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Chapter 8:  Memory Management

• Background
• Logical/Virtual Address Space vs Physical 

Address Space
• Swapping 
• Contiguous Memory Allocation
• Segmentation



Goals and Tools of memory management

• Allocate memory resources among competing processes,
– maximizing memory utilization and system throughput

• Provide isolation between processes
– Addressability and protection: orthogonal

• Convenient abstraction for programming 
– and  compilers, etc.

• Tools
– Base and limit registers
– Swapping
– Segmentation 
– Paging, page tables and TLB (Next time)
– Virtual memory: (Next next time)
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Background

• Program must be brought (from disk)  into memory and placed 
within a process for it to be run

• Main memory and registers are only storage CPU can access 
directly

• Memory unit only sees a stream of addresses + read requests, 
or address + data and write requests

• Register access in one CPU clock (or less)
• Main memory can take many cycles, causing a stall
• Cache sits between main memory and CPU registers
• Protection of memory required to ensure correct operation



Base and Limit Registers
• A pair of base and limit registers define the logical address 

space
• CPU must check every memory access generated in user 

mode to be sure it is between base and limit for that user
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Virtual addresses for multiprogramming

• To make it easier to manage memory of multiple processes, 
make processes use logical or virtual addresses 
– Logical/virtual addresses are independent of location in physical 

memory data lives
• OS determines location in physical memory

– instructions issued by CPU reference logical/virtual addresses
• e.g., pointers, arguments to load/store instructions, PC …

– Logical/virtual addresses are translated by hardware into physical 
addresses (with some setup from OS)
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Logical/Virtual Address Space

• The set of logical/virtual addresses a process can reference 
is its address space
– many different possible mechanisms for translating logical/virtual 

addresses to physical addresses
• Program issues addresses in a logical/virtual address space

– must be translated to physical address space
– Think of the program as having a contiguous logical/virtual address 

space that starts at 0, 
– and a contiguous physical address space that starts somewhere 

else
• Logical/virtual address space is the set of all logical 

addresses generated by a program
• Physical address space is the set of all physical 

addresses generated by a program
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Memory-Management Unit (MMU)

• Hardware device 
– at run time maps virtual to physical address

• Many methods possible
• Consider simple scheme where the value in the relocation 

register is added to every address generated by a user 
process at the time it is sent to memory
– Base register now called relocation register
– MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; it never sees 
the real physical addresses
– Execution-time binding occurs when reference is made to location in 

memory
– Logical address bound to physical addresses



MMU as a relocation register



Swapping

• What if not enough memory to hold all processes?
• A process can be swapped temporarily 

– out of memory to a backing store, 
– brought back into memory for continued execution
– Total physical memory space of processes can exceed physical 

memory
• Backing store – fast disk 

– large enough to accommodate copies of all memory images for all 
users; 

– must provide direct access to these memory images
• Roll out, roll in – swapping variant 

– used for priority-based scheduling algorithms; 
– lower-priority process is swapped out so higher-priority process can 

be loaded and executed
• Major part of swap time is transfer time; 

– total transfer time is directly proportional to the amount of memory 
swapped

• System maintains a ready queue
– ready-to-run processes which have memory images on disk



Swapping
• Does the swapped out process need to swap back in to 

same physical addresses?
• Depends on address binding method

– MMU prevents the ned for this
– But consider pending I/O to / from process memory space

• Modified versions of swapping are found on many 
systems (i.e., UNIX, Linux, and Windows)
– Swapping normally disabled
– Started if more than threshold amount of memory allocated
– Disabled again once memory demand reduced below threshold



Schematic View of Swapping



Context Switch Time including Swapping

• If next processes to be put on CPU is not in memory,
– need to swap out a process and swap in target process

• Context switch time can then be very high
• 100MB process swapping to hard disk with transfer rate of 

50MB/sec
– Swap out time of 2000 ms
– Plus swap in of same sized process
– Total context switch swapping component time of 4000ms (4 seconds)

• Can reduce cost
– if reduce size of memory swapped – by knowing how much memory 

really being used
– System calls to inform OS of memory use via request_memory() 

and release_memory()



Context Switch Time and Swapping

• Other constraints as well on swapping
– Pending I/O – can’t swap out as I/O would occur to wrong process

• Or always transfer I/O to kernel space, then to I/O device
• Known as double buffering, adds overhead

• Standard swapping not used in modern operating systems
– But modified version common

