
Operating Systems
Practical Coursework

Tom Spink

January 2016

Tom Spink Institute for Computing Systems Architecture

Coursework

Two distinct parts:

• Shell (due: Thursday 4th February 16:00)

• Kernel Module (due: Thursday 17th March 16:00)

Tom Spink Institute for Computing Systems Architecture

Coursework

Two distinct parts:

• Shell (due: Thursday 4th February 16:00)

• Kernel Module (due: Thursday 17th March 16:00)

Tom Spink Institute for Computing Systems Architecture

Shell

Due: Thursday 4th February 16:00

• Improve your C coding skills

• Understand some of the services provided by the OS to application developers

Tom Spink Institute for Computing Systems Architecture

Kernel Module

Due: Thursday 17th March 16:00

• Directly interact with OS processes

• Understand Linux scheduler & process control

Tom Spink Institute for Computing Systems Architecture

C Programming

• Use an IDE to help you
• Netbeans
• Eclipse

• Use the man command for help with syntax

• Use Google for your problems/issues (not for solutions!)

• Use classmates/piazza for general programming discussion

Tom Spink Institute for Computing Systems Architecture

Standard Library IO Functions

• printf: Prints out a formatted string to the console

• scanf: Reads a formatted string in from the console

• fgetc: Reads a single character from a file stream

• fgets: Reads line of text from a file stream

• Special file streams are stdin, stdout and stderr

Tom Spink Institute for Computing Systems Architecture

Standard Library String Manipulation

Strings are NULL-terminated character arrays

• strlen: Returns the length of a string.

• strcpy: Copies a string onto another string.

• strcat: Concatenates one string onto another.

• strcmp: Compares two strings (returns zero if they are equal).

• strtok: Iteratively return tokens from a string.

• strsep: Destructively return tokens from a string.

You MUST make sure the buffers backing your string are big enough for what you are
trying to do, or use limiting functions.

Tom Spink Institute for Computing Systems Architecture

Memory Allocation/Manipulation

• Stack allocation: Allocated on function entry, and automatically freed on function
exit (but limited in size).

• malloc: Allocates a block of memory of the given size, without zeroing it.

• calloc: Allocates and zeroes a block of memory, for an array.

• free: Deallocates a block of memory previously allocated with malloc or calloc.

• memcpy: Copies a region of memory from one location into another.

• memset: Fills in a region of memory with the given byte.

Tom Spink Institute for Computing Systems Architecture

Standard Library Process Control

• fork: Duplicates the calling process and execution continues in both the original
(the parent) and new (the child) process.

• exec: Replaces the calling process image with a new process image.

• wait: Blocks the calling process until a child process raises a signal or terminates.

• signal: Defines a signal handler function to be called when the given signal is
raised.

Tom Spink Institute for Computing Systems Architecture

UNIX signals

• Are delivered asynchronously to the process, in response to some event that
requires action.

• Default signal handler usually results in the process terminating.

• Majority of signals (with the notable exceptions being SIGKILL and SIGSTOP) can
be trapped and handled.

Tom Spink Institute for Computing Systems Architecture

Clarifications

• You are allowed to use -lreadline

e.g. gcc -Wall -lreadline myshell.c

• You may (but are not required to) handle filenames with spaces in them.

• Any questions?

Tom Spink Institute for Computing Systems Architecture

Clarifications

• You are allowed to use -lreadline

e.g. gcc -Wall -lreadline myshell.c

• You may (but are not required to) handle filenames with spaces in them.

• Any questions?

Tom Spink Institute for Computing Systems Architecture

Linux Kernel

• The Linux Kernel is of a monolithic design.

• It can be dynamically extended by the use of kernel modules.
• Device Drivers (storage devices, USB devices, sound cards, graphics cards).
• Algorithm Implementations (MD5, SHA{1,256,512}, GZIP).
• Filesystems (EXT3, EXT4, BTRFS, NTFS, VFAT)

• Kernel features can be compiled in or out, or compiled as modules during the
kernel build process.

• Kernel modules can also be compiled as standalone modules, in their own source
tree.

Tom Spink Institute for Computing Systems Architecture

Kernel Modules

• They have a unique name (the name of the module file, without the extension).

• The are deployed as a single, normal ELF binary file, with the extension .ko.

• Kernel modules must be compiled against the headers for the targeted kernel
version.

Tom Spink Institute for Computing Systems Architecture

• make -C /lib/modules/`uname -r`/build M=$PWD

• Need a Kbuild file to tell the Kernel build scripts how to build the module (i.e.
what files the module is composed of)

Tom Spink Institute for Computing Systems Architecture

Module Loading/Unloading

• insmod command will load a kernel module from a .ko file.

• rmmod command will unload the named kernel module.
• You can (try) and forcibly unload a misbehaving module with rmmod -f.
• If the process is hung and not killable, then you’re out of luck and will need to

reboot.

• modprobe command will load a kernel module from a name, by searching the
system kernel module directories.

Tom Spink Institute for Computing Systems Architecture

Initialisation/Destruction

• Modules are a service, they are loaded and stay resident until asked to do
something.

• module init: Defines the function that is called when the module is loaded.

• module exit: Defines the function that is called when the module is unloaded.

Tom Spink Institute for Computing Systems Architecture

• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture

• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture

• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture

• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture

• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture

• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture

• You cannot use the standard C-library - kernel modules are linked against the
Kernel, not a C-library therefore C-library functions are not available.

• However, many (useful) C-library functions have been implemented for the Kernel
- but not all.

• There isn’t a printf - but there is printk.

• You cannot use floating point variables/arithmetic in Kernel code.

• You can only call exported Kernel functions.

• Memory allocation can be tricky, the closest approximation to malloc is kmalloc

but if you need to allocate memory, try to allocate on the stack.

• Segfaults in your module will at best crash the process the Kernel is running in the
context of, but could potentially crash the system if they occur in a Kernel thread.

Tom Spink Institute for Computing Systems Architecture

Questions/Clarifications

Tom Spink Institute for Computing Systems Architecture

	Coursework
	C Programming
	Linux Kernel
	Kernel Modules
	Compiling Modules
	Module Loading/Unloading
	Programming for the Kernel

	Questions

