
CS4/MSc Parallel Architectures - 2017-2018

Lect. 2: Types of Parallelism

▪ Parallelism in Hardware (Uniprocessor)
▪ Parallelism in a Uniprocessor

– Pipelining
– Superscalar, VLIW etc.

▪ SIMD instructions, Vector processors, GPUs
▪ Multiprocessor

– Symmetric shared-memory multiprocessors
– Distributed-memory multiprocessors
– Chip-multiprocessors a.k.a. Multi-cores

▪ Multicomputers a.k.a. clusters
▪ Parallelism in Software

▪ Instruction level parallelism
▪ Task-level parallelism
▪ Data parallelism
▪ Transaction level parallelism

1

CS4/MSc Parallel Architectures - 2017-2018

Taxonomy of Parallel Computers
▪ According to instruction and data streams (Flynn):

– Single instruction single data (SISD): this is the standard uniprocessor
– Single instruction, multiple data streams (SIMD):

▪ Same instruction is executed in all processors with different data
▪ E.g., Vector processors, SIMD instructions, GPUs

– Multiple instruction, single data streams (MISD):
▪ Different instructions on the same data
▪ Fault-tolerant computers, Near memory computing (Micron Automata processor).

2

CS4/MSc Parallel Architectures - 2017-2018

Taxonomy of Parallel Computers
▪ According to instruction and data streams (Flynn):

– Single instruction single data (SISD): this is the standard uniprocessor
– Single instruction, multiple data streams (SIMD):

▪ Same instruction is executed in all processors with different data
▪ E.g., Vector processors, SIMD instructions, GPUs

– Multiple instruction, single data streams (MISD):
▪ Different instructions on the same data
▪ Fault-tolerant computers, Near memory computing (Micron Automata processor).

– Multiple instruction, multiple data streams (MIMD): the “common”
multiprocessor
▪ Each processor uses it own data and executes its own program
▪ Most flexible approach
▪ Easier/cheaper to build by putting together “off-the-shelf ” processors

2

CS4/MSc Parallel Architectures - 2017-2018

Taxonomy of Parallel Computers
▪ According to physical organization of processors and memory:

– Physically centralized memory, uniform memory access (UMA)
▪ All memory is allocated at same distance from all processors
▪ Also called symmetric multiprocessors (SMP)
▪ Memory bandwidth is fixed and must accommodate all processors → does not

scale to large number of processors
▪ Used in CMPs today (single-socket ones)

3

Interconnection

CPU

Main memory

CPU CPU CPU

Cache Cache Cache Cache

CS4/MSc Parallel Architectures - 2017-2018

Taxonomy of Parallel Computers
▪ According to physical organization of processors and memory:

– Physically distributed memory, non-uniform memory access (NUMA)
▪ A portion of memory is allocated with each processor (node)
▪ Accessing local memory is much faster than remote memory
▪ If most accesses are to local memory than overall memory bandwidth increases

linearly with the number of processors
▪ Used in multi-socket CMPs E.g Intel Nehalem

4

Interconnection

CPU

Mem.

CPU CPU CPU

Cache Cache Cache Cache

Mem. Mem. Mem.

NodeShanghai

Core 0

Shared L3 Cache (non-inclusive)

IMC HT

L1
Core 1 Core 2 Core 3

L2 L2L2L2

I/O

L1L1L1

Shanghai

Core 4

Shared L3 Cache (non-inclusive)

HT

L1
Core 5 Core 6 Core 7

L2 L2L2L2
L1L1L1

D
D

R
2

A

D
D

R
2

B

IMC

D
D

R
2

C

D
D

R
2

D

I/O

Nehalem-EP

Core 0

Shared L3 Cache (inclusive)

IMC QPI

L1
Core 1 Core 2 Core 3

L2 L2L2L2

I/O

L1L1L1

Nehalem-EP

Core 4

Shared L3 Cache (inclusive)

