
CS4/MSc Parallel Architectures - 2017-2018

Lect. 4: Shared Memory Multiprocessors

▪ Obtained by connecting full processors together
– Processors have their own connection to memory
– Processors are capable of independent execution and control
(Thus, by this definition, GPU is not a multiprocessor as the GPU cores are not

capable of independent execution, but 2nd generation Xeon Phi is!!)

▪ Have a single OS for the whole system, support both processes and
threads, and appear as a common multiprogrammed system
(Thus, by this definition, Beowulf clusters are not multiprocessors)

▪ Can be used to run multiple sequential programs concurrently or
parallel programs

▪ Suitable for parallel programs where threads can follow different
code (task-level-parallelism)

1

CS4/MSc Parallel Architectures - 2017-2018

Shared Memory Multiprocessors
▪ Recall the two common organizations:

– Physically centralized memory, uniform memory access (UMA) (a.k.a. SMP)
– Physically distributed memory, non-uniform memory access (NUMA)

(Note: both organizations have local caches)

2

CPU

Main memory

CPU CPU CPU

Cache Cache Cache Cache

CPU

Mem.

CPU CPU CPU

Cache Cache Cache Cache

Mem. Mem. Mem.

CS4/MSc Parallel Architectures - 2017-2018

▪ Recall the communication model:
– Threads in different processors can use the same virtual address space
– Communication is done through shared memory variables

3

data = 10;

x = data * y;

Producer (p1) Consumer (p2)

Shared Memory Multiprocessors

CS4/MSc Parallel Architectures - 2017-2018

▪ Recall the communication model:
– Threads in different processors can use the same virtual address space
– Communication is done through shared memory variables
– Explicit synchronization (e.g., variable flag below)

4

flag = 0;
…
data = 10;
flag = 1;

flag = 0;
…

while (!flag);
x = data * y;

Producer (p1) Consumer (p2)

Shared Memory Multiprocessors

HW Support for Shared Memory

▪ Cache Coherence
– Caches + multiprocessers ! stale values
– System must behave correctly in the presence of caches

▪ Write propagation
▪ Write serialization

▪ Memory Consistency
– When should writes propagate?
– How are memory operations ordered?
– What value should a read return?

▪ Primitive synchronization instructions
– Memory fences: memory ordering on demand
– Read-Modify-writes: support for locks (critical sections)
– Transactional memory extensions

CS4/MSc Parallel Architectures - 2017-2018 5

Cache Coherence

CS4/MSc Parallel Architectures - 2017-2018

flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag);

x = data * y;

Producer (p1) Consumer (p2)

The update to flag (and data) should be (eventually) visible to p2

6

Memory Consistency

CS4/MSc Parallel Architectures - 2017-2018

flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag) {}

x = data * y;

Producer (p1) Consumer (p2)

If p2 sees the update to flag, will p2 see the update to data?

7

Primitive Synchronization

CS4/MSc Parallel Architectures - 2017-2018

flag = 0;
…
data = 10;

flag = 1;

flag = 0;
…

while (!flag) {}

x = data * y;

Producer (p1) Consumer (p2)

If p2 sees the update to flag, will it see the update to data?

fence

fence

8

CS4/MSc Parallel Architectures - 2017-2018

The Cache Coherence Problem

9

CPU

Main memory

CPU CPU

Cache Cache Cache

T0: A=1

T0: A not cached T0: A not cached T0: A not cached
T1: load A (A=1)

T1: A=1

T1: A not cached T1: A not cached
T2: load A (A=1)T2: A not cachedT2: A=1

T2: A=1

T3: store A (A=2)T3: A not cachedT3: A=1

T3: A=1

stale

stale

T4: load A (A=1)T4: A=1 T4: A=2

T4: A=1

use old value

T5: load A (A=1)

use stale value!

