
CS4/MSc Parallel Architectures - 2017-2018

Lect. 3: Superscalar Processors
▪ Pipelining: several instructions are simultaneously at different

stages of their execution
▪ Superscalar: several instructions are simultaneously at the same

stages of their execution
▪ Out-of-order execution: instructions can be executed in an order

different from that specified in the program
▪ Dependences between instructions:

– Data Dependence (a.k.a. Read after Write - RAW)
– Control dependence

▪ Speculative execution: tentative execution despite dependences

1

CS4/MSc Parallel Architectures - 2017-2018

A 5-stage Pipeline

2

General
registers

ID MEMIF EXE WB

Memory
Memory

IF = instruction fetch (includes PC increment)
ID = instruction decode + fetching values from general purpose registers
EXE = arithmetic/logic operations or address computation
MEM = memory access or branch completion
WB = write back results to general purpose registers

CS4/MSc Parallel Architectures - 2017-2018

A Pipelining Diagram
▪ Start one instruction per clock cycle

3

IF I1 I2

I1 I2ID

EXE

MEM

WB

I1 I2

I1 I2

I1 I2

I3 I4

I3

I3 I4 I5

I3 I4 I5 I6

cycle 1 2 3 4 5 6

instruction
flow

∴each instruction still takes 5 cycles, but instructions now complete
every cycle: CPI → 1

CS4/MSc Parallel Architectures - 2017-2018

Multiple-issue Superscalar
▪ Start two instructions per clock cycle

4

IF I1 I3

I1 I3ID

EXE

MEM

WB

I1 I3

I1 I3

I1 I3

I5 I7

I5

I5 I7 I9

I5 I7 I9 I11

cycle 1 2 3 4 5 6

instruction
flow I2 I4 I6 I8 I10 I12

I2 I4 I6 I8 I10

I2 I4 I6 I8

I2 I4 I6

I2 I4

CPI → 0.5;
IPC → 2

CS4/MSc Parallel Architectures - 2017-2018

Advanced Superscalar Execution

5

▪ Ideally: in an n-issue superscalar, n instructions are fetched,
decoded, executed, and committed per cycle

▪ In practice:
– Data, control, and structural hazards spoil issue flow
– Multi-cycle instructions spoil commit flow

▪ Buffers at issue (issue queue) and commit (reorder buffer)
decouple these stages from the rest of the pipeline and regularize
somewhat breaks in the flow

General
registers

ID MEMFetch
engine EXE WB

Memory
Memory

instructions instructions

CS4/MSc Parallel Architectures - 2017-2018

Problems At Instruction Fetch

6

▪ Crossing instruction cache line boundaries
– e.g., 32 bit instructions and 32 byte instruction cache lines → 8 instructions per

cache line; 4-wide superscalar processor

– More than one cache lookup is required in the same cycle
– Words from different lines must be ordered and packed into instruction queue

Case 1: all instructions
 located in same
 cache line and no
 branch

Case 2: instructions
 spread in more
 lines and no branch

CS4/MSc Parallel Architectures - 2017-2018

Problems At Instruction Fetch

7

▪ Control flow
– e.g., 32 bit instructions and 32 byte instruction cache lines → 8 instructions per

cache line; 4-wide superscalar processor

– Branch prediction is required within the instruction fetch stage
– For wider issue processors multiple predictions are likely required
– In practice most fetch units only fetch up to the first predicted taken branch

Case 1: single not taken
 branch

Case 2: single taken
 branch outside
 fetch range and
 into other cache line

CS4/MSc Parallel Architectures - 2017-2018

Example Frequencies of Control Flow

8

benchmark taken % avg. BB size
of inst. between taken

branches

eqntott 86.2 4.20 4.87

espresso 63.8 4.24 6.65

xlisp 64.7 4.34 6.70

gcc 67.6 4.65 6.88

sc 70.2 4.71 6.71

compress 60.9 5.39 8.85
Data from Rotenberg et. al. for SPEC 92 Int

▪ One branch about every 4 to 6 instructions
▪ One taken branch about every 5 to 9 instructions

CS4/MSc Parallel Architectures - 2017-2018

Solutions For Instruction Fetch

9

▪ Advanced fetch engines that can perform multiple cache line
lookups
– E.g., interleaved I-caches where consecutive program lines are stored in different

banks that be can accessed in parallel

▪ Very fast, albeit not very accurate branch predictors (e.g. branch
target buffers)
– Note: usually used in conjunction with more accurate but slower predictors

▪ Restructuring instruction storage to keep commonly consecutive
instructions together (e.g., Trace cache in Pentium 4)

CS4/MSc Parallel Architectures - 2017-2018

Example Advanced Fetch Unit

10

Figure from
Rotenberg et. al.