QPI

L1
Core 5 Core 6 Core 7

L2 L2L2L2
L1L1L1

D
D

R
3

A

IMC

D
D

R
3

C

D
D

R
3

B

D
D

R
3

D

D
D

R
3

F

D
D

R
3

E

I/O

Figure 1: Block diagram of the AMD (left) and Intel (right) system architecture

2. BACKGROUND AND TEST SYSTEMS
Dual-socket SMP systems based on AMD Opteron 23**

(Shanghai) and Intel Xeon 55** (Nehalem-EP) processors
have a similar high level design as depicted in Figure 1.
The L1 and L2 caches are implemented per core, while the
L3 cache is shared among all cores of one processor. The
serial point-to-point links HyperTransport (HT) and Quick
Path Interconnect (QPI) are used for inter-processor and
chipset communication. Moreover, each processor contains
its own integrated memory controller (IMC).

Although the number of cores, clockrates, and cache sizes
are similar, benchmark results can di↵er significantly. For
example in SPEC’s CPU2006 benchmark, the Nehalem typ-
ically outperforms AMD’s Shanghai [1]. This is a result
of multiple aspects such as di↵erent instruction-level par-
allelism, Simultaneous Multi-Threading (SMT), and Intel’s
Turbo Boost Technology. Another important factor is the
architecture of the memory subsystem in conjunction with
the cache coherency protocol [12].

While the basic memory hierarchy structure is similar for
Nehalem and Shanghai systems, the implementation details
di↵er significantly. Intel implements an inclusive last level
cache in order to filter unnecessary snoop tra�c. Core valid
bits within the L3 cache indicate that a cache line may be
present in a certain core. If a bit is not set, the associated
core certainly does not hold a copy of the cache line, thus
reducing snoop tra�c to that core. However, unmodified
cache lines may be evicted from a core’s cache without noti-
fication of the L3 cache. Therefore, a set core valid bit does
not guarantee a cache line’s presence in a higher level cache.

AMD’s last level cache is non-inclusive [6], i.e neither ex-
clusive nor inclusive. If a cache line is transferred from the
L3 cache into the L1 of any core the line can be removed from
the L3. According to AMD this happens if it is “likely” [3]
(further details are undisclosed) that the line is only used
by one core, otherwise a copy can be kept in the L3. Both
processors use extended versions of the well-known MESI [7]
protocol to ensure cache coherency. AMD Opteron proces-
sors implement the MOESI protocol [2, 5]. The additional
state owned (O) allows to share modified data without a
write-back to main memory. Nehalem processors implement
the MESIF protocol [9] and use the forward (F) state to en-
sure that shared unmodified data is forwarded only once.

The configuration of both test systems is detailed in Ta-
ble 1. The listing shows a major disparity with respect to
the main memory configuration. We can assume that Ne-
halem’s three DDR3-1333 channels outperform Shanghai’s
two DDR2-667 channels (DDR2-800 is supported by the
CPU but not by our test system). However, the main mem-
ory performance of AMD processors will improve by switch-
ing to new sockets with more memory channels and DDR3.

We disable Turbo Boost in our Intel test system as it in-
troduces result perturbations that are often unpredictable.
Our benchmarks require only one thread per core to access
all caches and we therefore disable the potentially disadvan-
tageous SMT feature. We disable the hardware prefetchers
for all latency measurements as they introduce result varia-
tions that distract from the actual hardware properties. The
bandwidth measurements are more robust and we enable the
hardware prefetchers unless noted otherwise.

