
Operating Systems
Fall 2014

Semaphores, Condition Variables,

and Monitors

Myungjin Lee
myungjin.lee@ed.ac.uk

1

Semaphores

•  Semaphore = a synchronization primitive
–  higher level of abstraction than locks
–  invented by Dijkstra in 1968, as part of the THE operating system

•  A semaphore is:
–  a variable that is manipulated through two operations,

P and V (Dutch for “wait” and “signal”)
•  P(sem) (wait)

–  block until sem > 0, then subtract 1 from sem and proceed
•  V(sem) (signal)

–  add 1 to sem
•  Do these operations atomically

2

Blocking in semaphores

•  Each semaphore has an associated queue of threads
–  when P (sem) is called by a thread,

•  if sem was “available” (>0), decrement sem and let thread
continue

•  if sem was “unavailable” (0), place thread on associated queue;
run some other thread

–  when V (sem) is called by a thread
•  if thread(s) are waiting on the associated queue, unblock one

–  place it on the ready queue
– might as well let the “V-ing” thread continue execution

•  otherwise (when no threads are waiting on the sem),
increment sem

–  the signal is “remembered” for next time P(sem) is called

3

Two types of semaphores

•  Binary semaphore (aka mutex semaphore)
–  sem is initialized to 1
–  guarantees mutually exclusive access to resource (e.g., a critical

section of code)
–  only one thread/process allowed entry at a time
–  Logically equivalent to a lock with blocking rather than spinning

•  Counting semaphore
–  Allow up to N threads continue (we’ll see why in a bit …)
–  sem is initialized to N

•  N = number of units available
–  represents resources with many (identical) units available
–  allows threads to enter as long as more units are available

4

Binary semaphore usage

•  From the programmer’s perspective, P and V on a binary semaphore
are just like Acquire and Release on a lock

P(sem)
 . . .
 do whatever stuff requires mutual exclusion; could conceivably
 be a lot of code . . .

V(sem)

–  same lack of programming language support for correct usage

•  Important differences in the underlying implementation, however

5

Example: Bounded buffer problem

•  AKA “producer/consumer” problem
–  there is a circular buffer in memory with N entries (slots)
–  producer threads insert entries into it (one at a time)
–  consumer threads remove entries from it (one at a time)

•  Threads are concurrent
–  so, we must use synchronization constructs to control access to

shared variables describing buffer state

6

head tail

Bounded buffer using semaphores
(both binary and counting)

7

Note:
I have elided all the code
concerning which is the first
full slot, which is the last full
slot, etc.

var mutex: semaphore = 1 ; mutual exclusion to shared data
 empty: semaphore = n ; count of empty slots (all empty to start)
 full: semaphore = 0 ; count of full slots (none full to start)

producer:
 P(empty) ; block if no slots available
 P(mutex) ; get access to pointers
 <add item to slot, adjust pointers>
 V(mutex) ; done with pointers
 V(full) ; note one more full slot

consumer:
 P(full) ; wait until there’s a full slot
 P(mutex) ; get access to pointers
 <remove item from slot, adjust pointers>
 V(mutex) ; done with pointers
 V(empty) ; note there’s an empty slot
 <use the item>

Example: Readers/Writers

•  Description:
–  A single object is shared among several threads/processes
–  Sometimes a thread just reads the object
–  Sometimes a thread updates (writes) the object

–  We can allow multiple readers at a time

•  why?

–  We can only allow one writer at a time
•  why?

8

Readers/Writers using semaphores

9

var mutex: semaphore = 1 ; controls access to readcount
 wrt: semaphore = 1 ; control entry for a writer or first reader
 readcount: integer = 0 ; number of active readers

writer:
 P(wrt) ; any writers or readers?
 <perform write operation>
 V(wrt) ; allow others

reader:
 P(mutex) ; ensure exclusion
 readcount++ ; one more reader
 if readcount == 1 then P(wrt) ; if we’re the first, synch with writers
 V(mutex)
 <perform read operation>
 P(mutex) ; ensure exclusion
 readcount-- ; one fewer reader
 if readcount == 0 then V(wrt) ; no more readers, allow a writer
 V(mutex)

Readers/Writers notes

•  Notes:
–  the first reader blocks on P(wrt) if there is a writer

•  any other readers will then block on P(mutex)

–  if a waiting writer exists, the last reader to exit signals the waiting
writer

•  can new readers get in while a writer is waiting?
•  so?

