 sees the update to flag, will it see the update to data?

fence

fence
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The Cache Coherence Problem
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Cache Coherence

▪ Write Propagation 
– writes are (eventually) visible in all processors 

▪ Write Serialization 
– Writes are observable in the same order from all 

processors
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// Initially all values are 0. 
P1             P2                  P3              P4 
X= 1                                                  X=2 
                  =X(1)             =X(2) 
                  =X(2)             =X(1) 
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Cache Coherence Protocols
▪ Idea: 

– Keep track of  what processors have copies of  what data 
– Enforce that at any given time a single value of  every data exists: 

▪ By getting rid of  copies of  the data with old values → invalidate protocols 
▪ By updating everyone’s copy of  the data → update protocols 

▪ In practice: 
– Guarantee that old values are eventually invalidated/updated (write 

propagation) 
    (recall that without synchronization there is no guarantee that a load will 

return the new value anyway) 
– Guarantee that only a single processor is allowed to modify a certain datum at 

any given time (write serialization) 
– Must appear as if  no caches were present 
– Note: must fit with cache’s operation at the granularity of  lines
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Write-invalidate Example
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Write-update Example
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Invalidate vs. Update Protocols
▪ Invalidate: 

+ Multiple writes by the same processor to the cache block only require one 
invalidation 

+ No need to send the new value of  the data (less bandwidth) 
– Caches must be able to provide up-to-date data upon request 
– Must write-back data to memory when evicting a modified block 
Usually used with write-back caches (more popular) 

▪ Update: 
+ New value can be re-used without the need to ask for it again 
+ Data can always be read from memory 
+ Modified blocks can be evicted from caches silently 
– Possible multiple useless updates (more bandwidth) 
Usually used with write-through caches (less popular)
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Cache Coherence Protocols
▪ Implementation can either be in software or hardware.  
▪ Software coherence 

▪ Expose writeback and self-invalidate to software 
▪ Insert these at appropriate points by leveraging static analysis. 
▪ Problem: conservatism of  static analysis 

▪ Hardware coherence 
▪ Add state bits to cache lines to track state of  the line 

– Most common: Modified, Owned, Exclusive, Shared, Invalid  
– Protocols usually named after the states supported 

▪ Cache lines transition between states upon load/store operations from the 
local processor and by remote processors 

▪ These state transitions must guarantee: 
▪  write propagation and  
▪ write serialization: no two cache copies can be simultaneously modified 

(SWMR:  Single writer multiple readers)
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Example: MSI Protocol
▪ States: 

– Modified (M): block is cached only in this cache and has been modified 
– Shared (S): block is cached in this cache and possibly in other caches (no 

cache can modify the block) 
– Invalid (I): block is not cached

16



CS4/MSc Parallel Architectures - 2017-2018

Example: MSI Protocol
▪ Transactions originated at this CPU:
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Example: MSI Protocol
▪ Transactions originated at other CPU:
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Example: MESI Protocol
▪ States: 

– Modified (M): block is cached only in this cache and has been modified 
– Exclusive (E): block is cached only in this cache, has not been modified, but 

can be modified at will 
– Shared (S): block is cached in this cache and possibly in other caches 
– Invalid (I): block is not cached 

▪ State E is obtained on reads when no other processor has a shared 
copy 
– All processors must answer if  they have copies or not 
– Or some device must know if  processors have copies 

▪ Advantage over MSI 
– Often variables are loaded, modified in register, and then stored 
– The store on state E then does not require asking for permission to write
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Example: MESI Protocol
▪ Transactions originated at this CPU:
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Example: MESI Protocol
▪ Transactions originated at other CPU:
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Possible Implementations
▪ Two ways of  implementing coherence protocols in hardware 

– Snooping: all cache controllers monitor all other caches’ activities and 
maintain the state of  their lines 
▪ Commonly used with buses and in many CMP’s today 

– Directory: a central control device directly handles all cache activities and tells 
the caches what transitions to make 
▪ Can be of  two types: physically centralized and physically distributed 
▪ Commonly used with scalable interconnects and in many CMP’s today
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Behavior of  Cache Coherence Protocols

▪ Uniprocessor cache misses (the 3 C’s): 
– Cold (or compulsory) misses: when a block is accessed for the first time 
– Capacity misses: when a block is not in the cache because it was evicted 

because the cache was full 
– Conflict misses: when a block is not in the cache because it was evicted 

because the cache set was full 

▪ Coherence misses: when a block is not in the cache because it was 
invalidated by a write from another processor 
– Hard to reduce → relates to intrinsic communication and sharing of  data in 

the parallel application 
– False sharing coherence misses: processors modify different words of  the 

cache block (no real communication or sharing) but end up invalidating the 
complete block
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Behavior of  Cache Coherence Protocols

▪ False sharing misses increases with larger cache line size 
– Only true sharing remains with single word/byte cache lines 

▪ False sharing misses can be reduced with better placement of  data 
in memory 

▪ True sharing misses tends to decrease with larger cache line sizes 
(due to locality) 

▪ Classifying misses in a multiprocessor is not straightforward 
– E.g., if  P0 has line A in the cache and evicts it due to capacity limitation, and 

later P1 writes to the same line: is this a capacity or a coherence miss? 
     It is both, as fixing one problem (e.g., increasing cache size) won’t fix the 

other (see Figure 5.20 of  Culler&Singh for a complete decision chart)
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Behavior of  Cache Coherence Protocols

▪ Common types of  data access patterns 
– Private: data that is only accessed by a single processor 
– Read-only shared: data that is accessed by multiple processors but only for 

reading (this includes instructions) 
– Migratory: data that is used and modified by multiple processors, but in 

turns 
– Producer-consumer: data that is updated by one processor and consumed by 

another 
– Read-write: data that is used and modified by multiple processors 

simultaneously 
▪ Data used for synchronization  

▪ Bottom-line: threads don’t usually read and write the same 
data indiscriminately
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