Lect. 2: Types of Parallelism

- Parallelism in Hardware (Uniprocessor)
 - Parallelism in a Uniprocessor
 - Pipelining
 - Superscalar, VLIW etc.
 - SIMD instructions, Vector processors, GPUs
 - Multiprocessor
 - Symmetric shared-memory multiprocessors
 - Distributed-memory multiprocessors
 - Chip-multiprocessors a.k.a. Multi-cores
 - Multicomputers a.k.a. clusters

- Parallelism in Software
 - Instruction level parallelism
 - Task-level parallelism
 - Data parallelism
 - Transaction level parallelism
Taxonomy of Parallel Computers

- According to instruction and data streams (Flynn):
 - Single instruction single data (SISD): this is the standard uniprocessor
 - Single instruction, multiple data streams (SIMD):
 - Same instruction is executed in all processors with different data
 - E.g., Vector processors, SIMD instructions, GPUs
 - Multiple instruction, single data streams (MISD):
 - Different instructions on the same data
 - Fault-tolerant computers, Near memory computing (Micron Automata processor).
Taxonomy of Parallel Computers

- According to instruction and data streams (Flynn):
 - Single instruction single data (SISD): this is the standard uniprocessor
 - Single instruction, multiple data streams (SIMD):
 - Same instruction is executed in all processors with different data
 - E.g., Vector processors, SIMD instructions, GPUs
 - Multiple instruction, single data streams (MISD):
 - Different instructions on the same data
 - Fault-tolerant computers, Near memory computing (Micron Automata processor).
 - Multiple instruction, multiple data streams (MIMD): the “common” multiprocessor
 - Each processor uses its own data and executes its own program
 - Most flexible approach
 - Easier/cheaper to build by putting together “off-the-shelf” processors
Taxonomy of Parallel Computers

- According to physical organization of processors and memory:
 - Physically centralized memory, **uniform memory access (UMA)**
 - All memory is allocated at the same distance from all processors
 - Also called symmetric multiprocessors (SMP)
 - Memory bandwidth is fixed and must accommodate all processors → does not scale to large number of processors
 - Used in CMPs today (single-socket ones)
Taxonomy of Parallel Computers

- According to physical organization of processors and memory:
 - Physically distributed memory, **non-uniform memory access (NUMA)**
 - A portion of memory is allocated with each processor (**node**)
 - Accessing local memory is much faster than remote memory
 - If most accesses are to local memory than overall memory bandwidth increases linearly with the number of processors
 - Used in multi-socket CMPs E.g Intel Nehalem

![Diagram of CPU, Cache, Mem., and Interconnection](image)

Node

Interconnection
Taxonomy of Parallel Computers

- According to memory communication model
 - Shared address or **shared memory**
 - Processes in different processors can use the same virtual address space
 - Any processor can directly access memory in another processor node
 - Communication is done through shared memory variables
 - Explicit synchronization with locks and critical sections
 - Arguably easier to program??
 - Distributed address or **message passing**
 - Processes in different processors use different virtual address spaces
 - Each processor can only directly access memory in its own node
 - Communication is done through explicit messages
 - Synchronization is implicit in the messages
 - Arguably harder to program??
 - Some standard message passing libraries (e.g., MPI)
Shared Memory vs. Message Passing

- Shared memory

 Producer (p1) Consumer (p2)

 flag = 0;
 ...
 a = 10;
 flag = 1;

- Message passing

 Producer (p1) Consumer (p2)

 ...
 a = 10;
 send(p2, a, label);

 receive(p1, b, label);
 x = b * y;
Types of Parallelism in Applications

- Instruction-level parallelism (ILP)
 - Multiple instructions from the same instruction stream can be executed concurrently
 - Generated and managed by hardware (superscalar) or by compiler (VLIW)
 - Limited in practice by data and control dependences

- Thread-level or task-level parallelism (TLP)
 - Multiple threads or instruction sequences from the same application can be executed concurrently
 - Generated by compiler/user and managed by compiler and hardware
 - Limited in practice by communication/synchronization overheads and by algorithm characteristics
Types of Parallelism in Applications

- Data-level parallelism (DLP)
 - Instructions from a single stream operate concurrently on several data
 - Limited by non-regular data manipulation patterns and by memory bandwidth

- Transaction-level parallelism
 - Multiple threads/processes from different transactions can be executed concurrently
 - Limited by concurrency overheads
Example: Equation Solver Kernel

- The problem:
 - Operate on a \((n+2) \times (n+2)\) matrix
 - Points on the rim have fixed value
 - Inner points are updated as:

\[
\]