Control flow prediction
units:
i) Branch Target Buffer
ii) Return Address Stack
iii) Branch Predictor

Final alignment unit

2-way interleaved I-cache

Mask to select instructions
from each of the cache lines

CS4/MSc Parallel Architectures - 2017-2018

Trace Caches

11

▪ Traditional I-cache: instructions laid out in program order
▪ Dynamic execution order does not always follow program order

(e.g., taken branches) and the dynamic order also changes
▪ Idea:

– Store instructions in execution order (traces)
– Traces can start with any static instruction and are identified by the starting

instruction’s PC
– Traces are dynamically created as instructions are normally fetched and branches

are resolved
– Traces also contain the outcomes of the implicitly predicted branches
– When the same trace is again encountered (i.e., same starting instruction and same

branch predictions) instructions are obtained from trace cache
– Note that multiple traces can be stored with the same starting instruction

Branch Prediction

▪ We already saw BTB for quick predictions
▪ Combining Predictor

– Processors have multiple branch predictors with
accuracy delay tradeoffs

– Meta-predictor chooses what predictor to use
▪ Perceptron predictor

– Uses neural-networks for branch prediction
▪ TAGE predictor

– Similar to combining predictor idea but with no meta
predictor

CS4/MSc Parallel Architectures - 2017-2018 12

Superscalar: Other Challenges

▪ Superscalar decode
– Replicate decoders (ok)

▪ Superscalar issue
– Number of dependence tests increases

quadratically (bad)

▪ Superscalar register read
– Number of register ports increases linearly (bad)

CS4/MSc Parallel Architectures - 2017-2018 13

Superscalar: Other Challenges

▪ Superscalar execute
– Replicate functional units (Not bad)

▪ Superscalar bypass/forwarding
– Increases quadratically (bad)
– Clustering mitigates this problem

▪ Superscalar register-writeback
– Increases linearly (bad)

▪ ILP uncovered
– Limited by ILP inherent in program
– Bigger instruction windows

CS4/MSc Parallel Architectures - 2017-2018 14

Effect of Instruction Window

CS4/MSc Parallel Architectures - 2017-2018

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

0

40

80

120

160

gcc espresso li fpppp doduc tomcatv

14
9

14
988

34

15

35

111310

45

16

49

1215
10

605961

15

41
36

150

119

75

18

63
55

Infinite 2048 512 128 32

15

CS4/MSc Parallel Architectures - 2017-2018

References and Further Reading

16

▪ Original hardware trace cache:
“Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching”, E.

Rotenberg, S. Bennett, and J. Smith, Intl. Symp. on Microarchitecture, December
1996.

▪ Next trace prediction for trace caches:
“Path-Based Next Trace Prediction”, Q. Jacobson, E. Rotenberg, and J. Smith, Intl.

Symp. on Microarchitecture, December 1997.

▪ A Software trace cache:
“Software Trace Cache”, A. Ramirez, J.-L. Larriba-Pey, C. Navarro, J. Torrellas, and M.

Valero, Intl. Conf. on Supercomputing, June 1999.

CS4/MSc Parallel Architectures - 2017-2018

References and Further Reading

17

CS4/MSc Parallel Architectures - 2017-2018

Probing Further

18

▪ Advanced register allocation and de-allocation
“Late Allocation and Early Release of Physical Registers”, T. Monreal, V. Vinals, J.

Gonzalez, A. Gonzalez, and M. Valero, IEEE Trans. on Computers, October 2004.

▪ Value prediction
“Exceeding the Dataflow Limit Via Value Prediction”, M. H. Lipasti and J. P. Shen,

Intl. Symp. on Microarchitecture, December 1996.

