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Coursework

Two distinct parts:

• Shell (due: Thursday 4th February 16:00)

• Kernel Module (due: Thursday 17th March 16:00)
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Shell

Due: Thursday 4th February 16:00

• Improve your C coding skills

• Understand some of the services provided by the OS to application developers
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Kernel Module

Due: Thursday 17th March 16:00

• Directly interact with OS processes

• Understand Linux scheduler & process control
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C Programming

• Use an IDE to help you
• Netbeans
• Eclipse

• Use the man command for help with syntax

• Use Google for your problems/issues (not for solutions!)

• Use classmates/piazza for general programming discussion
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Standard Library IO Functions

• printf: Prints out a formatted string to the console

• scanf: Reads a formatted string in from the console

• fgetc: Reads a single character from a file stream

• fgets: Reads line of text from a file stream

• Special file streams are stdin, stdout and stderr
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Standard Library String Manipulation

Strings are NULL-terminated character arrays

• strlen: Returns the length of a string.

• strcpy: Copies a string onto another string.

• strcat: Concatenates one string onto another.

• strcmp: Compares two strings (returns zero if they are equal).

• strtok: Iteratively return tokens from a string.

• strsep: Destructively return tokens from a string.

You MUST make sure the buffers backing your string are big enough for what you are
trying to do, or use limiting functions.
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Memory Allocation/Manipulation

• Stack allocation: Allocated on function entry, and automatically freed on function
exit (but limited in size).

• malloc: Allocates a block of memory of the given size, without zeroing it.

• calloc: Allocates and zeroes a block of memory, for an array.

• free: Deallocates a block of memory previously allocated with malloc or calloc.

• memcpy: Copies a region of memory from one location into another.

• memset: Fills in a region of memory with the given byte.
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Standard Library Process Control

• fork: Duplicates the calling process and execution continues in both the original
(the parent) and new (the child) process.

• exec: Replaces the calling process image with a new process image.

• wait: Blocks the calling process until a child process raises a signal or terminates.

• signal: Defines a signal handler function to be called when the given signal is
raised.

Tom Spink Institute for Computing Systems Architecture



UNIX signals

• Are delivered asynchronously to the process, in response to some event that
requires action.

• Default signal handler usually results in the process terminating.

• Majority of signals (with the notable exceptions being SIGKILL and SIGSTOP) can
be trapped and handled.
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Clarifications

• You are allowed to use -lreadline

e.g. gcc -Wall -lreadline myshell.c

• You may (but are not required to) handle filenames with spaces in them.

• Any questions?
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Linux Kernel

• The Linux Kernel is of a monolithic design.

• It can be dynamically extended by the use of kernel modules.
• Device Drivers (storage devices, USB devices, sound cards, graphics cards).
• Algorithm Implementations (MD5, SHA{1,256,512}, GZIP).
• Filesystems (EXT3, EXT4, BTRFS, NTFS, VFAT)

• Kernel features can be compiled in or out, or compiled as modules during the
kernel build process.

• Kernel modules can also be compiled as standalone modules, in their own source
tree.
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Kernel Modules

• They have a unique name (the name of the module file, without the extension).

• The are deployed as a single, normal ELF binary file, with the extension .ko.

• Kernel modules must be compiled against the headers for the targeted kernel
version.
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• make -C /lib/modules/`uname -r`/build M=$PWD

• Need a Kbuild file to tell the Kernel build scripts how to build the module (i.e.
what files the module is composed of)
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Module Loading/Unloading

• insmod command will load a kernel module from a .ko file.

• rmmod command will unload the named kernel module.
• You can (try) and forcibly unload a misbehaving module with rmmod -f.
• If the process is hung and not killable, then you’re out of luck and will need to

reboot.

• modprobe command will load a kernel module from a name, by searching the
system kernel module directories.
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Initialisation/Destruction

• Modules are a service, they are loaded and stay resident until asked to do
something.

• module init: Defines the function that is called when the module is loaded.

• module exit: Defines the function that is called when the module is unloaded.
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• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture



• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture



• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture



• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture



• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture



• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture



• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture



Questions/Clarifications
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