ORACLE

Do not believ
everythmg you

Tim Harris f':' i
4 March 2016 St S |

ORACLE 75 | '

The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.
Oracle reserves the right to alter its development plans and practices at any time, and the development,
release, and timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and
do not necessarily reflect the views of Oracle.

ORACLE

Good intentions, bad clip art

Vv3id %« ANINAV3IA &« INITAVY3A « ANITAV3Id

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

DEADLINE * DEADLINE * DEADLINE * DEA

Good intentions, bad clip art

g
%
O

An example from my recent work

ORACLE

<— Better

Normalized execution time

0.8 {

06 -

04 4

0.2 -

Algorithm
running
with
18/36/72
threads

=/

New system

Previous system

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What | want to compare

the performance using our C++ runtime system
from Java (via an optimizing compiler with a
lightweight native function interface)

with

the performance using standard Java fork-join.

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What | am actually comparing

Differences Differences in page sizes

in thread , _
olacement Differences in o |
memory ifferences in
placement GC activity
Changes in low- Changes in work
level code quality distribution
granularity

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This talk is about

* Making experimental work more methodical

* Some of the “usual suspects” when understanding performance

* Presenting results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This talk is about

* Making experimental work more methodical
* Some of the “usual suspects” when understanding performance
* Presenting results

* Caveats

— 1 am mainly talking about work on shared-memory algorithms and data structures
— Some of these observations may apply elsewhere, but | am sure the war stories differ

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This talk is about

* Making experimental work more methodical

* Some of the “usual suspects” when understanding performance

* Presenting results

* Caveats

— 1 am mainly talking about work on shared-memory algorithms and data structures
— Some of these observations may apply elsewhere, but | am sure the war stories differ

* There are a lot of other elements to consider
— Experimental design
— Statistical analysis of results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Overview

Script everything, derive
results from measurements

Plan how to present results
before starting work

S Understand simple cases first

ORACLE’

Script everything, record everything

* From checked-in code in repository
* Reduce dependencies on environment
* Record versions actually used

Building

Record everything:

Machine used, system load, ...
Command lines invoked

UNIX environment

Running

* Take the output of a run (e.g., text logs)
Cl [l u[gf-g ° Cleanup
* Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

- . From checked-in code in repository

p dependencies on environment

One ”ru n” Scnpt | versions actually used
One results file.
One “process” script.

Record everything:

Machine used, system load, ...
Command lines invoked

UNIX environment

* Take the output of a run (e.g., text logs)
CREIcdlgl:@ ° Cleanup
* Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

+ date

SunJan 24 11:31:23 PST 2016

+ g++ --version

g++ (GCC) 4.9.1

Copyright (C) 2014 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

+ export CLIENTS_PER=10

+ CLIENTS_PER=10

+ export QUEUE=bunch-unreservedq

+ QUEUE=bunch-unreservedq

+ export TIME_MINUTES=120

+ TIME_MINUTES=120

+ FLAGS=

+ cp config-big-scale-both.hpp config.hpp
+ cat config.hpp

/*

* config.hpp

%k

* Created on: 27.Jan.2015
* Author: erfanz
*/

| run (e.g., text logs)

ean graphs
5 and EMF for slides)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

+ date
Sun Jan 24 11:31:23 PST 2016

+ g++ --version
g++ (GCC) 4.9.1
Copyright (C) 2014 Free Softw
This is free software; see the
warranty; not even for MERC

+ export CLIENTS_PER=10
+ CLIENTS_PER=10

+ export QUEUE=bunch-unre!
+ QUEUE=bunch-unreservedq
+ export TIME_MINUTES=12C
+ TIME_MINUTES=120

+ FLAGS=

+ cp config-big-scale-both.hp
+ cat config.hpp

/*
*
*

* Created on: 27.Jan.2015
* Author: erfanz

*/

config.hpp

salloc: Job allocation 1955166 has been revoked.

srun: Job step aborted: Waiting up to 2 seconds for job step to finish.

srun: error: bunch003: task 2: Terminated

+ for SERVERS in12481624 3248

+ export CLIENT_MACHINES=4

+ CLIENT_MACHINES=4

+ MC=9

+ date

Sun Jan 24 11:38:45 PST 2016

+ sinfo

+ grep bunch-unreservedq

bunch-unreservedq up 4:00:00 100 idle bunch[001-100]

+ COMMENT=brown-tx-scale-4-9

+ export SERVERS

+ salloc -pbunch-unreservedq -t120 -N9 -n9 --comment=brown-tx-scale-4-9
salloc: Granted job allocation 1955168

