
Operating Systems
Fall 2014

Virtual Memory, Page Faults,
Demand Paging, and Page Replacement

Myungjin Lee
myungjin.lee@ed.ac.uk

1

Reminder: Mechanics of address translation

2

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame # page frame #

page table

offset
virtual address

virtual page #

Note: Each process
has its own page table!

Reminder: Page Table Entries (PTEs)

•  PTE’s control mapping
–  the valid bit says whether or not the PTE can be used

•  says whether or not a virtual address is valid
•  it is checked each time a virtual address is used

–  the referenced bit says whether the page has been accessed
•  it is set when a page has been read or written to

–  the modified bit says whether or not the page is dirty
•  it is set when a write to the page has occurred

–  the protection bits control which operations are allowed
•  read, write, execute

–  the page frame number determines the physical page
•  physical page start address = PFN

3

page frame number prot M R V
20 2 1 1 1

Paged virtual memory

•  We’ve hinted that all the pages of an address space do not
need to be resident in memory
–  the full (used) address space exists on secondary storage (disk) in

page-sized blocks
–  the OS uses main memory as a (page) cache
–  a page that is needed is transferred to a free page frame
–  if there are no free page frames, a page must be evicted

•  evicted pages go to disk (only need to write if they are dirty)
–  all of this is transparent to the application (except for performance

…)
•  managed by hardware and OS

•  Traditionally called paged virtual memory

4

Page faults

•  What happens when a process references a virtual address
in a page that has been evicted (or never loaded)?
–  when the page was evicted, the OS set the PTE as invalid and

noted the disk location of the page in a data structure (that looks like
a page table but holds disk addresses)

–  when a process tries to access the page, the invalid PTE will cause
an exception (page fault) to be thrown

•  OK, it’s actually an interrupt!
–  the OS will run the page fault handler in response

•  handler uses the “like a page table” data structure to locate the
page on disk

•  handler reads page into a physical frame, updates PTE to point
to it and to be valid

•  OS restarts the faulting process
•  there are a million and one details …

5

Demand paging

•  Pages are only brought into main memory when they are
referenced
–  only the code/data that is needed (demanded!) by a process needs

to be loaded
•  What’s needed changes over time, of course…

–  Hence, it’s called demand paging

•  Few systems try to anticipate future needs
–  OS crystal ball module notoriously ineffective

•  But it’s not uncommon to cluster pages
–  OS keeps track of pages that should come and go together
–  bring in all when one is referenced
–  interface may allow programmer or compiler to identify clusters

6

Page replacement

•  When you read in a page, where does it go?
–  if there are free page frames, grab one

•  what data structure might support this?
–  if not, must evict something else
–  this is called page replacement

•  Page replacement algorithms
–  try to pick a page that won’t be needed in the near future
–  try to pick a page that hasn’t been modified (thus saving the disk write)
–  OS typically tries to keep a pool of free pages around so that allocations

don’t inevitably cause evictions
–  OS also typically tries to keep some “clean” pages around, so that even if

you have to evict a page, you won’t have to write it
•  accomplished by pre-writing when there’s nothing better to do

–  Much more on this later!

7

How do you “load” a program?

•  Create process descriptor (process control block)
•  Create page table
•  Put address space image on disk in page-sized chunks
•  Build page table (pointed to by process descriptor)

–  all PTE valid bits ‘false’
–  an analogous data structure indicates the disk location of the

corresponding page
–  when process starts executing:

•  instructions immediately fault on both code and data pages
•  faults taper off, as the necessary code/data pages enter memory

8

Oh, man, how can any of this possibly work?

•  Locality!
–  temporal locality

•  locations referenced recently tend to be referenced again soon
–  spatial locality

•  locations near recently references locations are likely to be
referenced soon (think about why)

•  Locality means paging can be infrequent
–  once you’ve paged something in, it will be used many times
–  on average, you use things that are paged in
–  but, this depends on many things:

•  degree of locality in the application
•  page replacement policy and application reference pattern
•  amount of physical memory vs. application “footprint” or “working

set”

9

10

Evicting the best page

•  The goal of the page replacement algorithm:
–  reduce fault rate by selecting best victim page to remove

•  “system” fault rate or “program” fault rate??
–  the best page to evict is one that will never be touched again

•  duh …
–  “never” is a long time

•  Belady’s proof: evicting the page that won’t be used for the
longest period of time minimizes page fault rate

•  Rest of this module:
–  survey a bunch of page replacement algorithms
–  for now, assume that a process pages against itself, using a fixed

number of page frames

11

#1: Belady’s Algorithm

•  Provably optimal: lowest fault rate (remember SJF?)
–  evict the page that won’t be used for the longest time in future
–  problem: impossible to predict the future

•  Why is Belady’s algorithm useful?
–  as a yardstick to compare other algorithms to optimal

•  if Belady’s isn’t much better than yours, yours is pretty good
–  how could you do this comparison?

•  Is there a best practical algorithm?
–  no; depends on workload

•  Is there a worst algorithm?
–  no, but random replacement does pretty badly

•  don’t laugh – there are some other situations where OS’s use
near-random algorithms quite effectively!

12

#2: FIFO

•  FIFO is obvious, and simple to implement
–  when you page in something, put it on the tail of a list
–  evict page at the head of the list

•  Why might this be good?
–  maybe the one brought in longest ago is not being used

•  Why might this be bad?
–  then again, maybe it is being used
–  have absolutely no information either way

•  In fact, FIFO’s performance is typically lousy
•  In addition, FIFO suffers from Belady’s Anomaly

–  there are reference strings for which the fault rate increases when
the process is given more physical memory

13

#3: Least Recently Used (LRU)

•  LRU uses reference information to make a more informed
replacement decision
–  idea: past experience gives us a guess of future behavior
–  on replacement, evict the page that hasn’t been used for the longest

amount of time
•  LRU looks at the past, Belady’s wants to look at future
•  How is LRU different from FIFO?

