CS4/MSc Parallel Architectures

Dr. Vijay Nagarajan
Institute for Computing Systems Architecture
(thanks to Prof. Marcelo Cintra)
General Information

- TA: Arpit Joshi (arpit.joshi@ed.ac.uk)
- Pre-requisites: CS3 Computer Architecture
- Assignments: Assignment 1 – out 13-01-15; due 30-01-15
 Assignment 2 – out 03-02-15; due 27-02-15
- Recommended Books:
 - Culler & Singh - Parallel Computer Architecture: A Hardware/Software Approach – Morgan Kaufmann
- Lecture slides (no lecture notes)
- More info: www.inf.ed.ac.uk/teaching/courses/pa/
- Please interrupt with questions at any time
What is Parallel Architecture?

“A collection of processing elements that cooperate to solve large problems fast”

Almasi and Gottlieb, 1989
Examples: Parallel Architectures

- **ARM11**
 - 8 stage pipeline
 - Upto 8 instructions in-flight

- **Intel Pentium 4**
 - 31 stage pipeline superscalar
 - Upto 124 instructions in-flight

- **Intel Haswell**
 - Quad core
 - 2 threads per core (SMT)
 - GPU
Examples: Parallel Architectures

- **Cray Titan**
 - 18,688 AMD 16 core CPUs
 - 18,688 Nvidia GPUs
 - Upto 27 petaflops

- **IBM Blue Gene Sequoia**
 - 98,304 PowerPC 16 core CPUs
 - Upto 20 petaflops

- **Google Network**
 - ??? Linux machines
 - Several connected cluster farms
Why Parallel Architectures?

- Performance of sequential architecture is limited
 - Computation/data flow through logic gates, memory devices
 - At all of these there is a non-zero delay that is at a minimum equal to delay of the speed of light
 - Thus, the speed of light and the minimum physical feature sizes impose a hard limit on the speed of any sequential computation

- Important applications that require performance (pull)
 - Protein folding simulation
 - Nuclear reactor simulation

- Technological reasons (push)
 - What to do with all those transistors?
Technological Trends: Moore’s Law

- 1965 – Gordon Moore’s “Law”
 - Densities double every year (2x)
- 1975 – Moore’s Law revised
 - Densities double every 2 years (1.42x)
- Actually 5x every 5 years (1.35x)

Growth in Transistor Density

Growth in Microprocessor Clock Frequency
Technological Trend: Memory Wall

Bottom-line: memory access is increasingly expensive and CA must devise new ways of hiding this cost
Tracking Technology: The role of CA

- **Bottom-line: architectural innovation complement technological improvements (ILP + Cache)**

H&P Fig. 1.1
Future Technology Predictions (2003)

- Moore’s Law will continue to ~2016
- Procs. will have 2.2 billion transistors
- DRAM capacity to reach 128 Gbit
- Procs. clocks should reach 40 GHz?

State-of-the-art - January 2015

- **IBM Power8**
 - 4.2 billion transistors
 - 4, 6, 8, 10 or 12 core versions
 - 8 SMT threads per core
 - 22nm CMOS
 - 5 GHz clock

- **AMD Bulldozer**
 - 1.2 billion transistors
 - 4, 8 cores
 - 32nm
 - 4.2 GHz
 - 125 W

- **Intel i7 ‘Haswell’ 4-core + GPU**
 - 1.4 billion transistors
 - 22nm CMOS silicon
 - 4 cores, 32 threads
 - 3.5 GHz
 - 77 Watts
End of the Uniprocessor?

- Frequency has stopped scaling: Power Wall

- Memory wall
 - Instructions and data must be fetched
 - Memory becomes the bottleneck

- ILP Wall
 - Dependencies between instruction limit ILP

End of performance scaling for uniprocessors has forced industry to turn to chip-multiprocessors (Multicores)
Multicores

- Use transistors for adding cores

- But, software must be parallel!
 - Remember Amdahl’s law

- Lot of effort on making it easier to write parallel programs
 - For e.g Transactional memory
Amdahl’s Law

- Let: $F \rightarrow$ fraction of problem that can be optimized
 $S_{opt} \rightarrow$ speedup obtained on optimized fraction

$$\therefore S_{overall} = \frac{1}{(1-F) + \frac{F}{S_{opt}}}$$

- e.g.: $F = 0.5$ (50%), $S_{opt} = 10 \quad S_{opt} = \infty$

$$S_{overall} = \frac{1}{(1-0.5) + \frac{0.5}{10}} = 1.8 \quad S_{overall} = \frac{1}{(1-0.5) + 0} = 2$$

- Bottom-line: performance improvements must be balanced
Amdahl’s Law and Efficiency

- Let: $F \rightarrow$ fraction of problem that can be parallelized
 $S_{\text{par}} \rightarrow$ speedup obtained on parallelized fraction
 $P \rightarrow$ number of processors

$$S_{\text{overall}} = \frac{1}{(1 - F) + \frac{F}{S_{\text{par}}}}$$

\[E = \frac{S_{\text{overall}}}{P} \]

- e.g.: 16 processors ($S_{\text{par}} = 16$), $F = 0.9$ (90%),

\[
S_{\text{overall}} = \frac{1}{(1 - 0.9) + \frac{0.9}{16}} = 6.4 \quad E = \frac{6.4}{16} = 0.4 (40\%)
\]

For good scalability: $E > 50\%$; when resources are “free” then lower efficiencies are acceptable
Topics

- Fundamental concepts
 - Introduction
 - Types of parallelism

- Uniprocessor parallelism
 - Pipelining, Superscalars

- Shared memory multiprocessors
 - Cache coherence and memory consistency
 - Synchronization and Transactional Memory

- Hardware Multithreading

- Vector, SIMD Processors, GPUs