+ make -

g++ -std=gnu++11 -g -0O3 -Wall -Wconversion -Wextra -Wno-ignored-qualifiers
-Wno-write-strings -Isrc/util -Isrc/basic-types -Isrc/executor -Isrc/TSM-SI -Isrc/TSM-SI/client
-Isrc/TSM-SI/server -Isrc/TSM-SI/timestamp-oracle -c src/util/BaseContext.cpp
-0 build/util/BaseContext.o

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

* From checked-in code in repository
* Reduce dependencies on environment
* Record versions actually used

Building

Record everything:

Machine used, system load, ...
Command lines invoked

UNIX environment

Running

* Take the output of a run (e.g., text logs)
Cl [l u[gf-g ° Cleanup
* Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

The test harness was parameterized on the algorithm to use, the number
E T of coneurrent threads to operate and the range of keys that might be inserted
g j or deleted. In each case every thread performed 1000000 operations. Figure G
. shows the CPU accounted to the process as a whole for each of the algorithms
| tested on a variety of workloads.
iz 4 & 8w u

Mumber of threads
(b)) Non-reference-connted algorithms

with lews 0. .. 255

“A pragmatic implementation of non-blocking linked lists”, Tim Harris, DISC 2001

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

* How much work to do?

Short runs Long runs

|

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

* How much work to do?

Short runs

|

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

ORACLE

|

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Long runs

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

* How much work to do?

Short runs

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

ORACLE

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Long runs

Too much??

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

* How much work to do?

Short runs

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

ORACLE

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Long runs

Too much??

Deters experimentation if turnaround
time is long (e.g. >> overnight)

Harder to separate resource re-use
policy from the rest of the expt.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work... what we imagine:

1000000 operations
1000000 operations

1000000 operations

1000000 operations

v

N
v

Measure duration = 2s

Throughput =4M / 2s=2Mops /s

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work... what we get:

1000000 operatlons
1000000 operations

|
|
|
|
|
|
1000000 operations :
|
|
|

v

1000000 operations

?

A4

N

\ 4

N

N
N4
=)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Constant load

* Fixed number of threads active
— E.g., data structure micro-benchmarks
— Look at how the structure under test behaves under varying loads

* Keep all threads active throughout experiment. Typically:
— Create threads
— Perform warm-up work in each thread
— Barrier
— Actual measurement interval
— Main thread signals request to exit to others

* Investigate and report differences in actual work completed by threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Constant load unfairness: simple test-and-test-and-set lock

* Main thread runs a constant number of iterations, signals others to stop

 2-socket Haswell, threads pinned sequentially to cores in 1 socket

1.8

1.6

1.4

1.2 -

1.0 -

0.8 -
0.6 -

Operations per thread
normalized to main

0.4 -
0.2 -

0.0 -

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Constant load unfairness: simple test-and-test-and-set lock

* Main thread runs a constant number of iterations, signals others to stop

 2-socket Haswell, threads pinned sequentially to cores in both sockets

50.0
45.0 < 45x, not 45%!
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0 -

Operations per thread
normalized to main

H/W thread number (0..36)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Constant work

* Fixed amount of work to perform
— Share it among a set of threads — e.g., OpenMP parallel loop
— Aim to use threads to complete the work more quickly
— Measure from when the work is started until when it is all complete

* Show results for
— Strong scaling: same amount of work as you vary the number of threads
— Weak scaling: increase the work proportional to the threads

* Investigate and report differences in
— Load imbalance (do threads finish early?)
— Actual amount of work completed by threads (do some threads work faster?)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

* From checked-in code in repository
* Reduce dependencies on environment
* Record versions actually used

Building

Record everything:

Machine used, system load, ...
Command lines invoked

UNIX environment

Running

* Take the output of a run (e.g., text logs)
Cl [l u[gf-g ° Cleanup
* Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Generating results

General principle: derive results from
numbers you measure, not from
numbers you configure

ORACLE

Generating results

General principle: derive results from
numbers you measure, not from
numbers you configure

Configuration setting Code that reads the System overrides the
written in incorrect file setting is buggy settings (e.g., thread pinning)

Environment variable set
incorrectly (“GOMP_PROC_BIND”)

ORACLE

Setting is invalid and
ignored at runtime

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

Generating results

“Bind threads 1 Have each thread report
per socket” where it is running

“Run for 10s” Record time at start & end

“Use 50% reads” Measured #reads/#ops

“Distribute memory Actual locations and
across the machine” page sizes used

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

Overview

Script everything, derive
results from measurements

Plan how to present results
before starting work

S Understand simple cases first

ORACLE’

Plan how to present results before starting work
* Why?

