
Operating Systems

Memory Management

Lecture 9
Michael O’Boyle

1

Chapter 8: Memory Management

• Background
• Logical/Virtual Address Space vs Physical

Address Space
• Swapping
• Contiguous Memory Allocation
• Segmentation

Goals and Tools of memory management

• Allocate memory resources among competing processes,
– maximizing memory utilization and system throughput

• Provide isolation between processes
– Addressability and protection: orthogonal

• Convenient abstraction for programming
– and compilers, etc.

• Tools
– Base and limit registers
– Swapping
– Segmentation
– Paging, page tables and TLB (Next time)
– Virtual memory: (Next next time)

3

Background

• Program must be brought (from disk) into memory and placed
within a process for it to be run

• Main memory and registers are only storage CPU can access
directly

• Memory unit only sees a stream of addresses + read requests,
or address + data and write requests

• Register access in one CPU clock (or less)
• Main memory can take many cycles, causing a stall
• Cache sits between main memory and CPU registers
• Protection of memory required to ensure correct operation

Base and Limit Registers
• A pair of base and limit registers define the logical address

space
• CPU must check every memory access generated in user

mode to be sure it is between base and limit for that user

Hardware Address Protection

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <

Virtual addresses for multiprogramming

• To make it easier to manage memory of multiple processes,
make processes use logical or virtual addresses
– Logical/virtual addresses are independent of location in physical

memory data lives
• OS determines location in physical memory

– instructions issued by CPU reference logical/virtual addresses
• e.g., pointers, arguments to load/store instructions, PC …

– Logical/virtual addresses are translated by hardware into physical
addresses (with some setup from OS)

7

Logical/Virtual Address Space

• The set of logical/virtual addresses a process can reference
is its address space
– many different possible mechanisms for translating logical/virtual

addresses to physical addresses
• Program issues addresses in a logical/virtual address space

– must be translated to physical address space
– Think of the program as having a contiguous logical/virtual address

space that starts at 0,
– and a contiguous physical address space that starts somewhere

else
• Logical/virtual address space is the set of all logical

addresses generated by a program
• Physical address space is the set of all physical

addresses generated by a program
8

Memory-Management Unit (MMU)

• Hardware device
– at run time maps virtual to physical address

• Many methods possible
• Consider simple scheme where the value in the relocation

register is added to every address generated by a user
process at the time it is sent to memory
– Base register now called relocation register
– MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; it never sees
the real physical addresses
– Execution-time binding occurs when reference is made to location in

memory
– Logical address bound to physical addresses

MMU as a relocation register

Swapping

• What if not enough memory to hold all processes?
• A process can be swapped temporarily

– out of memory to a backing store,
– brought back into memory for continued execution
– Total physical memory space of processes can exceed physical

memory
• Backing store – fast disk

– large enough to accommodate copies of all memory images for all
users;

– must provide direct access to these memory images
• Roll out, roll in – swapping variant

– used for priority-based scheduling algorithms;
– lower-priority process is swapped out so higher-priority process can

be loaded and executed
• Major part of swap time is transfer time;

– total transfer time is directly proportional to the amount of memory
swapped

• System maintains a ready queue
– ready-to-run processes which have memory images on disk

Swapping
• Does the swapped out process need to swap back in to

same physical addresses?
• Depends on address binding method

– MMU prevents the ned for this
– But consider pending I/O to / from process memory space

• Modified versions of swapping are found on many
systems (i.e., UNIX, Linux, and Windows)
– Swapping normally disabled
– Started if more than threshold amount of memory allocated
– Disabled again once memory demand reduced below threshold

Schematic View of Swapping

Context Switch Time including Swapping

• If next processes to be put on CPU is not in memory,
– need to swap out a process and swap in target process

• Context switch time can then be very high
• 100MB process swapping to hard disk with transfer rate of

50MB/sec
– Swap out time of 2000 ms
– Plus swap in of same sized process
– Total context switch swapping component time of 4000ms (4 seconds)

• Can reduce cost
– if reduce size of memory swapped – by knowing how much memory

really being used
– System calls to inform OS of memory use via request_memory()

and release_memory()

Context Switch Time and Swapping

• Other constraints as well on swapping
– Pending I/O – can’t swap out as I/O would occur to wrong process

• Or always transfer I/O to kernel space, then to I/O device
• Known as double buffering, adds overhead

• Standard swapping not used in modern operating systems
– But modified version common

