Lect. 2: Types of Parallelism

s Parallelism in Hardware (Uniprocessor) o
®~mC

= Parallelism in a Uniprocessor <—m’

— Pipelining ‘:":.:i

— Superscalar, VLIW etc. [—

= SIMD instructions, Vector processors, GPUs | X”mj
*TTme:

= Multiprocessor
— Symmetric shared-memory multiprocessors

-
— Distributed-memory multiprocessors
— Chip-multiprocessors a.k.a. Multi-cores -
= Multicomputers a.k.a. clusters
= Parallelism in Software] o)]
= Instruction level parallelism

= Task-level parallelism m E m m
= Data parallelism ox || o | can || cox

Shared Ctx Data

AI.IISI Al.llﬂl AT M!lll

Transaction level parallelism

p AT P
@ CS4/MSc Parallel Architectures - 2017-2018

Taxonomy of Parallel Computers

= According to instruction and data streams (Flynn):
— Single instruction single data (SISD): this 1s the standard uniprocessor

— Single instruction, multiple data streams (SIMD):
» Same instruction is executed in all processors with different data

s E.g., Vector processors, SIMD instructions, GPUs
— Multiple instruction, single data streams (MISD):

s Different instructions on the same data

s Fault-tolerant computers, Near memory computing (Micron Automata processor).

Lutamata Automata
Processars FPGN Processors
PRE2 ‘ ral

L

el
B + T Automatsy

..... - 'i‘

Automata
Processors
(22 2

- x4 Pawer Connector

Automata
0y, PCle Connector Processors

» 4 .
@ CS4/MSc Parallel Architectures - 2017-2018

DDR3 Memory

Taxonomy of Parallel Computers

= According to instruction and data streams (Flynn):

— Single instruction single data (SISD): this is the standard uniprocessor

— Single instruction, multiple data streams (SIMD):
» Same instruction is executed in all processors with different data
» E.g., Vector processors, SIMD instructions, GPUs

— Multiple instruction, single data streams (MISD):
» Different instructions on the same data
= Fault-tolerant computers, Near memory computing (Micron Automata processor).

— Multiple instruction, multiple data streams (MIMD): the “common”
multiprocessor
= Each processor uses it own data and executes its own program
= Most flexible approach
= Easier/cheaper to build by putting together “off-the-shelf” processors

ALY, 5,
@ CS4/MSc Parallel Architectutes - 2017-2018

Taxonomy of Parallel Computers

= According to physical organization of processors and memory:

— Physically centralized memory, uniform memory access (UMA)

= All memory 1s allocated at same distance from all processors

» Also called symmetric multiprocessors (SMP)

= Memory bandwidth is fixed and must accommodate all processors — does not
scale to large number of processors

= Used in CMPs today (single-socket ones)

PRD@

Cache

Cache

Cache

Cache

Main memory

CS4/MSc Parallel Architectures - 2017-2018

Interconnection

Taxonomy of Parallel Computers

= According to physical organization of processors and memory:

— Physically distributed memory, non-uniform memory access (NUMA)

= A portion of memory is allocated with each processor (node)
= Accessing local memory is much faster than remote memory

= If most accesses are to local memory than overall memory bandwidth increases
linearly with the number of processors

» Used in multi-socket CMPs E.g Intel Nehalem

@ @ @ @ NOdC Nehalem-EP Nehalem-EP

Cache Cache Cache Cache

I I I I
Mem. Mem. Mem. Mem.

DDR3 A
DDR3 B
DDR3 C
DDR3 D
DDR3 F

Interconnection

ALY 3
@ CS4/MSc Parallel Architectures - 2017-2018

Taxonomy of Parallel Computers

= According to memory communication model

— Shared address or shared memory

» Processes in different processors can use the same virtual address space
= Any processor can directly access memory in another processor node

» Communication is done through shared memory variables

Explicit synchronization with locks and critical sections

Arguably easier to program??

— Distributed address or message passing

= Processes in different processors use different virtual address spaces
» Each processor can only directly access memory in its own node

» Communication is done through explicit messages

» Synchronization is implicit in the messages

= Arguably harder to program??

» Some standard message passing libraries (e.g., MPI)

ALY, 5,
@ CS4/MSc Parallel Architectutes - 2017-2018

Shared Memory vs. Message Passing

= Shared memory

Producer (p1) Consumer (p2)
flag = 0O; flag = 0O;

a=10; while (!flag) {}
flag =1; *X=ary;

= Message passing

Producer (p1) Consumer (p2)

a=10:; , receive(p1i, b, label);

send(p2, a, label); _—— X=b™"y;

ALY 3
@ CS4/MSc Parallel Architectures - 2017-2018

Types of Parallelism in Applications

= Instruction-level parallelism (ILP)

— Multiple instructions from the same instruction stream can be executed

concurrently

— Generated and managed by hardware (superscalar) or by compiler (VLIW)

— Limited in practice by data and control dependences

= Thread-level or task-level parallelism (TLP)

Multiple threads or instruction sequences from the same application can be
executed concurrently

Generated by compiler/user and managed by compiler and hardware

Limited in practice by communication/synchronization overheads and by
algorithm characteristics

CS4/MSc Parallel Architectures - 2017-2018

Types of Parallelism in Applications

= Data-level parallelism (DLP)