— Make sure you can illustrate the problem you are solving and you know the questions
you want to see answered

* How bad are things now?
* How much scope exists for improvement?

— Time to practice explaining the format of the results to other people
— Time to notice and resolve difficulties running experiments

— Coding/tweaking/experimenting will expand to fill the time available
* Let them!

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Running pairs of workloads together on a 2-socket machine

wupwise 2.0

swim
md Run “triangle counting” and “equake” together

ilbdc) : : :
fmasd on the 2-socket machine. Time how long triangle 1.5

equake counting takes compared with running alone on

bwaves 1 socket.
bt331

art

apsi
ammp

t. counting >
pagerank
hop_dist
bc
dom_bc

1.0

A 0.5

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Running pairs of workloads together on a 2-socket machine

wupwise 2.0

swim

md

ilbdc
fma3d 1.5
equake
bwaves
bt331

art

apsi
ammp

t. counting
pagerank
hop_dist
bc
dom_bc

1.0

0.5

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Running pairs of workloads together on a 2-socket machine

wupwise] [] I 2.0
swim
md Speedup Slowdown (up to 3.5x)
equake
bwaves
bt331 - N I @ 10
art :
apsi]]
ammp
t. counting] e 0.5
pagerank '
hop_dist
bc]]
dom_bc N b6 O, < YU LI
- % % By O B 0. %o B % % % s, %, 0
% ARCH % o % R U %, % T,

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Why does this format work?

* Easy to explain what a good result is like and what a bad result is like

* A neutral result is “quiet”
— All the squares are white
— No need to understand what the workloads actually do

* Captures trade-offs
— Results here often come in pairs
— Green with red
— We will see both of them together

* “Dashboard” while doing the work

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trade-offs

* Parallel stop-the-world garbage collector

* Suppose it takes 5% of execution time on average

* Do you care?

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trade-offs

Running... Running...

All | care about is the

ratio of red to grey)
Submit Get
request response

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

Trade-offs Now | do care that
unlucky requests are delayed

Running... Running...

- Fan-outs / nesting
- Real time systems
- Low-latency trading

A\ 4 A\ 4

pd
~

Req & Req & Req &
response responseresponse

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Minimum mutator utilization

7

Max pause
time

100%

Whole-run throughput

Minimum mutator utilization

v

0%

ORACLE

Time window

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Minimum mutator utilization

7

Max pause
time

100%

Whole-run throughput

Shorter pauses, worse
throughput

Minimum mutator utilization

v

0%

ORACLE

Time window

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Minimum mutator utilization

100% 1 Max pause
_5 time
g
= Whole-run throughput
>
o) Strictly
© better
>
£ \
S
>
E
=
=
0% >

ORACLE

Time window

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Summary

* Make formats easy to explain, e.g.:
— ldeal behaviour is a horizontal line
— ldeal behaviour is a blank heat map

* Make numbers easy to read off
— What does a y-intercept mean?
— What does a x-intercept mean?
—Is anything hidden where lines are clumped together?

* Show and expect to see trade-offs

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Overview

Script everything, derive
results from measurements

Plan how to present results
before starting work

S Understand simple cases first

ORACLE’

Understand simple cases first

* Why? Almost without exception:
— There are bugs in the test harness
— There are bugs in the data processing scripts (grep, cut-n-paste, ...)
— There are unexpected factors influencing the results

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Understand simple cases first

* Why? Almost without exception:
— There are bugs in the test harness
— There are bugs in the data processing scripts (grep, cut-n-paste, ...)
— There are unexpected factors influencing the results
* Before paying any attention to actual results, try to identify simple test
cases that should have known behavior
— (Even if you do not care about them, or they are contrived)

— Do they behave as expected?
— Can you completely explain them? (“Memory system effects” is not an answer)
— Add them to regression tests, and watch for them breaking

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Basic checks to make

* Should the workload be 100% user mode?

— Confirm this with “top”
— Check that “strace” is quiet (no system call activity)

* Where are the threads running?

* Where is the memory they access located?

