
Operating Systems
Virtual Memory

Lecture 11
Michael O’Boyle

1

Paged virtual memory

Allows a larger logical address space than physical memory
All pages of address space do not need to be in memory

– the full (used) address space on disk in page-sized blocks
– main memory used as a (page) cache

• Needed page transferred to a free page frame
– if no free page frames, evict a page

• evicted pages go to disk only if dirty
– Transparent to the application, except for performance
– managed by hardware and OS

• Traditionally called paged virtual memory

2

Virtual Memory That is Larger Than Physical Memory

Page Table When Some Pages Are Not in Main Memory

Page Fault

• If there is a reference to a page, first reference to that page will
trap to operating system:

page fault
1. Operating system looks at another table to decide:

– Invalid reference ⇒ abort
– Just not in memory

2. Find free frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

Demand paging

• Pages only brought into memory when referenced
– Only code/data that is needed by a process needs to be loaded

• What’s needed changes over time
– Hence, it’s called demand paging

• Few systems try to anticipate future needs
• But sometimes cluster pages

– OS keeps track of pages that should come and go together
– bring in all when one is referenced
– interface may allow programmer or compiler to identify clusters

7

Page replacement

• When you read in a page, where does it go?
– if there are free page frames, grab one
– if not, must evict something else

• this is called page replacement
• Page replacement algorithms

– try to pick a page that won’t be needed in the near future
– try to pick a page that hasn’t been modified (thus saving the disk write)

• OS tries to keep a pool of free pages around
– so that allocations don’t inevitably cause evictions

• OS tries to keep some “clean” pages around
– so that even if you have to evict a page, you won’t have to write it

8

Page Replacement

Evicting the best page

• The goal of the page replacement algorithm:
– reduce fault rate by selecting best victim page to remove
– the best page to evict is one that will never be touched again
– Belady’s proof:

• evicting the page that won’t be used for the longest period of
time minimizes page fault rate

• Examine page replacement algorithms
– assume that a process pages against itself
– using a fixed number of page frames

• Number of frames available impacts page fault rate
– Note Belady’s anomaly

10

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
– Adding more frames can cause more page faults!

• Belady’s Anomaly

15 page faults

FIFO Illustrating Belady’s Anomaly

n
u
m

b
e
r

o
f
p
a
g
e
 f
a
u
lts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Belady’s Optimal Algorithm

• Replace page that will not be used for longest period of time
– 9 is optimal for the example

• How do you know this?
– Can’t read the future

• Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

■ Use past knowledge rather than future
■ Replace page that has not been used in the most amount of time
■ Associate time of last use with each page

■ 12 faults – better than FIFO but worse than Belady’s/ OPT
■ Generally good algorithm and frequently used
■ But how to implement?

Approximating LRU

• Many approximations, all use the PTE’s referenced bit
– keep a counter for each page
– at some regular interval, for each page, do:

• if ref bit = 0, increment the counter (hasn’t been used)
• if ref bit = 1, zero the counter (has been used)
• regardless, zero ref bit

– the counter will contain the # of intervals since the last reference to
the page

• page with largest counter is least recently used
• Some architectures don’t have PTE reference bits

– can simulate reference bit using the valid bit to induce faults

16

Second-chance Clock

• Not Recently Used (NRU) or Second Chance
– replace page that is “old enough”
– logically, arrange all physical page frames in a big circle (clock)

• just a circular linked list
• A “clock hand” is used to select a good LRU candidate

• sweep through the pages in circular order like a clock
• If ref bit is off, it hasn’t been used recently, we have a victim
• If the ref bit is on, turn it off and go to next page

– arm moves quickly when pages are needed

17

18

Allocation of frames among processes

• FIFO and LRU Clock each can be implemented as either
local or global replacement algorithms
– local

• each process is given a limit of pages it can use
• it “pages against itself” (evicts its own pages)

– global
• the “victim” is chosen from among all page frames, regardless of

owner
• processes’ page frame allocation can vary dynamically

• Issues with local replacement?
– poor utilization of free page frames, long access time

• Issues with global replacement?
– Linux uses global replacement: global thrashing

19

The working set model of program behavior

• Working set of a process is used to model the dynamic
locality of its memory usage
– working set = set of pages process currently “needs”
– formally defined by Peter Denning in the 1960’s

• Definition:
– WS(t,w) = {pages P such that P was referenced in the time interval

(t, t-w)}
• t: time
• w: working set window (measured in page refs)
• a page in WS only if it was referenced in the last w references

• Working set varies over the life of the program
– so does the working set size

20

21

Number of page frames allocated to process

N
um

be
r o

f m
em

or
y

re
fe

re
nc

es
 b

et
w

ee
n

pa
ge

 fa
ul

ts

Why?

Why?

Example: Working set

22

Working set size

• The working set size, |WS(t,w)|,
– Changes with program locality

• During periods of poor locality,
– more pages are referenced

• Within that period of time,
– the working set size is larger

• Intuitively, the working set must be in memory,
– otherwise you’ll experience heavy faulting
– thrashing

23

Hypothetical Working Set algorithm

• Estimate |WS(0,w)| for a process
– Allow that process to start only if you can allocate it that many page

frames
• Use a local replacement algorithm (LRU Clock?)

– make sure that the working set are occupying the process’s frames
• Track each process’s working set size,

– and re-allocate page frames among processes dynamically
• Problem

– keep track of working set size.
• Use reference bit with a fixed-interval timer interrupt

24

Working Sets and Page Fault Rates

■ Direct relationship between working set of a process and its
page-fault rate

■ Working set changes over time
■ Peaks and valleys over time

Page-Fault Frequency

• More direct approach than WSS
• Establish “acceptable” page-fault frequency (PFF) rate and use

local replacement policy
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

number of frames

increase number
of frames

upper bound

lower bound
decrease number
of frames

pa
ge

-fa
ul

t r
at

e

Thrashing

• Thrashing
– when the system spends most of its time servicing page faults, little

time doing useful work
• Could be that there is enough memory

– but a poor replacement algorithm - incompatible with program
behavior

• Could be that memory is over-committed
– OS sees CPU poorly utilized and adds more processes

• too many active processes
– Makes problem worse

27

28

Number of active processes

Sy
st

em
 th

ro
ug

hp
ut

 (r
eq

ue
st

s/
se

c.
) w

ith
 th

ra
sh

in
g

Summary

• Virtual memory
• Page faults
• Demand paging

– don’t try to anticipate
• Page replacement

– Belady, LRU, Clock,
– local, global

• Locality
– temporal, spatial

• Working set
• Thrashing

29