— Instructions from a single stream operate concurrently on several data

— Limited by non-regular data manipulation patterns and by memory

bandwidth

= Transaction-level parallelism

— Multiple threads/processes from different transactions can be executed
concurrently

— Limited by concurrency overheads

ALY, 5,
@ CS4/MSc Parallel Architectutes - 2017-2018

Example: Equation Solver Kernel

= The problem:

Operate on a (n+2)x(n+2) matrix

Points on the rim have fixed value

Inner points are updated as:

AlLj] = 0.2 x (A[y,)] + A[L,)-1] + A[i-1,] +

AlLj+1] + Ai+1,j])

Updates are in-place, so top and left are new

values and bottom and right are old ones

Updates occur at multiple sweeps

Keep difference between old and new values

and stop when difference for all points is small

enough

CS4/MSc Parallel Architectures - 2017-2018

©0 00

XYEXEXXK,
00000
00000

Example: Equation Solver Kernel

= Dependences:

— Computing the new value of a given point requires the new value of the
point directly above and to the left

— By transitivity, it requires all points in the sub-matrix in the upper-left corner

— DPoints along the top-right to bottom-left diagonals can be computed
independently

4

7
4

ALY, 5,
@ CS4/MSc Parallel Architectutes - 2017-2018

10

Example: Equation Solver Kernel

= JLP version (from sequential code):
— Some machine instructions from each j iteration can occur in parallel
— Branch prediction allows overlap of multiple iterations of | loop

— Some of the instructions from multiple j iterations can occur in parallel

while (!done) {
diff = O;
for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {
temp = A[i,j];
Ali,jl = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
All,j+1]+A[iI+1,]]);
diff += abs(AJi,j] — temp);
}

;
if (diff/(n*n) < TOL) done=1;

s }
@ CS4/MSc Parallel Architectutes - 2017-2018

11

Example: Equation Solver Kernel

= TLP version (shared-memory):

int mymin = 1+(pid * n/P);
int mymax = mymin + n/P —1;

while (!done) {
diff = 0; mydiff = O;
for (i=mymin; i<=mymax; i++) {
for (j=1; j<=n; j++) {
temp = A[i,j];
Afi,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
All,j+1]+A[iI+1,]]);
mydiff += abs(A[i,j] — temp);
}
}
lock(diff_lock); diff += mydiff; unlock(diff_lock);
barrier(bar, P);
if (diff/(n*n) < TOL) done=1;

LA F g .
5@*_ barrier(bar, P);
<> S CS4/MSc Parallel Architectures - 2017-2018

12

Example: Equation Solver Kernel

= TLP version (shared-memory) (for 2 processors):

— FEach processor gets a chunk of rows
» E.g., processor 0 gets: mymin=1 and mymax=2
and processor 1 gets: mymin=3 and mymax=4

int mymin = 1+(pid * n/P);
int mymax = mymin + n/P —1;

while (!done) {
diff = O; mydiff = O:
for (i=mymin; i<=mymax; i++) {
for (j=1; j<=n; j++) {
temp = A[i,j];
Afi,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
All,j+1]+A[iI+1,]]);
mydiff += abs(A[i,j] — temp);
}

CS4/MSc Parallel Architectures - 2017-2018

13

Example: Equation Solver Kernel

= TLP version (shared-memory):
— All processors can access freely the same data structure A
— Access to diff, however, must be in turns

— All processors update together their own done variable

for (i=mymin; i<=mymax; i++) {
for (j=1; j<=n; j++) {
temp =Aflj}
Afi,j] = 0.2*(A[i,j]+A[i,j-1]+A[i-1,j] +
Ali.j+1]+A[i+1.]]):
mydiff += abs(A[i,j] — temp);

}

1

J

lock(diff lock); diff += mydiff; unlock(diff lock);
barrier(bar, P);
if (diff/(n*n) < TOL) done=1;

@ barrier(bar, P);
R <> S CS4/MSc Parallel Architectures - 2017-2018

Types ot Speedups and Scaling

= Scalability: adding x times more resources to the machine yields
close to x times better “performance”

— Usually resources are processors (but can also be memory size or
interconnect bandwidth)

— Usually means that with x times more processors we can get ~x times
speedup for the same problem

— In other words: How does efficiency (see Lecture 1) hold as the number of
processors increases?

= In reality we have different scalability models:
— Problem constrained
— Time constrained

= Most appropriate scalability model depends on the user interests

ABLY, 5
@ CS4/MSc Parallel Architectures - 2017-2018

15

Types ot Speedups and Scaling

= Problem constrained (PC) scaling:

Problem size 1s kept fixed
Wall-clock execution time reduction 1s the goal
Number of processors and memory size are increased

“Speedup” 1s then defined as:

Time(1 processor)

Spc
Time(p processors)

Example: Weather simulation that does not complete in reasonable time

CS4/MSc Parallel Architectures - 2017-2018

16

Types ot Speedups and Scaling

= Time constrained (T'C) scaling:

Maximum allowable execution time is kept fixed
Problem size increase is the goal
Number of processors and memory size are increased

“Speedup” 1s then defined as:

Work(p processors)

Ste
Work(1 processor)

Example: weather simulation with refined grid

CS4/MSc Parallel Architectures - 2017-2018

17