–  when writer exits, if there is both a reader and writer waiting, which
one goes next?

10

Semaphores vs. Spinlocks

•  Threads that are blocked at the level of program logic (that is, by the
semaphore P operation) are placed on queues, rather than busy-waiting

•  Busy-waiting may be used for the “real” mutual exclusion required to
implement P and V
–  but these are very short critical sections – totally independent of program

logic
–  and they are not implemented by the application programmer

11

Abstract implementation

–  P/wait(sem)
•  acquire “real” mutual exclusion

–  if sem is “available” (>0), decrement sem; release “real”
mutual exclusion; let thread continue

–  otherwise, place thread on associated queue; release “real”
mutual exclusion; run some other thread

–  V/signal(sem)
•  acquire “real” mutual exclusion

–  if thread(s) are waiting on the associated queue, unblock
one (place it on the ready queue)

–  if no threads are on the queue, sem is incremented
»  the signal is “remembered” for next time P(sem) is called

•  release “real” mutual exclusion
•  [the “V-ing” thread continues execution, or may be preempted]

12

Pressing questions

•  How do you acquire “real” mutual exclusion?

•  Why is this any better than using a spinlock (test-and-set) or
disabling interrupts (assuming you’re in the kernel) in lieu of a
semaphore?

•  What if some bozo issues an extra V?

•  What if some bozo forgets to P before manipulating shared
state?

•  Could locks be implemented in exactly the same way? That is,
“software locks” that you acquire and release, where the
underlying implementation involves moving descriptors to/from a
wait queue?

13

Condition Variables

•  Basic operations
–  Wait()

•  Wait until some thread does a signal and release the associated
lock, as an atomic operation

–  Signal()
•  If any threads are waiting, wake up one
•  Cannot proceed until lock re-acquired

•  Signal() is not remembered
–  A signal to a condition variable that has no threads waiting is a no-

op
•  Qualitative use guideline

–  You wait() when you can’t proceed until some shared state changes
–  You signal() when shared state changes from “bad” to “good”

14

Bounded buffers with condition variables

15

Note 1:
Do you see why wait() must
release the associated
lock?

Note 2:
How is the associated lock
re-acquired?

[Let’s think about the
implementation of this
inside the threads package]

var mutex: lock ; mutual exclusion to shared data
 freeslot: condition ; there’s a free slot
 fullslot: condition ; there’s a full slot

producer:
 lock(mutex) ; get access to pointers
 if [no slots available] wait(freeslot);
 <add item to slot, adjust pointers>
 signal(fullslot);
 unlock(mutex)

consumer:
 lock(mutex) ; get access to pointers
 if [no slots have data] wait(fullslot);
 <remove item from slot, adjust pointers>
 signal(freeslot);
 unlock(mutex);
 <use the item>

The possible bug

•  Depending on the implementation …
–  Between the time a thread is woken up by signal() and the time it re-

acquires the lock, the condition it is waiting for may be false again
•  Waiting for a thread to put something in the buffer
•  A thread does, and signals
•  Now another thread comes along and consumes it
•  Then the “signalled” thread forges ahead …

–  Solution
•  Not

–  if [no slots available] wait(fullslot)
•  Instead

– While [no slots available] wait(fullslot)
–  Could the scheduler also solve this problem?