Test system Sun Fire X4140 Intel Evaluation Platform
Processors 2x AMD Opteron 2384 2x Intel Xeon X5570
Codename Shanghai Nehalem-EP

Core/Uncore frequency 2.7 GHz / 2.2 GHz 2.933 GHz / 2.666 GHz
Processor Interconnect HyperTransport, 8 GB/s QuickPath Interconnect, 25.6 GB/s

Cache line size 64 Bytes
L1 cache 64 KiB/64 KiB (per core) 32 KiB/32 KiB (per core)
L2 cache 512 KiB (per core), exclusive of L1 256 KiB (per core), non-inclusive
L3 cache 6 MiB (shared), non-inclusive 8 MiB (shared), inclusive of L1 and L2

Cache coherency protocol MOESI MESIF
Integrated memory controller yes, 2 channel yes, 3 channel

Main memory
8 x 4 GiB DDR2-667, registered, ECC 6x 2 GiB DDR3-1333, registered, ECC

(4 DIMMS per processor) (3 DIMMS per processor)
Operating system Debian 5.0, Kernel 2.6.28.1

Table 1: Configuration of the test systems

414

CS4/MSc Parallel Architectures - 2017-2018

Taxonomy of Parallel Computers
▪ According to memory communication model

– Shared address or shared memory
▪ Processes in different processors can use the same virtual address space
▪ Any processor can directly access memory in another processor node
▪ Communication is done through shared memory variables
▪ Explicit synchronization with locks and critical sections
▪ Arguably easier to program??

– Distributed address or message passing
▪ Processes in different processors use different virtual address spaces
▪ Each processor can only directly access memory in its own node
▪ Communication is done through explicit messages
▪ Synchronization is implicit in the messages
▪ Arguably harder to program??
▪ Some standard message passing libraries (e.g., MPI)

5

CS4/MSc Parallel Architectures - 2017-2018

Shared Memory vs. Message Passing
▪ Shared memory

▪ Message passing

6

flag = 0;
…
a = 10;
flag = 1;

flag = 0;
…
while (!flag) {}
x = a * y;

Producer (p1) Consumer (p2)

…
a = 10;
send(p2, a, label);

…
receive(p1, b, label);
x = b * y;

Producer (p1) Consumer (p2)

CS4/MSc Parallel Architectures - 2017-2018

Types of Parallelism in Applications
▪ Instruction-level parallelism (ILP)

– Multiple instructions from the same instruction stream can be executed
concurrently

– Generated and managed by hardware (superscalar) or by compiler (VLIW)
– Limited in practice by data and control dependences

▪ Thread-level or task-level parallelism (TLP)
– Multiple threads or instruction sequences from the same application can be

executed concurrently
– Generated by compiler/user and managed by compiler and hardware
– Limited in practice by communication/synchronization overheads and by

algorithm characteristics

7

CS4/MSc Parallel Architectures - 2017-2018

Types of Parallelism in Applications

▪ Data-level parallelism (DLP)
– Instructions from a single stream operate concurrently on several data
– Limited by non-regular data manipulation patterns and by memory

bandwidth

▪ Transaction-level parallelism
– Multiple threads/processes from different transactions can be executed

concurrently
– Limited by concurrency overheads

8

CS4/MSc Parallel Architectures - 2017-2018

Example: Equation Solver Kernel
▪ The problem:

– Operate on a (n+2)x(n+2) matrix
– Points on the rim have fixed value
– Inner points are updated as:

– Updates are in-place, so top and left are new
 values and bottom and right are old ones
– Updates occur at multiple sweeps
– Keep difference between old and new values
 and stop when difference for all points is small
 enough

9

A[i,j] = 0.2 x (A[i,j] + A[i,j-1] + A[i-1,j] +
 A[i,j+1] + A[i+1,j])

CS4/MSc Parallel Architectures - 2017-2018

Example: Equation Solver Kernel
▪ Dependences:

– Computing the new value of a given point requires the new value of the
point directly above and to the left

– By transitivity, it requires all points in the sub-matrix in the upper-left corner
– Points along the top-right to bottom-left diagonals can be computed

independently

10

CS4/MSc Parallel Architectures - 2017-2018

Example: Equation Solver Kernel
▪ ILP version (from sequential code):