* What do profiling tools show?
— Can you use with optimized builds? If not, check impact of disabling optimization
— If you have long-running use cases, does the profile actually match them?
— Look at 1-thread workloads — as expected?
— Increase thread count and look for trends

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

400000000

350000000
300000000 //’—___,___,
250000000

© pZ

& 200000000

S /
150000000 /
100000000

50000000 l/r”///

O [[[[[[[|
0 10 20 30 40 50 60 70 80
Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

400000000
350000000
/
300000000
250000000 //////”——————7
gzoooooooo / Is this a good set
150000000 P of results? It’s certainly
100000000 not a good graph
50000000 l/r”///
O I I I I I I I]
0 10 20 30 40 50 60 70 80
Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

Which of these lines (if either)

would be perfect scaling?

Is this a good set

of results? It’s certainly

not a good graph

400000000
Ugly numbers. / e
350000000 y
Is this good /7 ‘
performance or\|3000OOOOO‘ / 7
250000000 / s’
{ / I/
2 200000000 A
@) / //
150000000 VX
Y ,/’./
100000000 ——, 4
50000000 :
O [[
0 10 20

30 40 50 60 70 80
Threads

Most of the data is buried down here

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

0.8 — Normalize to optimized sequential code (and
report absolute baseline). Self-relative scaling
is almost never a good metric to use.

©c o O
(2 B @) BN

\
T \

Normalized throughput
o
D

0.2
0.1
0.0 [[[[[[[|
0 10 20 30 40 50 60 70 80
Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

0.8
0.7
g_ 0.6 \\
<
=1 \
o 0.5
= \
5 04 N— , \
.TEU 03 “« . . ”
= Synergy: “horizontal is good” formats \
o 0.2 +——are unaffected by switching to/from
= log-scale axes
0.1
0.0 I I I I I I]
1 2 4 8 16 32 64 128

Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

0.8

0.7

0.6
Disable Turbo Boost,

i —{

o
U

Normalized throughput
o
D

0.3 \-
0.2
0.1
0.0 [[[[[[|
1 2 4 8 16 32 64 128
Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

ORACLE

ghput

>
o

Normalized thr

©c o o o
O = N W

0.8
0.7
0.6
0.5

o
~

Improvements to tuning of GC
e —K and use of memory fences.

8 16 32 64 128
Threads

Y
N
I

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

0.8

0.7 é_ Initially horizontal (as expected)
s at low thread counts.
2 0.6 e N
<

) %
(
)
gy
/
é/

0.3 \
0.2
0.1
0.0 [[[[[[|
1 2 4 8 16 32 64 128
Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2-socket Xeon

0.8

What is happening here? The simplest

0.7 case that is not yet understood.
0.6 * =N

e~

R —

o
92}
/TK

Normalized throughput
o
D

0.3 \
0.2
0.1
0.0 [[[[[[|
1 2 4 8 16 32 64 128
Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

(It was a stray process still running on the machine)

1.0
0.9 -‘7—4<With Turbo Boost.
5 0.8
a \
< 0.7 —
>
£ o INN
= 05 —— Fixed. Without Turbo Boost.
g AN
N 0.4 g
(¢0)
£ 03
2 0.2
0.1
0.0 [[[[[[|
1 2 4 8 16 32 64 128
Threads

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Overview

Script everything, derive
results from measurements

Plan how to present results
before starting work

S Understand simple cases first

ORACLE’

Previous system
An example from my recent work D —
/New system

1 |
£ e
GL) % 08
) o
+— |3
g E 0.6
z Algorithm
running
04 with
18/36/72
, threads

ORACI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

An example from my recent work

Previous system

/ New system

08

Normalized execution time

0.6

<— Better

04

0.2

ORACLE

1. Work distribution
chunk size 1024 vs 4096

_/

Algorithm
running
with
18/36/72
threads

=/

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

An example from my recent work

Previous system

/ New system

08

0.6

Normalized execution time

04

<— Better

0.2

1. Work distribution

chunk size 1024 vs 4096

activity with fork-join

ORACLE

2. Some additional GC

_/

Algorithm
running
with
18/36/72
threads

=/

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Previous system

An example from my recent work

JNI performance - false sharing on the "-UseMembar" serialization
page

By Dave on Mov 17, 2015

For background on the membar elision technigues and the serialization page, see the following: 7644409
Asymmetric Dekker Synchronization; and QP Quiescence. On normal x86 and SPARC systems these are strictly

° ° °
local latency optimizations (because MEMBAR is a local operation) although on some systems where fences have
° O r I S r I u I O n global effects, they may actually improve scalability. As an aside, such optimizations may no longer be profitable on
modern processors where the cost of fences has decreased steadily. Relatedly, on larger systems, the TLB
shootdown activity — interprocessor interrupts, etc — associated with mprotectiPROT_NONE) may constitute a system-