16

The possible bug

17

Waiting
consumer T1

Another
consumer T2

Producer
T3

Waiting signal
Unlock mutex

Reacquire
mutex

Wake up

Lock the mutex
Consume
an item

Unlock the mutex

Try to consume
an item

(but already
consumed by T2)

Insert
an item

Arrives at the
critical section

mutex is free

Y-axis is time

Unlock the
mutex

Problems with semaphores, locks, and
condition variables

•  They can be used to solve any of the traditional synchronization
problems, but it’s easy to make mistakes
–  they are essentially shared global variables

•  can be accessed from anywhere (bad software engineering)
–  there is no connection between the synchronization variable and the data

being controlled by it
–  No control over their use, no guarantee of proper usage

•  Condition variables: will there ever be a signal?
•  Semaphores: will there ever be a V()?
•  Locks: did you lock when necessary? Unlock at the right time? At all?

•  Thus, they are prone to bugs
–  We can reduce the chance of bugs by “stylizing” the use of synchronization
–  Language help is useful for this

18

One More Approach: Monitors

•  A monitor is a programming language construct that supports controlled
access to shared data
–  synchronization code is added by the compiler

•  why does this help?

•  A monitor is (essentially) a class in which every method automatically
acquires a lock on entry, and releases it on exit – it combines:
–  shared data structures (object)
–  procedures that operate on the shared data (object metnods)
–  synchronization between concurrent threads that invoke those procedures

•  Data can only be accessed from within the monitor, using the provided

procedures
–  protects the data from unstructured access
–  Prevents ambiguity about what the synchronization variable protects

•  Addresses the key usability issues that arise with semaphores
19

A monitor

20

shared data

waiting queue of threads
trying to enter the monitor

operations (methods) at most one thread
in monitor at a

time

Proc A

Proc B

Proc C

Don’t confuse
this box with the

box we have
used to denote a

process!

Monitor facilities

•  “Automatic” mutual exclusion
–  only one thread can be executing inside at any time

•  thus, synchronization is implicitly associated with the monitor – it
“comes for free”

–  if a second thread tries to execute a monitor procedure, it blocks
until the first has left the monitor

•  more restrictive than semaphores
•  but easier to use (most of the time)

•  But, there’s a problem…

21

Problem: Bounded Buffer Scenario

22

Produce()

Consume()

•  Buffer is empty
•  Now what?

P P C

C

Problem: Bounded Buffer Scenario

23

Produce()

Consume()

•  Buffer is full
•  Now what?

P P C

P

Solution?

•  Monitors require condition variables
•  Operations on condition variables (just as before!)

–  wait(c)
•  release monitor lock, so somebody else can get in
•  wait for somebody else to signal condition
•  thus, condition variables have associated wait queues

–  signal(c)
•  wake up at most one waiting thread

–  “Hoare” monitor: wakeup immediately, signaller steps
outside

•  if no waiting threads, signal is lost
–  this is different than semaphores: no history!

–  broadcast(c)
•  wake up all waiting threads

24

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
 buffer resources[N];
 condition not_full, not_empty;

produce(resource x) {
 if (array “resources” is full, determined maybe by a count)
 wait(not_full);
 insert “x” in array “resources”
 signal(not_empty);
 }

 consume(resource *x) {
 if (array “resources” is empty, determined maybe by a count)
 wait(not_empty);
 *x = get resource from array “resources”
 signal(not_full);
 }

25

Problem: Bounded Buffer Scenario

26

Produce()

Consume()

•  Buffer is full
•  Now what?

P P C

P

Bounded Buffer Scenario with CV’s

27

Produce()

Consume()

•  Buffer is full
•  Now what?

P P C

P

Queue of
threads

waiting for
condition “not

full” to be
signaled

Runtime system calls for (Hoare) monitors

•  EnterMonitor(m) {guarantee mutual exclusion}
•  ExitMonitor(m) {hit the road, letting someone else run}
•  Wait(c) {step out until condition satisfied}
•  Signal(c) {if someone’s waiting, step out and let him run}

•  EnterMonitor and ExitMonitor are inserted automatically by
the compiler.

•  This guarantees mutual exclusion for code inside of the
monitor.

