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Lect. 3: Superscalar Processors
▪ Pipelining: several instructions are simultaneously at different 

stages of  their execution 
▪ Superscalar: several instructions are simultaneously at the same 

stages of  their execution 
▪ Out-of-order execution: instructions can be executed in an order 

different from that specified in the program 
▪ Dependences between instructions: 

– Data Dependence (a.k.a. Read after Write - RAW) 
– Control dependence 

▪ Speculative execution: tentative execution despite dependences
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A 5-stage Pipeline
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General 
registers

ID MEMIF EXE WB

Memory
Memory

IF = instruction fetch (includes PC increment) 
ID = instruction decode + fetching values from general purpose registers 
EXE = arithmetic/logic operations or address computation 
MEM = memory access or branch completion 
WB = write back results to general purpose registers
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A Pipelining Diagram
▪ Start one instruction per clock cycle
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IF I1 I2

I1 I2ID

EXE

MEM

WB
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cycle 1 2 3 4 5 6

instruction 
flow

∴each instruction still takes 5 cycles, but instructions now complete 
every cycle: CPI → 1
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Multiple-issue Superscalar
▪ Start two instructions per clock cycle
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IF I1 I3
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WB
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I5

I5 I7 I9

I5 I7 I9 I11

cycle 1 2 3 4 5 6

instruction 
flow I2 I4 I6 I8 I10 I12
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CPI → 0.5; 
IPC → 2
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Advanced Superscalar Execution
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▪ Ideally: in an n-issue superscalar, n instructions are fetched, 
decoded, executed, and committed per cycle 

▪ In practice: 
– Data, control, and structural hazards spoil issue flow 
– Multi-cycle instructions spoil commit flow 

▪ Buffers at issue (issue queue) and commit (reorder buffer) 
decouple these stages from the rest of  the pipeline and regularize 
somewhat breaks in the flow 

General 
registers

ID MEMFetch 
engine EXE WB

Memory
Memory

instructions instructions
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Problems At Instruction Fetch
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▪ Crossing instruction cache line boundaries 
– e.g., 32 bit instructions and 32 byte instruction cache lines → 8 instructions per 

cache line; 4-wide superscalar processor 

– More than one cache lookup is required in the same cycle 
– Words from different lines must be ordered and packed into instruction queue

Case 1: all instructions 
             located in same 
             cache line and no 
             branch

Case 2: instructions 
             spread in more 
             lines and no branch
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Problems At Instruction Fetch
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▪ Control flow 
– e.g., 32 bit instructions and 32 byte instruction cache lines → 8 instructions per 

cache line; 4-wide superscalar processor 

– Branch prediction is required within the instruction fetch stage 
– For wider issue processors multiple predictions are likely required 
– In practice most fetch units only fetch up to the first predicted taken branch

Case 1: single not taken 
             branch

Case 2: single taken 
             branch outside 
             fetch range and 
             into other cache line
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Example Frequencies of  Control Flow
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benchmark taken % avg. BB size
# of inst. between taken 

branches

eqntott 86.2 4.20 4.87 

espresso 63.8  4.24 6.65

xlisp  64.7 4.34  6.70

gcc 67.6  4.65 6.88 

sc 70.2  4.71 6.71 

compress 60.9  5.39  8.85
Data from Rotenberg et. al. for SPEC 92 Int

▪ One branch about every 4 to 6 instructions 
▪ One taken branch about every 5 to 9 instructions
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Solutions For Instruction Fetch
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▪ Advanced fetch engines that can perform multiple cache line 
lookups 
– E.g., interleaved I-caches where consecutive program lines are stored in different 

banks that be can accessed in parallel 

▪ Very fast, albeit not very accurate branch predictors (e.g. branch 
target buffers) 
– Note: usually used in conjunction with more accurate but slower predictors  

▪ Restructuring instruction storage to keep commonly consecutive 
instructions together (e.g., Trace cache in Pentium 4)
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Example Advanced Fetch Unit
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Figure from 
Rotenberg et. al.

Control flow prediction 
units: 
i) Branch Target Buffer 
ii) Return Address Stack 
iii) Branch Predictor

Final alignment unit

2-way interleaved I-cache

Mask to select instructions 
from each of  the cache lines
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Trace Caches
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▪ Traditional I-cache: instructions laid out in program order 
▪ Dynamic execution order does not always follow program order 

(e.g., taken branches) and the dynamic order also changes 
▪ Idea: 

– Store instructions in execution order (traces) 
– Traces can start with any static instruction and are identified by the starting 

instruction’s PC 
– Traces are dynamically created as instructions are normally fetched and branches 

are resolved 
– Traces also contain the outcomes of  the implicitly predicted branches 
– When the same trace is again encountered (i.e., same starting instruction and same 

branch predictions) instructions are obtained from trace cache 
– Note that multiple traces can be stored with the same starting instruction