• Swap only when free memory extremely low



Swapping on Mobile Systems
• Not typically supported

– Flash memory based
• Small amount of space
• Limited number of write cycles
• Poor throughput between flash memory and CPU on mobile 

platform
• Instead use other methods to free memory if low

– iOS asks apps to voluntarily relinquish allocated memory
• Read-only data thrown out and reloaded from flash if needed
• Failure to free can result in termination

– Android terminates apps if low free memory, but first writes 
application state to flash for fast restart

– Both OSes support paging discussed in next lecture



Contiguous Allocation

• Main memory must support both OS and user processes
• Limited resource, must allocate efficiently
• Contiguous allocation is one early method
• Main memory usually into two partitions:

– Resident operating system, usually held in low memory with 
interrupt vector

– User processes then held in high memory
– Each process contained in single contiguous section of memory



Contiguous Allocation

• Relocation registers 
– used to protect user processes from each other, and from 

changing operating-system code and data
– Base register contains value of smallest physical address
– Limit register contains range of logical addresses – each 

logical address must be less than the limit register 
• MMU maps logical address dynamically

– Can then allow actions such as kernel code being transient 
and kernel changing size



Hardware Support for Relocation and Limit Registers



Multiple-partition allocation
• Multiple-partition allocation

– Degree of multiprogramming limited by number of partitions
– Exam 2 approaches

• Fixed partition 
• Variable partition



Old technique #1: Fixed partitions

• Physical memory is broken up into fixed partitions
– partitions may have different sizes, but partitioning never changes
– hardware requirement: base register, limit register

• physical address = virtual address + base register
• base register loaded by OS when it switches to a process

• Advantages
– Simple

• Problems
– internal fragmentation: the available partition is larger than what was 

requested
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Mechanics of fixed partitions
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Old technique #2: Variable partitions

• Obvious next step: physical memory is broken up into 
partitions dynamically – partitions are tailored to programs
– hardware requirements: base register, limit register
– physical address = virtual address + base register

• Advantages
– no internal fragmentation

• simply allocate partition size to be just big enough for process 
(assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered throughout 
physical memory
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Mechanics of variable partitions
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Multiple-partition allocation
• Multiple-partition allocation

– Variable-partition sizes for efficiency (sized to a given process’ needs)
– Hole – block of available memory; holes of various size are scattered throughout memory
– When a process arrives, allocated memory from a hole large enough to accommodate it
– Process exiting frees its partition, adjacent free partitions combined
– Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)



Dynamic Storage-Allocation Problem

• First-fit:  Allocate the first hole that is big enough

• Best-fit:  Allocate the smallest hole that is big enough; must 
search entire list, unless ordered by size  
– Produces the smallest leftover hole

• Worst-fit:  Allocate the largest hole; must also search entire list  
– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and 
storage utilization



Fragmentation

• External Fragmentation – total memory space exists to 
satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly 
larger than requested memory; 

• First fit analysis reveals that given N blocks allocated, 0.5 N
blocks lost to fragmentation
– 1/3 may be unusable -> 50-percent rule



Dealing with fragmentation

• Compact memory by 
copying
– Swap a program out
– Re-load it, adjacent to 

another
– Adjust its base register
– Compaction is possible 
only if relocation is dynamic

– I/O problem
• Latch job in memory 

while it is involved in I/O
• Do I/O only into OS 

buffers
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Segmentation

• Dealing with fragmentation
– Why not remove need for continuous adresses?

• Segmentation
– partition an address space into logical units

• stack, code, heap, subroutines, …
– a virtual address is <segment #, offset>

• Facilitates sharing and reuse
– a segment is a natural unit of sharing – a subroutine or function

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process
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User’s View of a Program



Logical View of Segmentation
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Hardware support

• Segment table
– multiple base/limit pairs, one per segment
– segments named by segment #, used as index into table

• a virtual address is <segment #, offset>
– offset of virtual address added to base address of segment to yield 

physical address
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Segment lookups
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Pros and cons

• Logical and it facilitates sharing and reuse
• Allows non-contiguous physical addresses 

– Helps exploits varying sized holes
• But it has the complexity of a variable partition system

– except that linking is simpler, and the “chunks” that must be 
allocated are smaller than a “typical” linear address space

• Segmentation rarely used alone
– Paging is the basis for modern memory management 
– Covered in next lecture
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Summary

• Logical/Virtual Address Space vs Physical 
Address Space

• Swapping 
• Contiguous Memory Allocation
• Fragmentation
• Segmentation
• Paging 

– A better solution
– Next lecture