▪ Limitations to wide issue processors
“Complexity-Effective Superscalar Processors”, S. Palacharla, N. P. Jouppi, and J.

Smith, Intl. Symp. on Computer Architecture, June 1997.
“Clock Rate Versus IPC: the End of the Road for Conventional Microarchitectures”,

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, Intl. Symp. on
Computer Architecture, June 2000.

CS4/MSc Parallel Architectures - 2017-2018

Pros/Cons of Trace Caches

19

+ Instructions come from a single trace cache line
+ Branches are implicitly predicted

– The instruction that follows the branch is fixed in the trace and implies the branch’s
direction (taken or not taken)

+ I-cache still present, so no need to change cache hierarchy
+ In CISC ISA’s (e.g., x86) the trace cache can keep decoded

instructions (e.g., Pentium 4)
- Wasted storage as instructions appear in both I-cache and trace

cache, and in possibly multiple trace cache lines
- Not very good when there are traces with common sub-paths
- Not very good at handling indirect jumps and returns (which

have multiple targets, instead of only taken/not taken)

CS4/MSc Parallel Architectures - 2017-2018

Structure of a Trace Cache

20

Figure from
Rotenberg et. al.

CS4/MSc Parallel Architectures - 2017-2018

Structure of a Trace Cache

21

▪ Each line contains n instructions from up to m basic blocks
▪ Control bits:

– Valid
– Tag
– Branch flags and mask: m-1 bits to specify the direction of the up to m branches
– Branch mask: the number of branches in the trace
– Trace target address and fall-through address: the address of the next instruction to

be fetched after the trace is exhausted

▪ Trace cache hit:
– Tag must match
– Branch predictions must match the branch flags for all branches in the trace

CS4/MSc Parallel Architectures - 2017-2018

Trace Creation

22

▪ Starts on a trace cache miss
▪ Instructions are fetched up to the first
 predicted taken branch
▪ Instructions are collected, possibly from
 multiple basic blocks (when branches are
 predicted taken)
▪ Trace is terminated when either n instructions
 or m branches have been added
▪ Trace target/fall-through address are
 computed at the end

CS4/MSc Parallel Architectures - 2017-2018

Example

23

▪ I-cache lines contain 8, 32-bit instructions and Trace Cache lines
contain up to 24 instructions and 3 branches

▪ Processor can fetch up to 4 instructions per cycle

L1: I1 [ALU]
 ...
 I5 [Cond. Br. to L3]
L2: I6 [ALU]
 ...
 I12 [Jump to L4]
L3: I13 [ALU]
 ...
 I18 [Cond. Br. to L5]
L4: I19 [ALU]
 ...
 I24 [Cond. Br. to L1]
L5:

Machine Code

B1
(I1-I5)

B2
(I6-I12)

B3
(I13-I18)

B4
(I19-I24)

Basic Blocks

I1 I2 I3

I4 I5 I6 I7 I8 I9 I10 I11

I12 I13 I14 I15 I16 I17 I18 I19

I20 I21 I22 I23

Layout in I-Cache

I24

CS4/MSc Parallel Architectures - 2017-2018

Example

24

▪ Step 1: fetch I1-I3 (stop at end of line) → Trace Cache miss → Start trace collection
▪ Step 2: fetch I4-I5 (possible I-cache miss) (stop at predicted taken branch)
▪ Step 3: fetch I13-16 (possible I-cache miss)
▪ Step 4: fetch I17-I19 (I18 is predicted not taken branch, stop at end of line)
▪ Step 5: fetch I20-I23 (possible I-cache miss)
▪ Step 6: fetch I24 (stop at predicted taken branch)
▪ Step 7: fetch I1-I4 replaced by Trace Cache access

B1
(I1-I5)

B2
(I6-I12)

B3
(I13-I18)

B4
(I19-I24)

Basic Blocks

I1 I2 I3

I4 I5 I6 I7 I8 I9 I10 I11

I12 I13 I14 I15 I16 I17 I18 I19

Layout in I-Cache

Common path

I1 I2 I3 I4 I5 I13 I14 I15

I16 I17 I18 I19 I20 I21 I22 I23

Layout in Trace Cache

I20 I21 I22 I23 I24

I24