Cache Coherence

▪ Write Propagation
– writes are (eventually) visible in all processors

▪ Write Serialization
– Writes are observable in the same order from all

processors

CS4/MSc Parallel Architectures - 2017-2018 10

// Initially all values are 0.
P1 P2 P3 P4
X= 1 X=2
 =X(1) =X(2)
 =X(2) =X(1)

CS4/MSc Parallel Architectures - 2017-2018

Cache Coherence Protocols
▪ Idea:

– Keep track of what processors have copies of what data
– Enforce that at any given time a single value of every data exists:

▪ By getting rid of copies of the data with old values → invalidate protocols
▪ By updating everyone’s copy of the data → update protocols

▪ In practice:
– Guarantee that old values are eventually invalidated/updated (write

propagation)
 (recall that without synchronization there is no guarantee that a load will

return the new value anyway)
– Guarantee that only a single processor is allowed to modify a certain datum at

any given time (write serialization)
– Must appear as if no caches were present
– Note: must fit with cache’s operation at the granularity of lines

11

CS4/MSc Parallel Architectures - 2017-2018

Write-invalidate Example

12

CPU

Main memory

CPU CPU

Cache Cache Cache

T1: load A (A=1)

T1: A=1

T1: A not cached T1: A not cached
T2: load A (A=1)T2: A not cachedT2: A=1

T2: A=1

T3: store A (A=2)T3: A not cachedT3: A not cached

T3: A=1

invalidate

stale

T4: load A (A=2)T4: A not cached T4: A=2

T4: A=1

new value
T5: load A (A=2)

new value

CS4/MSc Parallel Architectures - 2017-2018

Write-update Example

13

CPU

Main memory

CPU CPU

Cache Cache Cache

T1: load A (A=1)

T1: A=1

T1: A not cached T1: A not cached
T2: load A (A=1)T2: A not cachedT2: A=1

T2: A=1

T3: store A (A=2)T3: A not cachedT3: A = 2

T3: A=2

update

update

T4: load A (A=2)T4: A = 2 T4: A=2

T4: A=2

new value

T5: load A (A=2)

CS4/MSc Parallel Architectures - 2017-2018

Invalidate vs. Update Protocols
▪ Invalidate:

+ Multiple writes by the same processor to the cache block only require one
invalidation

+ No need to send the new value of the data (less bandwidth)
– Caches must be able to provide up-to-date data upon request
– Must write-back data to memory when evicting a modified block
Usually used with write-back caches (more popular)

▪ Update:
+ New value can be re-used without the need to ask for it again
+ Data can always be read from memory
+ Modified blocks can be evicted from caches silently
– Possible multiple useless updates (more bandwidth)
Usually used with write-through caches (less popular)

14

CS4/MSc Parallel Architectures - 2017-2018

Cache Coherence Protocols
▪ Implementation can either be in software or hardware.
▪ Software coherence

▪ Expose writeback and self-invalidate to software
▪ Insert these at appropriate points by leveraging static analysis.
▪ Problem: conservatism of static analysis

▪ Hardware coherence
▪ Add state bits to cache lines to track state of the line

– Most common: Modified, Owned, Exclusive, Shared, Invalid
– Protocols usually named after the states supported

▪ Cache lines transition between states upon load/store operations from the
local processor and by remote processors

▪ These state transitions must guarantee:
▪ write propagation and
▪ write serialization: no two cache copies can be simultaneously modified

(SWMR: Single writer multiple readers)

15

CS4/MSc Parallel Architectures - 2017-2018

Example: MSI Protocol
▪ States:

– Modified (M): block is cached only in this cache and has been modified
– Shared (S): block is cached in this cache and possibly in other caches (no

cache can modify the block)
– Invalid (I): block is not cached

16

CS4/MSc Parallel Architectures - 2017-2018

Example: MSI Protocol
▪ Transactions originated at this CPU:

17

Invalid Shared

Modified

CPU read miss

CPU read hit

CPU write miss

CPU write (upgrade)

CPU write hit
CPU read hit

CS4/MSc Parallel Architectures - 2017-2018

Example: MSI Protocol
▪ Transactions originated at other CPU:

18

Invalid Shared

Modified

CPU read miss

CPU read hit

CPU write miss

CPU write

CPU write hit
CPU read hit

Remote write miss

Remote write miss
Remote read miss

Remote read miss

CS4/MSc Parallel Architectures - 2017-2018

Example: MESI Protocol
▪ States:

– Modified (M): block is cached only in this cache and has been modified
– Exclusive (E): block is cached only in this cache, has not been modified, but

can be modified at will
– Shared (S): block is cached in this cache and possibly in other caches
– Invalid (I): block is not cached

▪ State E is obtained on reads when no other processor has a shared
copy
– All processors must answer if they have copies or not
– Or some device must know if processors have copies

▪ Advantage over MSI
– Often variables are loaded, modified in register, and then stored
– The store on state E then does not require asking for permission to write

19

CS4/MSc Parallel Architectures - 2017-2018

Example: MESI Protocol
▪ Transactions originated at this CPU:

20

Invalid Shared

Modified

CPU read miss & sharing

CPU read hit

CPU write miss

CPU write

CPU write hit
CPU read hit

Exclusive
CPU read hit

CPU read miss & no sharing

CPU write

Must inform everyone
(upgrade)

Can be done silently

CS4/MSc Parallel Architectures - 2017-2018

Example: MESI Protocol
▪ Transactions originated at other CPU:

21

Invalid Shared

Modified Exclusive

Remote write
miss

Remote read miss

Remote write miss

Remote read miss

Remote read miss

Remote write miss

CS4/MSc Parallel Architectures - 2017-2018

Possible Implementations
▪ Two ways of implementing coherence protocols in hardware

– Snooping: all cache controllers monitor all other caches’ activities and
maintain the state of their lines
▪ Commonly used with buses and in many CMP’s today

– Directory: a central control device directly handles all cache activities and tells
the caches what transitions to make
▪ Can be of two types: physically centralized and physically distributed
▪ Commonly used with scalable interconnects and in many CMP’s today

22

CS4/MSc Parallel Architectures - 2017-2018

Behavior of Cache Coherence Protocols

▪ Uniprocessor cache misses (the 3 C’s):
– Cold (or compulsory) misses: when a block is accessed for the first time
– Capacity misses: when a block is not in the cache because it was evicted

because the cache was full
– Conflict misses: when a block is not in the cache because it was evicted

because the cache set was full

▪ Coherence misses: when a block is not in the cache because it was
invalidated by a write from another processor
– Hard to reduce → relates to intrinsic communication and sharing of data in

the parallel application
– False sharing coherence misses: processors modify different words of the

cache block (no real communication or sharing) but end up invalidating the
complete block

23

CS4/MSc Parallel Architectures - 2017-2018

Behavior of Cache Coherence Protocols

▪ False sharing misses increases with larger cache line size
– Only true sharing remains with single word/byte cache lines

▪ False sharing misses can be reduced with better placement of data
in memory

▪ True sharing misses tends to decrease with larger cache line sizes
(due to locality)

▪ Classifying misses in a multiprocessor is not straightforward
– E.g., if P0 has line A in the cache and evicts it due to capacity limitation, and

later P1 writes to the same line: is this a capacity or a coherence miss?
 It is both, as fixing one problem (e.g., increasing cache size) won’t fix the

other (see Figure 5.20 of Culler&Singh for a complete decision chart)

24

CS4/MSc Parallel Architectures - 2017-2018

Behavior of Cache Coherence Protocols

▪ Common types of data access patterns
– Private: data that is only accessed by a single processor
– Read-only shared: data that is accessed by multiple processors but only for

reading (this includes instructions)
– Migratory: data that is used and modified by multiple processors, but in

turns
– Producer-consumer: data that is updated by one processor and consumed by

another
– Read-write: data that is used and modified by multiple processors

simultaneously
▪ Data used for synchronization

▪ Bottom-line: threads don’t usually read and write the same
data indiscriminately

25

References and Further Reading

▪ “Parallel Computer Architecture”, David E.
Culler, Jaswinder Pal Singh (Chapter 5).

▪ “A Primer on Memory Consistency and Cache
Coherence”, Daniel J. Sorin, Mark D. Hill,
David A. Wood

CS4/MSc Parallel Architectures - 2017-2018 26