• Swap only when free memory extremely low

Swapping on Mobile Systems
• Not typically supported

– Flash memory based
• Small amount of space
• Limited number of write cycles
• Poor throughput between flash memory and CPU on mobile

platform
• Instead use other methods to free memory if low

– iOS asks apps to voluntarily relinquish allocated memory
• Read-only data thrown out and reloaded from flash if needed
• Failure to free can result in termination

– Android terminates apps if low free memory, but first writes
application state to flash for fast restart

– Both OSes support paging discussed in next lecture

Contiguous Allocation

• Main memory must support both OS and user processes
• Limited resource, must allocate efficiently
• Contiguous allocation is one early method
• Main memory usually into two partitions:

– Resident operating system, usually held in low memory with
interrupt vector

– User processes then held in high memory
– Each process contained in single contiguous section of memory

Contiguous Allocation

• Relocation registers
– used to protect user processes from each other, and from

changing operating-system code and data
– Base register contains value of smallest physical address
– Limit register contains range of logical addresses – each

logical address must be less than the limit register
• MMU maps logical address dynamically

– Can then allow actions such as kernel code being transient
and kernel changing size

Hardware Support for Relocation and Limit Registers

Multiple-partition allocation
• Multiple-partition allocation

– Degree of multiprogramming limited by number of partitions
– Exam 2 approaches

• Fixed partition
• Variable partition

Old technique #1: Fixed partitions

• Physical memory is broken up into fixed partitions
– partitions may have different sizes, but partitioning never changes
– hardware requirement: base register, limit register

• physical address = virtual address + base register
• base register loaded by OS when it switches to a process

• Advantages
– Simple

• Problems
– internal fragmentation: the available partition is larger than what was

requested

21

Mechanics of fixed partitions

22

partition 0

partition 1

partition 2

partition 3

0

2K

6K

8K

12K

physical memory

offset +
virtual address

P2’s base: 6K
base register

2K

<?

no

raise
protection fault

limit register

yes

Old technique #2: Variable partitions

• Obvious next step: physical memory is broken up into
partitions dynamically – partitions are tailored to programs
– hardware requirements: base register, limit register
– physical address = virtual address + base register

• Advantages
– no internal fragmentation

• simply allocate partition size to be just big enough for process
(assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered throughout
physical memory

23

Mechanics of variable partitions

24

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base
base register

P3’s size
limit register

<?

raise
protection fault

no

yes

Multiple-partition allocation
• Multiple-partition allocation

– Variable-partition sizes for efficiency (sized to a given process’ needs)
– Hole – block of available memory; holes of various size are scattered throughout memory
– When a process arrives, allocated memory from a hole large enough to accommodate it
– Process exiting frees its partition, adjacent free partitions combined
– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size
– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list
– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

Fragmentation

• External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly
larger than requested memory;

• First fit analysis reveals that given N blocks allocated, 0.5 N
blocks lost to fragmentation
– 1/3 may be unusable -> 50-percent rule

Dealing with fragmentation

• Compact memory by
copying
– Swap a program out
– Re-load it, adjacent to

another
– Adjust its base register
– Compaction is possible
only if relocation is dynamic

– I/O problem
• Latch job in memory

while it is involved in I/O
• Do I/O only into OS

buffers

28

partition 0

partition 1

partition 2

partition 3

partition 4

partition 0

partition 1
partition 2
partition 3

partition 4

Segmentation

• Dealing with fragmentation
– Why not remove need for continuous adresses?

• Segmentation
– partition an address space into logical units

• stack, code, heap, subroutines, …
– a virtual address is <segment #, offset>

• Facilitates sharing and reuse
– a segment is a natural unit of sharing – a subroutine or function

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process

29

User’s View of a Program

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Hardware support

• Segment table
– multiple base/limit pairs, one per segment
– segments named by segment #, used as index into table

• a virtual address is <segment #, offset>
– offset of virtual address added to base address of segment to yield

physical address

32

Segment lookups

33

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
protection fault

no

yes

offset

baselimit

segment table

Pros and cons

• Logical and it facilitates sharing and reuse
• Allows non-contiguous physical addresses

– Helps exploits varying sized holes
• But it has the complexity of a variable partition system

– except that linking is simpler, and the “chunks” that must be
allocated are smaller than a “typical” linear address space

• Segmentation rarely used alone
– Paging is the basis for modern memory management
– Covered in next lecture

34

Summary

• Logical/Virtual Address Space vs Physical
Address Space

• Swapping
• Contiguous Memory Allocation
• Fragmentation
• Segmentation
• Paging

– A better solution
– Next lecture