– Some machine instructions from each j iteration can occur in parallel
– Branch prediction allows overlap of multiple iterations of j loop
– Some of the instructions from multiple j iterations can occur in parallel

11

while (!done) {
 diff = 0;
 for (i=1; i<=n; i++) {
 for (j=1; j<=n; j++) {
 temp = A[i,j];
 A[i,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
 A[i,j+1]+A[i+1,j]);
 diff += abs(A[i,j] – temp);
 }
 }
 if (diff/(n*n) < TOL) done=1;
}

CS4/MSc Parallel Architectures - 2017-2018

Example: Equation Solver Kernel
▪ TLP version (shared-memory):

12

int mymin = 1+(pid * n/P);
int mymax = mymin + n/P – 1;

while (!done) {
 diff = 0; mydiff = 0;
 for (i=mymin; i<=mymax; i++) {
 for (j=1; j<=n; j++) {
 temp = A[i,j];
 A[i,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
 A[i,j+1]+A[i+1,j]);
 mydiff += abs(A[i,j] – temp);
 }
 }
 lock(diff_lock); diff += mydiff; unlock(diff_lock);
 barrier(bar, P);
 if (diff/(n*n) < TOL) done=1;
 barrier(bar, P);
}

CS4/MSc Parallel Architectures - 2017-2018

Example: Equation Solver Kernel
▪ TLP version (shared-memory) (for 2 processors):

– Each processor gets a chunk of rows
▪ E.g., processor 0 gets: mymin=1 and mymax=2
 and processor 1 gets: mymin=3 and mymax=4

13

int mymin = 1+(pid * n/P);
int mymax = mymin + n/P – 1;

while (!done) {
 diff = 0; mydiff = 0;
 for (i=mymin; i<=mymax; i++) {
 for (j=1; j<=n; j++) {
 temp = A[i,j];
 A[i,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
 A[i,j+1]+A[i+1,j]);
 mydiff += abs(A[i,j] – temp);
 }
 ...

CS4/MSc Parallel Architectures - 2017-2018

Example: Equation Solver Kernel
▪ TLP version (shared-memory):

– All processors can access freely the same data structure A
– Access to diff, however, must be in turns
– All processors update together their own done variable

14

...
 for (i=mymin; i<=mymax; i++) {
 for (j=1; j<=n; j++) {
 temp = A[i,j];
 A[i,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
 A[i,j+1]+A[i+1,j]);
 mydiff += abs(A[i,j] – temp);
 }
 }
 lock(diff_lock); diff += mydiff; unlock(diff_lock);
 barrier(bar, P);
 if (diff/(n*n) < TOL) done=1;
 barrier(bar, P);
}

CS4/MSc Parallel Architectures - 2017-2018

Types of Speedups and Scaling
▪ Scalability: adding x times more resources to the machine yields

close to x times better “performance”
– Usually resources are processors (but can also be memory size or

interconnect bandwidth)
– Usually means that with x times more processors we can get ~x times

speedup for the same problem
– In other words: How does efficiency (see Lecture 1) hold as the number of

processors increases?

▪ In reality we have different scalability models:
– Problem constrained
– Time constrained

▪ Most appropriate scalability model depends on the user interests

15

CS4/MSc Parallel Architectures - 2017-2018

Types of Speedups and Scaling
▪ Problem constrained (PC) scaling:

– Problem size is kept fixed
– Wall-clock execution time reduction is the goal
– Number of processors and memory size are increased
– “Speedup” is then defined as:

– Example: Weather simulation that does not complete in reasonable time

16

SPC =
Time(1 processor)

Time(p processors)

CS4/MSc Parallel Architectures - 2017-2018

Types of Speedups and Scaling
▪ Time constrained (TC) scaling:

– Maximum allowable execution time is kept fixed
– Problem size increase is the goal
– Number of processors and memory size are increased
– “Speedup” is then defined as:

– Example: weather simulation with refined grid

17

STC =
Work(p processors)

Work(1 processor)