. wide scaling impediment. So the prevailing frend is away from such technigues, and back toward fences. Similar
C u n S I Z e V S arguments apply to the biased locking - another local latency optimization —which may have outworn its usefulness.
Acolleague in Oracle Labs ran into a puzzling JNI performance problem. It originally manifested in a complex
. environment, but he managed to reduce the problem to a simple test case where a set ofindependent concurrent
threads make JNI calls to targets that return immediately. Scaling starts to fade at a suspiciously low number of
° ° threads. (1 eliminated the usual thermal, energy and hyperthreading concerns).
2 S O m e a d d It I O n a I G ‘ On a hunch, | fried +UseMembar, and the scaling was flat. The problem appears to be false sharing for the store
() accesses into the serialization page. fyou're following along in the openjdk source code, the culprits appear to be
write_memory_serialize_page() and Macroassembler:serialize_memaory(). The *hash” function that selects an offset
in the page — to reduce false sharing — needs improvement. And since the membar elision code was written, |

L] L] e [] L]
believe biased locking forced the thread instances to be aligned on 256-byte boundaries, which contributes in partto
a C I V I y W I O r _J O I n the poor hash distribution. On a whim, | added an “Ordinal” field to the thread structure, and initialize itin the Thread
ctor by fetch-and-add of a static global. The 5th created thread will have Ordinal==5, etc. | then changed the hash
I . I - I I . I I - I I . I I function in the files mentioned above to generate an offset calculated via - ((Ordinal*128) & (PageSize-1)). “128"is
important as that's the alignment/padding unit to avoid false sharing on x&6. (The unit of coherence on x86 is a 64-
° byte cache line, but Intel notes in their manuals that you need 128 to avoid false sharing. Adjacent sector prefetch
3 F I h V IVI makes it 128 bytes, effectively). This provided relief.
. False sharing on
o ”
- U S e IVI e I I l a r p a g e than mprotect operations on a single page, at least on x86 or SPARC. So switching from a single page to multiple
pages shouldn't resultin any performance loss). ldeally we'd index with the CPUID, but | don't see that happening as

getting the CPUID in a timely fashion can be problematic on some platforms. We could still have very poor distribution
with the OrdinallD scheme | mentioned above. Slightly better than the OrdinallD approach might be to try to balance
the number of threads associated with each of the slots. This could be done in the thread ctor. It's still palliative as you
could have a poor distribution over the set of threads using JNI at any given moment. But something like that, coupled
with increasing the size of the region, would probably work well

p.s., the mprotect(}-based serialization technique is safe only on systems that have a memory consistency model

that's TSO or stronger. And the access to the serialization page has to be store. Because of memory model issues, a
load isn't sufficient.

08

tt

0.6

Normalized execution time

With 128 byte units and a 4K base page size, we have only 32 unique “slots” on the serialization page. It might make
sense to increase the serialization region to multiple pages, with the number of pages is possibly a function of the
number of logical CPUs. That is, to reduce the odds of collisions, it probably makes sense to conservatively over-
provision the region. (mprotect() operations on contiguous regions of virtual pages are only slightly more expensive

04

<— Be

0.2

Update: friends in J2SE have filed an RFE as JOK-8143878.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Future work

* Three aspects to this talk:
— Working practices to try to make sure there is time to understand results
— Formats for presenting results to help understand them
— Recurring problems from this particular area of research

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Future work

* Three aspects to this talk:
— Working practices to try to make sure there is time to understand results
— Formats for presenting results to help understand them
— Recurring problems from this particular area of research

* | would like to have more common infrastructure for running experiments

— Help run experiments consistently

— Same allocator, same thread placement, ...

— Use raw output logs as part of artefact evaluation processes

— By using it, help convince others that experiments are run well

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Further reading

* Books
— Huff & Geis — “How to Lie with Statistics”

—Jain — “The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”

— Tufte — “The Visual Display of Quantitative Information”

* Papers and articles
— Bailey — “Twelve Ways to Fool the Masses”

— Fleming & Wallace — “How not to lie with statistics: the correct way to summarize
benchmark results”

— Heiser — “Systems Benchmarking Crimes”
— Hoefler & Belli — “Scientific Benchmarking of Parallel Computing Systems”

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Integrated Cloud

Applications & Platform Services

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

ORACLE