- Updates are in-place, so top and left are new values and bottom and right are old ones
- Updates occur at multiple sweeps
- Keep difference between old and new values and stop when difference for all points is small enough
Example: Equation Solver Kernel

- **Dependences:**
 - Computing the new value of a given point requires the new value of the point directly above and to the left.
 - By transitivity, it requires all points in the sub-matrix in the upper-left corner.
 - Points along the top-right to bottom-left diagonals can be computed independently.
Example: Equation Solver Kernel

- ILP version (from sequential code):
 - Some machine instructions from each j iteration can occur in parallel
 - Branch prediction allows overlap of multiple iterations of j loop
 - Some of the instructions from multiple j iterations can occur in parallel

```c
while (!done) {
    diff = 0;
    for (i=1; i<=n; i++) {
        for (j=1; j<=n; j++) {
            temp = A[i,j];
                        A[i,j+1]+A[i+1,j]);
            diff += abs(A[i,j] – temp);
        }
    }
    if (diff/(n*n) < TOL) done=1;
}
```
Example: Equation Solver Kernel

- TLP version (shared-memory):

```c
int mymin = 1+(pid * n/P);
int mymax = mymin + n/P - 1;

while (!done) {
    diff = 0; mydiff = 0;
    for (i=mymin; i<=mymax; i++) {
        for (j=1; j<=n; j++) {
            temp = A[i,j];
                          A[i,j+1]+A[i+1,j]);
            mydiff += abs(A[i,j] - temp);
        }
    }
    lock(diff_lock); diff += mydiff; unlock(diff_lock);
    barrier(bar, P);
    if (diff/(n*n) < TOL) done=1;
    barrier(bar, P);
}
```
Example: Equation Solver Kernel

- **TLP version (shared-memory) (for 2 processors):**
 - Each processor gets a chunk of rows
 - E.g., processor 0 gets: $\text{mymin}=1$ and $\text{mymax}=2$
 and processor 1 gets: $\text{mymin}=3$ and $\text{mymax}=4$

```c
int mymin = 1+(pid * n/P);
int mymax = mymin + n/P - 1;

while (!done) {
    diff = 0; mydiff = 0;
    for (i=mymin; i<=mymax; i++) {
        for (j=1; j<=n; j++) {
            temp = A[i,j];
                          A[i,j+1]+A[i+1,j]);
            mydiff += abs(A[i,j] – temp);
        }
    }
    mydiff += abs(A[i,j] – temp);
}
...
```
Example: Equation Solver Kernel

- **TLP version (shared-memory):**
 - All processors can access freely the same data structure \(A \)
 - Access to \(\text{diff} \), however, must be in turns
 - All processors update together their own \text{done} variable

```c
... for (i=mymin; i<=mymax; i++) {
    for (j=1; j<=n; j++) {
        temp = A[i,j];
                      A[i,j+1]+A[i+1,j]);
        mydiff += abs(A[i,j] – temp);
    }
}
lock(diff_lock); diff += mydiff; unlock(diff_lock);
barrier(bar, P);
if (diff/(n*n) < TOL) done=1;
barrier(bar, P);
}```
Types of Speedups and Scaling

- **Scalability**: adding \( \times \) times more resources to the machine yields close to \( \times \) times better “performance”
  - Usually resources are processors (but can also be memory size or interconnect bandwidth)
  - Usually means that with \( \times \) times more processors we can get \( \sim \times \) times speedup for the same problem
  - In other words: How does efficiency (see Lecture 1) hold as the number of processors increases?

- In reality we have different scalability models:
  - Problem constrained
  - Time constrained

- Most appropriate scalability model depends on the user interests
Types of Speedups and Scaling

- Problem constrained (PC) scaling:
  - Problem size is kept fixed
  - Wall-clock execution time reduction is the goal
  - Number of processors and memory size are increased
  - “Speedup” is then defined as:

\[ S_{PC} = \frac{\text{Time}(1 \text{ processor})}{\text{Time}(p \text{ processors})} \]

- Example: Weather simulation that does not complete in reasonable time
Types of Speedups and Scaling

- Time constrained (TC) scaling:
  - Maximum allowable execution time is kept fixed
  - Problem size increase is the goal
  - Number of processors and memory size are increased
  - “Speedup” is then defined as:

\[
S_{TC} = \frac{\text{Work}(p \text{ processors})}{\text{Work}(1 \text{ processor})}
\]

- Example: weather simulation with refined grid