Branch Prediction

▪ We already saw BTB for quick predictions 
▪ Combining Predictor 

– Processors have multiple branch predictors with 
accuracy delay tradeoffs  

– Meta-predictor chooses what predictor to use 
▪ Perceptron predictor 

– Uses neural-networks for branch prediction 
▪ TAGE predictor 

– Similar to combining predictor idea but with no meta 
predictor
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Superscalar: Other Challenges

▪ Superscalar decode 
– Replicate decoders (ok) 

▪ Superscalar issue 
– Number of  dependence tests increases 

quadratically (bad) 

▪ Superscalar register read 
– Number of  register ports increases linearly (bad)
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Superscalar: Other Challenges

▪ Superscalar execute 
– Replicate functional units (Not bad) 

▪ Superscalar bypass/forwarding 
– Increases quadratically (bad) 
– Clustering mitigates this problem 

▪ Superscalar register-writeback 
– Increases linearly (bad) 

▪ ILP uncovered 
– Limited by ILP inherent in program 
– Bigger instruction windows
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Effect of  Instruction Window
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References and Further Reading
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References and Further Reading
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Probing Further
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Pros/Cons of  Trace Caches
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+ Instructions come from a single trace cache line 
+ Branches are implicitly predicted 

– The instruction that follows the branch is fixed in the trace and implies the branch’s 
direction (taken or not taken) 

+ I-cache still present, so no need to change cache hierarchy 
+ In CISC ISA’s (e.g., x86) the trace cache can keep decoded 

instructions (e.g., Pentium 4) 
- Wasted storage as instructions appear in both I-cache and trace 

cache, and in possibly multiple trace cache lines 
- Not very good when there are traces with common sub-paths 
- Not very good at handling indirect jumps and returns (which 

have multiple targets, instead of  only taken/not taken)
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Structure of  a Trace Cache
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Figure from 
Rotenberg et. al.
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Structure of  a Trace Cache
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▪ Each line contains n instructions from up to m basic blocks 
▪ Control bits: 

– Valid 
– Tag 
– Branch flags and mask: m-1 bits to specify the direction of  the up to m branches 
– Branch mask: the number of  branches in the trace 
– Trace target address and fall-through address: the address of  the next instruction to 

be fetched after the trace is exhausted 

▪ Trace cache hit: 
– Tag must match 
– Branch predictions must match the branch flags for all branches in the trace 
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Trace Creation
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▪ Starts on a trace cache miss 
▪ Instructions are fetched up to the first 
     predicted taken branch 
▪ Instructions are collected, possibly from 
     multiple basic blocks (when branches are 
     predicted taken) 
▪ Trace is terminated when either n instructions 
     or m branches have been added 
▪ Trace target/fall-through address are 
     computed at the end 
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Example
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▪ I-cache lines contain 8, 32-bit instructions and Trace Cache lines 
contain up to 24 instructions and 3 branches 

▪ Processor can fetch up to 4 instructions per cycle

L1: I1  [ALU]
    ...
    I5  [Cond. Br. to L3]
L2: I6  [ALU]
    ...
    I12  [Jump to L4]
L3: I13 [ALU]
    ...
    I18 [Cond. Br. to L5 ]
L4: I19 [ALU]
    ...
    I24 [Cond. Br. to L1]
L5:

Machine Code

B1 
(I1-I5)

B2 
(I6-I12)

B3 
(I13-I18)

B4 
(I19-I24)

Basic Blocks

I1 I2 I3

I4 I5 I6 I7 I8 I9 I10 I11

I12 I13 I14 I15 I16 I17 I18 I19

I20 I21 I22 I23

Layout in I-Cache

I24
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Example
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▪ Step 1: fetch I1-I3 (stop at end of  line) → Trace Cache miss → Start trace collection 
▪ Step 2: fetch I4-I5 (possible I-cache miss) (stop at predicted taken branch) 
▪ Step 3: fetch I13-16 (possible I-cache miss) 
▪ Step 4: fetch I17-I19 (I18 is predicted not taken branch, stop at end of  line) 
▪ Step 5: fetch I20-I23 (possible I-cache miss) 
▪ Step 6: fetch I24 (stop at predicted taken branch) 
▪ Step 7: fetch I1-I4 replaced by Trace Cache access

B1 
(I1-I5)

B2 
(I6-I12)

B3 
(I13-I18)

B4 
(I19-I24)

Basic Blocks

I1 I2 I3

I4 I5 I6 I7 I8 I9 I10 I11

I12 I13 I14 I15 I16 I17 I18 I19

Layout in I-Cache

Common path

I1 I2 I3 I4 I5 I13 I14 I15

I16 I17 I18 I19 I20 I21 I22 I23

Layout in  Trace Cache

I20 I21 I22 I23 I24

I24