28

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
 buffer resources[N];
 condition not_full, not_empty;

 procedure add_entry(resource x) {
 if (array “resources” is full, determined maybe by a count)
 wait(not_full);
 insert “x” in array “resources”
 signal(not_empty);
 }
 procedure get_entry(resource *x) {
 if (array “resources” is empty, determined maybe by a count)
 wait(not_empty);
 *x = get resource from array “resources”
 signal(not_full);
 }

29

EnterMonitor(m)

EnterMonitor(m)

ExitMonitor(m)

ExitMonitor(m)

There is a subtle issue with that code…

•  Who runs when the signal() is done and there is a thread waiting on the
condition variable?

•  Hoare monitors: signal(c) means
–  run waiter immediately
–  signaller blocks immediately

•  condition guaranteed to hold when waiter runs
•  but, signaller must restore monitor invariants before signalling!

–  cannot leave a mess for the waiter, who will run immediately!

•  Mesa monitors: signal(c) means
–  waiter is made ready, but the signaller continues

•  waiter runs when signaller leaves monitor (or waits)
–  signaller need not restore invariant until it leaves the monitor
–  being woken up is only a hint that something has changed

•  signalled condition may no longer hold
•  must recheck conditional case

30

Hoare vs. Mesa Monitors

•  Hoare monitors:

•  Mesa monitors:

•  Mesa monitors easier to use
–  more efficient
–  fewer context switches
–  directly supports broadcast

•  Hoare monitors leave less to chance
–  when wake up, condition guaranteed to be what you expect

31

if (notReady) wait(c)

while (notReady) wait(c)

Runtime system calls for Hoare monitors

•  EnterMonitor(m) {guarantee mutual exclusion}
–  if m occupied, insert caller into queue m
–  else mark as occupied, insert caller into ready queue
–  choose somebody to run

•  ExitMonitor(m) {hit the road, letting someone else run}
–  if queue m is empty, then mark m as unoccupied
–  else move a thread from queue m to the ready queue
–  insert caller in ready queue
–  choose someone to run

32

•  Wait(c) {step out until condition satisfied}
–  if queue m is empty, then mark m as unoccupied
–  else move a thread from queue m to the ready queue
–  put the caller on queue c
–  choose someone to run

•  Signal(c) {if someone’s waiting, step out and let him run}
–  if queue c is empty then put the caller on the ready queue
–  else move a thread from queue c to the ready queue, and put the

caller into queue m
–  choose someone to run

33

Runtime system calls for Mesa monitors

•  EnterMonitor(m) {guarantee mutual exclusion}
–  …

•  ExitMonitor(m) {hit the road, letting someone else run}
–  …

•  Wait(c) {step out until condition satisfied}
–  …

•  Signal(c) {if someone’s waiting, give him a shot after I’m
done}
–  if queue c is occupied, move one thread from queue c to queue m
–  return to caller

34

•  Broadcast(c) {food fight!}
–  move all threads on queue c onto queue m
–  return to caller

35

Readers and Writers
(stolen from Cornell J)

Monitor ReadersNWriters {
 int WaitingWriters, WaitingReaders, NReaders, NWriters;
 Condition CanRead, CanWrite;

 Void BeginWrite()
 {
 if(NWriters == 1 || NReaders > 0)
 {
 ++WaitingWriters;
 wait(CanWrite);
 --WaitingWriters;
 }
 NWriters = 1;
 }
 Void EndWrite()
 {
 NWriters = 0;
 if(WaitingReaders)
 Signal(CanRead);
 else
 Signal(CanWrite);
 }

36

Void BeginRead()
 {
 if(NWriters == 1 || WaitingWriters > 0)
 {
 ++WaitingReaders;
 Wait(CanRead);

 --WaitingReaders;
 }
 ++NReaders;
 Signal(CanRead);
 }

 Void EndRead()
 {
 if(--NReaders == 0)
 Signal(CanWrite);

 }

Monitor Summary

•  Language supports monitors
•  Compiler understands them

–  Compiler inserts calls to runtime routines for
•  monitor entry
•  monitor exit

–  Programmer inserts calls to runtime routines for
•  signal
•  wait

–  Language/object encapsulation ensures correctness
•  Sometimes! With conditions, you still need to think about

synchronization
•  Runtime system implements these routines

–  moves threads on and off queues
–  ensures mutual exclusion!

37