–  when does LRU do well?
•  when is it lousy?

14

Example bad
case: looping
through array

amount of physical memory

#3: LRU continued

•  Implementation
–  to be perfect, must grab a timestamp on every memory reference,

put it in the PTE, order or search based on the timestamps …
–  way too $$ in memory bandwidth, algorithm execution time, etc.
–  so, we need a cheap approximation …

15

Approximating LRU

•  Many approximations, all use the PTE’s referenced bit
–  keep a counter for each page
–  at some regular interval, for each page, do:

•  if ref bit = 0, increment the counter (hasn’t been used)
•  if ref bit = 1, zero the counter (has been used)
•  regardless, zero ref bit

–  the counter will contain the # of intervals since the last reference to
the page

•  page with largest counter is least recently used

•  Some architectures don’t have PTE reference bits
–  can simulate reference bit using the valid bit to induce faults

•  hack, hack, hack

16

#4: LRU Clock

•  AKA Not Recently Used (NRU) or Second Chance
–  replace page that is “old enough”
–  logically, arrange all physical page frames in a big circle (clock)

•  just a circular linked list
–  a “clock hand” is used to select a good LRU candidate

•  sweep through the pages in circular order like a clock
•  if ref bit is off, it hasn’t been used recently, we have a victim

–  so, what is minimum “age” if ref bit is off?
•  if the ref bit is on, turn it off and go to next page

–  arm moves quickly when pages are needed

17

18

Allocation of frames among processes

•  FIFO and LRU Clock each can be implemented as either
local or global replacement algorithms
–  local

•  each process is given a limit of pages it can use
•  it “pages against itself” (evicts its own pages)

–  global
•  the “victim” is chosen from among all page frames, regardless of

owner
•  processes’ page frame allocation can vary dynamically

•  Issues with local replacement?
•  Issues with global replacement?

–  Linux uses global replacement

19

•  Hybrid algorithms
–  local replacement
–  an explicit mechanism for adding or removing page frames

20

21

Number of page frames allocated to process

N
um

be
r o

f m
em

or
y

re
fe

re
nc

es
 b

et
w

ee
n

pa
ge

 fa
ul

ts

Why?

Why?

Where would you
like to operate?

The working set model of program behavior

•  The working set of a process is used to model the dynamic
locality of its memory usage
–  working set = set of pages process currently “needs”
–  formally defined by Peter Denning in the 1960’s

•  Definition:
–  WS(t,w) = {pages P such that P was referenced in the time interval

(t, t-w)}
•  t: time
•  w: working set window (measured in page refs)
•  a page is in the working set (WS) only if it was referenced in the

last w references
–  obviously the working set (the particular pages) varies over the life

of the program
–  so does the working set size (the number of pages in the WS)

22

Example: Working set

23

Working set size

•  The working set size, |WS(t,w)|, changes with program
locality
–  during periods of poor locality, more pages are referenced
–  within that period of time, the working set size is larger

•  Intuitively, the working set must be in memory, otherwise
you’ll experience heavy faulting (thrashing)
–  when people ask “How much memory does Firefox need?”, really

they’re asking “what is Firefox’s average (or worst case) working set
size?”

24

#5: Hypothetical Working Set algorithm

•  Estimate |WS(0,w)| for a process
•  Allow that process to start only if you can allocate it that

many page frames
•  Use a local replacement algorithm (LRU Clock?) make sure

that “the right pages” (the working set) are occupying the
process’s frames

•  Track each process’s working set size, and re-allocate page
frames among processes dynamically

•  Problem? Solution?
•  What the heck is w?

25

#6: Page Fault Frequency (PFF)

•  PFF is a variable-space algorithm that uses a more ad hoc
approach

•  Attempt to equalize the fault rate among all processes, and
to have a “tolerable” system-wide fault rate
–  monitor the fault rate for each process
–  if fault rate is above a given threshold, give it more memory

•  so that it faults less
–  if the fault rate is below threshold, take away memory

•  should fault more, allowing someone else to fault less

26

Thrashing

•  Thrashing is when the system spends most of its time
servicing page faults, little time doing useful work
–  could be that there is enough memory but a lousy replacement

algorithm (one incompatible with program behavior)
–  could be that memory is over-committed

•  too many active processes

27

28

Number of active processes S
ys

te
m

 th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c.

) w
ith

 z
er

o
ov

er
he

ad

Why?

Why?

29

Number of active processes

S
ys

te
m

 th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c.

) w
ith

 th
ra

sh
in

g
Why?

Where is life interesting?

•  Not if system has too much memory
–  page replacement algorithm doesn’t much matter (over-provisioning)

•  Not if system has too little memory
–  page replacement algorithm doesn’t much matter (over-committed)

•  Life is only interesting on the border between over-
provisioned and over-committed

•  Networking analogies
–  Aloha Network as an example of thrashing
–  over-provisioning as an alternative to Quality of Service guarantees

30

Summary

•  Virtual memory
•  Page faults
•  Demand paging

–  don’t try to anticipate

•  Page replacement
–  local, global, hybrid

•  Locality
–  temporal, spatial

•  Working set
•  Thrashing

31

•  Page replacement algorithms
–  #1: Belady’s – optimal, but unrealizable
–  #2: FIFO – replace page loaded furthest in the past
–  #3: LRU – replace page referenced furthest in the past

•  approximate using PTE reference bit
–  #4: LRU Clock – replace page that is “old enough”
–  #5: Working Set – keep the working set in memory
–  #6: Page Fault Frequency – grow/shrink number of frames as a

function of fault rate

32

